Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Size: px
Start display at page:

Download "Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle"

Transcription

1 Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in preparation) University of Virginia 27 th February, 2013 Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

2 Outline EWν R Model Motivation Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

3 Outline EWν R Model Motivation Overview of the Electroweak-scale Right-handed Neutrino (EWν R ) model Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

4 Outline EWν R Model Motivation Overview of the Electroweak-scale Right-handed Neutrino (EWν R ) model Accommodating the 126 GeV result from LHC Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

5 Outline EWν R Model Motivation Overview of the Electroweak-scale Right-handed Neutrino (EWν R ) model Accommodating the 126 GeV result from LHC An extended EWν R Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

6 Two most pressing problems in particle physics Nature of spontaneous breaking of the electroweak symmetry Nature of neutrino masses and mixings Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

7 Two most pressing problems in particle physics Nature of spontaneous breaking of the electroweak symmetry Nature of neutrino masses and mixings Discovery of a new 126 GeV particle could be significant step in unfolding the first mystery Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

8 Motivation EWν R Model Neutrino (ν) masses popular Seesaw mechanism Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

9 Motivation EWν R Model Neutrino (ν) masses popular Seesaw mechanism In general Seesaw Mechanism: ν R SU(2) L U(1) Y singlet Right-handed neutrino mass at GUT scale NOT testable at LHC m ν (md ν )2 M R 1 Dirac mass Majorana mass Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

10 Motivation EWν R Model Neutrino (ν) masses popular Seesaw mechanism In general Seesaw Mechanism: ν R SU(2) L U(1) Y singlet Right-handed neutrino mass at GUT scale NOT testable at LHC So m ν (md ν )2 M R 1 Dirac mass Majorana mass Electroweak scale Majorana masses of Right-handed Neutrinos (EWν R ) possible (?) Within SM group SU(3) c x SU(2) L x U(1) Y (?) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

11 Motivation EWν R Model Neutrino (ν) masses popular Seesaw mechanism In general Seesaw Mechanism: ν R SU(2) L U(1) Y singlet Right-handed neutrino mass at GUT scale NOT testable at LHC So m ν (md ν )2 M R 1 Dirac mass Majorana mass Electroweak scale Majorana masses of Right-handed Neutrinos (EWν R ) possible (?) Within SM group SU(3) c x SU(2) L x U(1) Y (?) possible! [PQ, PLB 649 (2007)] Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

12 What s next option after a singlet ν R? l L = ν L e L, e R Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

13 What s next option after a singlet ν R? l L = ν L e L, e R l M R = ν R e M R, e M L Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

14 To ensure anomaly cancellation q L = u L d L, u R, d R Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

15 To ensure anomaly cancellation q L = u L d L, u R, d R q M R = um R d M R, u M L, d M L Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

16 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

17 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ) l M R + h.c. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

18 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ) l M R + h.c. Charged singlet Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

19 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ) l M R + h.c. Charged singlet Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

20 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ) l M R + h.c. Charged singlet Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

21 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ı τ2 χ ) l M R + h.c. χ ( 3, Y 2 = 1) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

22 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ı τ2 χ ) l M R + h.c. χ ( 3, Y 2 = 1) M R = g M v M ; < χ 0 >= v M Λ EW 1 χ + χ ++ 2 χ = χ χ + Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

23 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Majorana L M = g M ( l M,T R σ 2 )( ı τ2 χ ) l M R + h.c. χ ( 3, Y 2 = 1) M R = g M v M ; < χ 0 >= v M Λ EW 1 χ + χ ++ 2 χ = χ χ + Z width M R > M Z / 2 Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

24 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

25 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Dirac L S = g sl L L φ S L M R + h.c. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

26 l L = ( ) ( νl, e e R lr M νr = L er M ), e M L Dirac L S = g sl L L φ S L M R + h.c. φ S ( 1, Y 2 = 0) m D ν = g Sl v S < φ S >= v S << v M m ν 1eV v S ev Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

27 Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

28 Energy scale Λ EW 246 GeV Λ GUT GeV Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

29 Energy scale Λ EW 246 GeV Λ GUT GeV v S ev Λ EW 246 GeV Energy scale Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

30 ρ = M 2 W M 2 Z cosθ2 W Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

31 ρ = M 2 W M 2 Z cosθ2 W = T,Y [4T (T + 1) Y 2 ] V T,Y 2 c T,Y T,Y 2Y 2 V T,Y 2 Tree level; c T,Y = 1, (1/2) for (T,Y) complex (real) rep. [The Higgs Hunter s Guide, Gunion et.al.] Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

32 ρ = M 2 W M 2 Z cosθ2 W = 1 Tree level Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

33 ρ = M 2 W M 2 Z cosθ2 W Tree level = 1 add ξ (3, Y 2 = 0) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

34 Fermions SM Fermions EWν R Mirror Fermions L Li = Q Li = SM Fields SU(2) W U(1) Y Additional Fields SU(2) W U(1) Y ( ( ) ν L 2 1 L M ν R Ri = 2 1 e L e M R ) i ( ) i u L 2 (1/3) Q M u M R Ri = 2 (1/3) d L d M R i i e Ri 1 2 e M Li 1 2 u Ri 1 (4/3) u M Li 1 (4/3) d Ri 1 (2/3) d M Li 1 (2/3) Scalars Field SU(2) W U(1) Y VEV ( ) χ 3 2 v M ξ 3 0 v M Φ 2 1 v 2/ 2 φ S 1 0 v S Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

35 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) L SU(2) R Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

36 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

37 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

38 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), H + 3 = c H 2 (χ + + ξ + ) s H φ +, H 0 3 = ı ( c H χ 0 ı + s H φ 0 ı), Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

39 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), H + 3 = c H 2 (χ + + ξ + ) s H φ +, H 0 3 = ı ( c H χ 0 ı + s H φ 0 ı), H 0 1 = φ 0r, H 0 1 = 1 3 ( 2χ 0r + ξ 0), Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

40 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), H + 3 = c H 2 (χ + + ξ + ) s H φ +, H 0 3 = ı ( c H χ 0 ı + s H φ 0 ı), H 0 1 = φ 0r, H 0 1 = 1 3 ( 2χ 0r + ξ 0), G ± 3 = c H φ ± + s H 2 (χ ± + ξ ± ), G 0 3 = ı( c H φ 0 ı + s H χ 0 ı ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

41 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), H + 3 = c H 2 (χ + + ξ + ) s H φ +, H 0 3 = ı ( c H χ 0 ı + s H φ 0 ı), H 0 1 = φ 0r, H 0 1 = 1 3 ( 2χ 0r + ξ 0), G ± 3 = c H φ ± + s H 2 (χ ± + ξ ± ), G 0 3 = ı( c H φ 0 ı + s H χ 0 ı ) with H 5 = (H ++ 5 ), H 5 = (H + 5 ), H 3 = (H + 3 ) and H 0 3 = (H 0 3 ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

42 φ 0 1 (v 2 + φ 0r + ıφ 0 ı ), χ 0 v M + 1 (χ 0r + ıχ 0 ı ), 2 2 v = v v M 2 246GeV cos(θ H ) = c H v 2 /v sin(θ H ) = s H 2 2v M /v SU(2) D H ++ 5 = χ ++, H + 5 = 1 2 (χ + ξ + ), H 0 5 = 1 6 ( 2ξ 0 2χ 0r), H + 3 = c H 2 (χ + + ξ + ) s H φ +, H 0 3 = ı ( c H χ 0 ı + s H φ 0 ı), H 0 1 = φ 0r, H 0 1 = 1 3 ( 2χ 0r + ξ 0), doublet φ & triplet χ; 0 Only doublet φ; 0 + G ± 3 = c H φ ± + s H 2 (χ ± + ξ ± ), G 0 3 = ı( c H φ 0 ı + s H χ 0 ı ) with H 5 = (H ++ 5 ), H 5 = (H + 5 ), H 3 = (H + 3 ) and H 0 3 = (H 0 3 ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

43 Does EWν R agree with EW precision measurements? Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

44 Constraints Oblique Parameters S, T, U Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

45 Oblique Parameters S Difference between Z self-energy at q 2 = M 2 Z and at q2 = 0 ( ) T 1 ρ ; Difference between isospin currents Π 11 and Π 33 at q 2 = 0 U Difference between W and Z self-energies at q 2 = M 2 Z and at q2 = 0 Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

46 Agreement with Precision Measurements New Physics contributions, S and T, to S, T due to EWν R model are seen to, indeed, satisfy the constraints from precision measurements [Plotted by Vinh Hoang] T ~ S ~ Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

47 126 GeV Higgs-like Particle CP-odd Higgs CP-even Higgs [CMS collaboration, PLB 716, 2012] [ATLAS collaboration, PLB 716, 2012] Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

48 126 GeV Higgs-like Particle CP-odd Higgs CP-even Higgs [CMS collaboration, PLB 716, 2012] [ATLAS collaboration, PLB 716, 2012] σ(decay channel) = σ production Branching Ratio(decay channel) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

49 CP-odd Higgs CP-even Higgs How EWν R model accommodates this Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

50 CP-odd Higgs CP-even Higgs How EWν R model accommodates this σ production Branching Ratio(decay channel) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

51 CP-odd Higgs CP-even Higgs How EWν R model accommodates this σ production Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

52 gg H Production Channel CP-odd Higgs CP-even Higgs g f 3 f 1 f 2 H 0 g Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

53 gg H Production Channel CP-odd Higgs CP-even Higgs g f 3 f 1 f 2 H 0 g Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

54 gg H Production Channel CP-odd Higgs CP-even Higgs g f 3 f 1 f 2 H 0 g Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

55 CP-odd Higgs CP-even Higgs CP-even Physical Scalar in EWν R g H 0 1 tt = ı m t g ; g 2 M W cos θ H 0 H 1 q M q = ı m qm g M 2 M W cos θ H Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

56 CP-odd Higgs CP-even Higgs CP-even Physical Scalar in EWν R g H 0 1 tt = ı m t g ; g 2 M W cos θ H 0 H 1 q M q = ı m qm g M 2 M W cos θ H Back of the envelope: if mirror quarks contribute as much as top quark σ ( gg H1 0 ) 1 ( ) 49 cos 2 σ SM gg H θ H Cannot be compensated for all the branching ratios!! Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

57 CP-odd Higgs CP-even Higgs CP-even Physical Scalar in EWν R g H 0 1 tt = ı m t g ; g 2 M W cos θ H 0 H 1 q M q = ı m qm g M 2 M W cos θ H Back of the envelope: if mirror quarks contribute as much as top quark σ ( gg H1 0 ) 1 ( ) 49 cos 2 σ SM gg H θ H Cannot be compensated for all the branching ratios!! H 0 1 in EWν R cannot be the new 126 GeV particle Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

58 CP-odd Higgs CP-even Higgs CP-odd Physical Scalar in EWν R g H 0 3 tt = ı m t g sin θ H 2 M W cos θ H γ 5 g H 0 3 u M i u M i = ı m u g sin θ i M H γ 5 ; g 2 M W cos θ H 0 H 3 di M d M i = ı m d g sin θ i M H γ 5 2 M W cos θ H Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

59 CP-odd Higgs CP-even Higgs CP-odd Physical Scalar in EWν R g H 0 3 tt = ı m t g sin θ H 2 M W cos θ H γ 5 g H 0 3 u M i u M i = ı m u g sin θ i M H γ 5 ; g 2 M W cos θ H 0 H 3 di M d M i = ı m d g sin θ i M H γ 5 2 M W cos θ H Back of the envelope: if mirror quarks contribute as much as the top quark σ ( gg H3 0 ) tan 2 ( ) θ H σ SM gg H!! Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

60 CP-odd Higgs CP-even Higgs CP-odd Physical Scalar in EWν R g H 0 3 tt = ı m t g sin θ H 2 M W cos θ H γ 5 g H 0 3 u M i u M i = ı m u g sin θ i M H γ 5 ; g 2 M W cos θ H 0 H 3 di M d M i = ı m d g sin θ i M H γ 5 2 M W cos θ H Back of the envelope: if mirror quarks contribute as much as the top quark σ ( gg H3 0 ) tan 2 ( ) θ H σ SM gg H!! Thus, for tan 2 θ H 1, H3 0 could reproduce σ ( ) SM gg H Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

61 CP-odd Higgs CP-even Higgs Recent Spin-Parity Result from CMS [CMS collaboration, PRL 110, ] Pseudoexperiments CMS Observed -1 s = 7 (8) TeV, L = 5.1 (12.2) fb ln( L - / + 0 L 0 ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

62 CP-odd Higgs CP-even Higgs Recent Spin-Parity Result from CMS [CMS collaboration, PRL 110, ] Pseudoexperiments CMS Observed -1 s = 7 (8) TeV, L = 5.1 (12.2) fb 2.3σ Neither proved nor ruled out ln( L - / + 0 L 0 ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

63 CP-odd Higgs CP-even Higgs Recent Spin-Parity Result from CMS [CMS collaboration, PRL 110, ] Pseudoexperiments CMS Observed -1 s = 7 (8) TeV, L = 5.1 (12.2) fb 2.3σ Neither proved nor ruled out More data needed for this analysis ln( L - / + 0 L 0 ) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

64 CP-odd Higgs CP-even Higgs How EWν R accommodates 126 GeV particle as CP-even (0 + ) Higgs Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

65 CP-odd Higgs CP-even Higgs How EWν R accommodates 126 GeV particle as CP-even (0 + ) Higgs Not with the minimal EWν R model just explained Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

66 CP-odd Higgs CP-even Higgs Simplest Extension to EWν R Model φ singlet (1, Y /2 = 0) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

67 CP-odd Higgs CP-even Higgs Simplest Extension to EWν R Model Φ doublet (2, Y /2 = 1) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

68 CP-odd Higgs CP-even Higgs Simplest Extension to EWν R Model Φ doublet (2, Y /2 = 1) Known from 2 Higgs doublet model: 1 light Higgs and 1 heavy Higgs Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

69 CP-odd Higgs CP-even Higgs Simplest Extension to EWν R Model Φ doublet (2, Y /2 = 1) Known from 2 Higgs doublet model: 1 light Higgs and 1 heavy Higgs But remember: g H 0 1 q M q M = ı m q M g 2 M W cos θ H Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

70 CP-odd Higgs CP-even Higgs An Extended EWν R Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

71 CP-odd Higgs CP-even Higgs An Extended EWν R Add another SU(2) scalar doublet (Y /2 = 1) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

72 CP-odd Higgs CP-even Higgs An Extended EWν R Add another SU(2) scalar doublet (Y /2 = 1) With a global U(1) SM U(1) MF symmetry such that and U(1) SM : Φ L e ıα SM Φ L l SM L e ıα SM l SM L, U(1) MF : Φ R e ıα MF Φ R l M R e ıα MF l M R. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

73 CP-odd Higgs CP-even Higgs An Extended EWν R Add another SU(2) scalar doublet (Y /2 = 1) With a global U(1) SM U(1) MF symmetry such that and U(1) SM : Φ L e ıα SM Φ L l SM L e ıα SM l SM L, U(1) MF : Φ R e ıα MF Φ R l M R e ıα MF l M R. Also under U(1) SM U(1) MF φ S e ı(α MF α SM ) φ S, and other fields are singlets under this symmetry. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

74 CP-odd Higgs CP-even Higgs Φ L couples only to SM fermions; gives masses to left-handed fermion doublets Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

75 CP-odd Higgs CP-even Higgs Φ L couples only to SM fermions; gives masses to left-handed fermion doublets Φ R couples only to mirror fermions; gives masses to left-handed fermion doublets Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

76 CP-odd Higgs CP-even Higgs Φ L couples only to SM fermions; gives masses to left-handed fermion doublets Φ R couples only to mirror fermions; gives masses to left-handed fermion doublets SU(2) W U(1) Y VEV χ 3 2 v M ξ 3 0 v M Φ L 2 1 v L 1 / 2 Φ R 2 1 v R 2 / 2 φ S 1 0 v S Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

77 CP-odd Higgs CP-even Higgs Φ L couples only to SM fermions; gives masses to left-handed fermion doublets Φ R couples only to mirror fermions; gives masses to left-handed fermion doublets SU(2) W U(1) Y VEV χ 3 2 v M ξ 3 0 v M Φ L 2 1 v L 1 / 2 Φ R 2 1 v R 2 / 2 φ S 1 0 v S Physical states of SU(2) D custodial: a five-plet H ±±,±,0 5, two triplets H ±,0 3,1, H±,0 3,2 and three singlets H0,L 1, H 0,R 1, H1 0. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

78 CP-odd Higgs CP-even Higgs g H 0,L 1 tt = ı m t g 2 M W (v L 1 /v); g H 0,R 1 q M q M = ı m q M g 2 M W (v R 2 /v) Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

79 CP-odd Higgs CP-even Higgs g H 0,L 1 tt = ı m t g 2 M W (v L 1 /v); g H 0,R 1 q M q M = ı m q M g 2 M W (v R 2 /v) Back of the envelope σ ( ( ) 2 gg H 0,L ) v ( ) 1 v1 L σ SM gg H Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

80 CP-odd Higgs CP-even Higgs g H 0,L 1 tt = ı m t g 2 M W (v L 1 /v); g H 0,R 1 q M q M = ı m q M g 2 M W (v R 2 /v) Back of the envelope σ ( ( ) 2 gg H 0,L ) v ( ) 1 v1 L σ SM gg H Singlets mix to form Mass eigenstates Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

81 CP-odd Higgs CP-even Higgs g H 0,L 1 tt = ı m t g 2 M W (v L 1 /v); g H 0,R 1 q M q M = ı m q M g 2 M W (v R 2 /v) Back of the envelope σ ( ( ) 2 gg H 0,L ) v ( ) 1 v1 L σ SM gg H Singlets mix to form Mass eigenstates Back of the envelope σ ( ( ) 2 gg H1,1 0 ) a1 2 v ( ) v1 L σ SM gg H, with singlet mixing parameter a and v L 1 v. Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

82 Summary EWν R Model CP-odd Higgs CP-even Higgs A model with Electroweak-scale Right-handed Neutrino (EWν R ) with Majorana mass Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

83 Summary EWν R Model CP-odd Higgs CP-even Higgs A model with Electroweak-scale Right-handed Neutrino (EWν R ) with Majorana mass Makes Seesaw mechanism testable at LHC and near future colliders Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

84 Summary EWν R Model CP-odd Higgs CP-even Higgs A model with Electroweak-scale Right-handed Neutrino (EWν R ) with Majorana mass Makes Seesaw mechanism testable at LHC and near future colliders Does not violate constraints from EW precision measurements Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

85 Summary EWν R Model CP-odd Higgs CP-even Higgs A model with Electroweak-scale Right-handed Neutrino (EWν R ) with Majorana mass Makes Seesaw mechanism testable at LHC and near future colliders Does not violate constraints from EW precision measurements The new 126 GeV particle can be accommodated as CP-odd Higgs in minimal EWν R model (modulo spin-parity result from CMS) and as CP-even Higgs in an extended EWν R model Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

86 What Next EWν R Model CP-odd Higgs CP-even Higgs Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

87 What Next EWν R Model CP-odd Higgs CP-even Higgs In progress: Detailed study of branching ratios and total cross-sections of 126 GeV candidates in EWν R model EW Dynamical Symmetry Breaking in the model Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

88 What Next EWν R Model CP-odd Higgs CP-even Higgs In progress: Detailed study of branching ratios and total cross-sections of 126 GeV candidates in EWν R model EW Dynamical Symmetry Breaking in the model Next: Experimental signals of EWν R model at LHC, e.g. like-sign double β-decay Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

89 CP-odd Higgs CP-even Higgs Thank You! Ajinkya Kamat (UVa) EWν R & 126 GeV 27 th February,

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

LFV Higgs Decay in Extended Mirror Fermion Model

LFV Higgs Decay in Extended Mirror Fermion Model LFV Higgs Decay in Extended Mirror Fermion Model Chrisna Setyo Nugroho (NTNU) In Collaboration with Chia-Feng Chang (NTU), ChiaHung Vincent Chang (NTNU), and Tzu-Chiang Yuan (AS) KIAS-NCTS Joint Workshop

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

J. C. Vasquez CCTVal & USM

J. C. Vasquez CCTVal & USM Maorana Higgses at Colliders arxiv:1612.06840 J. C. Vasquez CCTVal & USM ( Work in collaboration with F. esti and M. emevsek) University of Massachusetts, October 2017 Outline The minimal LR model Decay

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

Phenomenology of the Higgs Triplet Model at the LHC

Phenomenology of the Higgs Triplet Model at the LHC Phenomenology of the Higgs Triplet Model at the LHC Andrew Akeroyd SHEP, University of Southampton, UK Higgs Triplet Model (HTM) and doubly charged scalars (H ±± ) The decay channel H 1 γγ and contribution

More information

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs IAS Program on the Future of High Energy Physics Jan 21, 2015 based on arxiv:1311.5928, Hsin-Chia Cheng, Bogdan A. Dobrescu, JG JHEP 1408

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Beta and double beta decay

Beta and double beta decay Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik Beta and double beta decay Kai Zuber Institut für Kern- und Teilchenphysik 10-12. 6. 2014, SNOLAB Contents Lecture 1 History,

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach Kai Wang Institute for the Physics and Mathematics of the Universe the University of Tokyo Madison, 09/21/2009 J. Shu,T.

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Gauge Theories for Baryon Number.

Gauge Theories for Baryon Number. Gauge Theories for Baryon Number. Michael Duerr International Workshop on Baryon and Lepton Number Violation 2017 (BLV 2017) Case Western Reserve University, 18 May 2017 Thanks to my collaborators. This

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

13 HIGGS TRIPLETS 13.1 Introduction John F. Gunion and Chris Hays

13 HIGGS TRIPLETS 13.1 Introduction John F. Gunion and Chris Hays 3 HIGGS TRIPLETS 3. Introduction John F. Gunion and Chris Hays Even though the Standard Model (SM) of the strong and electroweak interactions has proven enormously successful, it need not be the case that

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Invisible Sterile Neutrinos

Invisible Sterile Neutrinos Invisible Sterile Neutrinos March 25, 2010 Outline Overview of Sterile Neutrino Dark Matter The Inert Doublet Model with 3 Singlet Fermions Non-thermal Dark Matter Conclusion Work done in collaboration

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Investigating Beyond Standard Model

Investigating Beyond Standard Model Investigating Beyond Standard Model Joydeep Chakrabortty Physical Research Laboratory TPSC Seminar, IOP 5th February, 2013 1/35 Standard Model A Brief Tour Why BSM? BSM Classification How do we look into

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Non Standard Neutrino Interactions

Non Standard Neutrino Interactions Oscillation Phenomenology NSI and Neutrino Oscillations Our recent Work Non Standard Neutrino Interactions from Physics beyond the Standard Model J.Baumann Arnold Sommerfeld Center, Department für Physik

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model Light scalar at the high energy and intensity frontiers: example in the minimal left-right model Yongchao Zhang («[ ) Université Libre de Bruxelles ( Washington University in St. Louis) Aug 11, 2017, Columbus

More information

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015 UCRHEP-T555 July 015 Stable or Unstable Light Dark Matter arxiv:1507.07609v1 [hep-ph] 7 Jul 015 Ernest Ma 1, M. V. N. Murthy, and G. Rajasekaran,3 1 Department of Physics and Astronomy, University of California,

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

Exotic W + W Z Signals at the LHC

Exotic W + W Z Signals at the LHC Exotic W + W Z Signals at the LHC Jared Evans jaevans@ucdavis.edu w/ M.Luty and S.Chang Department of Physics University of California - Davis WCLHC Evans (UCD) WWZ at LHC April 14, 011 1 / 11 Premise

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Chaehyun Yu. in collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya University) The 16 th LHC Physics Monthly Meeting, KIAS, Korea, Jun 01,

Chaehyun Yu. in collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya University) The 16 th LHC Physics Monthly Meeting, KIAS, Korea, Jun 01, Top FCNC Chaehyun Yu (Academia Sinica) in collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya University) The 16 th LHC Physics Monthly Meeting, KIAS, Korea, Jun 01, 2015 1 Flavor changing neutral currents

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

B-meson anomalies & Higgs physics in flavored U(1) model

B-meson anomalies & Higgs physics in flavored U(1) model B-meson anomalies & Higgs physics in flavored U(1) model Hyun Min Lee Chung-Ang University, Korea L. Bian, S.-M. Choi, Y.-J. Kang, HML, Phys. Rev. D96 (2017) 075038; L. Bian, HML, C.B. Park, arxiv:1711.08930

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Mono Vector-Quark Production at the LHC

Mono Vector-Quark Production at the LHC Mono Vector-Quark Production at the LHC Haiying Cai Department of Physics, Peking University arxiv: 1210.5200 Particle Physics and Cosmology KIAS, November 5-9, 2012 Introduction Vector-like quark exists

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

Lepton Flavor Violation in Left-Right theory

Lepton Flavor Violation in Left-Right theory Lepton Flavor Violation in Left-Right theory Clara Murgui IFIC, Universitat de Valencia-CSIC References This talk is based on: P. Fileviez Perez, C. Murgui and S. Ohmer, Phys. Rev. D 94 (2016) no.5, 051701

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity 21st September, 2012 PLAN Type II Seesaw Particle Spectrum Vacuum Stabilty and. RG evolution of couplings Electroweak precision data (EWPD). enhancement. Conclusion. A 125 GeV Higgs has been discovered

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV SNSN-33-63 November 0 06 Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 3 TeV Dustin Biedermann on behalf of the ATLAS Collaboration Institut für Physik Humboldt-Universität

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information