Neutrinos and Astrophysics

Size: px
Start display at page:

Download "Neutrinos and Astrophysics"

Transcription

1 Neutrinos and Astrophysics Astrophysical neutrinos Solar and stellar neutrinos Supernovae High energy neutrinos Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

2 Astrophysical Neutrinos Simultaneous probes of ν and astrophysics Big Bang neutrinos 300 ν s/cm 3 left over from big bang Leptogenesis? Big bang nucleosynthesis (to 7 Li) Important for dark matter? Detection?

3 Solar/stellar neutrinos Nuclear reactions in core, nucleosynthesis (to F e) Depletion and spectral distortion neutrino mass/oscillations Astrophysics vs neutrino properties Bounds on magnetic moments/non-standard properties Supernova neutrinos (SN1987A) Core collapse into neutron star ν e pulse from e p ν e n Fireball of ν + ν boils off for 10 sec ν s may revive shock, affect r-process (nucleosynthesis above F e), pulsar kicks? (Too light?) Oscillation/conversion constraints and supernova probes

4 CDHSW Atmospheric neutrinos Cosmic rays in atmosphere produce π s π + µ + ν µ, µ + e + ν e ν µ Expect µ/e 2, observe 1.2 Zenith angle: disappearance (oscillation) High energy neutrinos m 2 [ev 2 ] KARMEN2 SMA LSND Bugey CHOOZ LMA CHORUS NOMAD NOMAD CHORUS BNL E776 SuperK KamLAND PaloVerde Active galactic nuclei, gamma ray bursts, supernova shocks? Z bursts (detection of relic; cosmic rays above GZK)? 10 9 ν e ν X ν µ ν τ ν e ν τ ν e ν µ VAC LOW tan 2 θ 10 2

5 Solar and stellar neutrinos Produced during stellar nucleosynthesis Energy loss constraints (globular clusters, horizontal branch, ) Core collapse supernovae

6 Solar neutrinos + Kamland confirmed SSM (also helioseismology) Established LMA Excluded sterile, RSPF, new interactions as dominant

7 s -1 ) 6 cm -2 (10 φ µτ SNO φ ES SK φ ES SNO φ CC SNO φ NC φ SSM φ (10 cm -2 s -1 e )

8

9 β < cos2θ 12 Future pp experiment P ee sin 2 2θ 2 12 β > 1 Stellar evolution theory at 1% U e3 probe sin 2 θ 12 MSW/vacuum transition 0.2 Constrain sterile, axions, 0.0 E ν

10 Stellar energy loss severely constrains anomalous energy loss, e.g. heavy Dirac, anomalous electromagnetic moments, decays Simplest models: µ ν = µ B (m ν /ev )

11 Magnetic or Electric Moments Motivated by alternative RSFP Solar ν solution Transition (Majorana); transition or direct (Dirac) He ignition in globular cluster red giants (plasmon decay): µ ν < µ B (all types) Supernova cooling: µ ν (Dirac) < µ B Radiative decays Neutrino Decays Radiative, ν 2 ν 1 γ: diffuse background from relic ν s; SN1987A radiation Invisible decays (e.g., into Majorons): matter fraction and growth of structure Was mainly relevant for heavier neutrinos, now excluded by oscillations

12 Supernovae Collapse of iron core of M > 8M star 99% of energy ( > ergs) radiated in neutrinos

13 Neutronization pulse: e p ν e n (ms) Bounce and expanding shock. Stalls in simulations. Neutrinosphere radiates ν i + ν i for 10 s ν e observed for SN1987A

14 Neutrinos probe supernova dynamics Basic picture verified by 1987A Expect thousands of events for galactic SN ( yr) Keep detectors running for 50 yr! SNEWS: The SuperNova Early Warning System Sensitive to obscured or failed supernovae! Experiments becoming sensitive to diffuse SN ν s from other galaxies

15 Probe of neutrino properties m νe < 20 ev from 1987A m i < 10 s ev (future), but now irrelevant SN1987A energetics may disfavor inverted if U e3 0 (hardened ν e spectrum) Limits on energy loss, e.g. for LED, Z N R N R, large Dirac masses, millicharge, µ ν (Dirac) New interactions (e.g. Majoron models) Future (including Earth effect): sensitive to oscillation patterns

16 Neutrinos may affect supernova dynamics Massive neutrinos could revive stalled shock, but not for standard 3 ν scheme r-process not prevented by ν µ ν e and ν e n e p for standard 3ν Heavy sterile conversion could help r-process by removing active ν s to prevent ν e n e p Pulsar kick mechanism for 1-20 KeV sterile

17 High energy neutrinos Probe of ultra high energy sources (GRB, AGN, BH, SN) Probe of ultra high energy νn interactions (e.g., anomalous in LED) Probe of neutrino properties (oscillations into ν τ ), mass hierarchy, decays, moments Earth tomography?

18 IceCube Antares

19 ν COSMIC RAY The Z burst scenario: possible probe of relic ν for m ν < ev: ν(uhe) ν(relic) Z hadrons D GZK ~50 Mpc Z ν RELIC } 0 10 π 20 γ 2 nucleons 17 π - + e + -,ν,ν Depends on (unknown) large flux of ultra HE ν s

20 Cosmic ray events with E p > GZK cutoff? (or energy calibration?) (Best fit m ν = ev, Fodor, Katz, Ringwald) Future: Auger project

21 Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

22 Leptogenesis Baryon asymmetry n B /n γ Basic ideas worked out by Sakharov in 1967, but no concrete model 1. Baryon number violation 2. CP violation: to distinguish baryons from antibaryons 3. Nonequilibrium of B-violating processes

23 Possible mechanisms GUT baryogenesis (wiped out by sphalerons for B L=0) Electroweak baryogenesis (easier with U(1) ) Leptogenesis (heavy Majorana N decays) (involves new CP phases) Out of equilibrium decays created lepton asymmetry N heavy l + Higgs N heavy l + Higgs Electroweak tunneling (actually thermal fluctucation) then converts some of the lepton asymmetry into a baryon asymmetry! Difficulties in supersymmetric version: gravitino problem suggests reheating temperature too low (unless N heavy produced nonthermally)

24 Big bang nucleosynthesis Production of light nuclei ( 4 He, D, 3 He, 7 Li) in early Universe Parameters η = n B /n γ (η Ω b h 2 ) N ν (any new source of energy density, relative to one active ν flavor) ξ e = µ νe /T, related to (n νe n νe )/n γ SBBN: N ν = ξ e = 0

25 ν e n e p and e + n ν e p keep n n /n p in equilibrium as long as it is rapid enough Freezeout at T 1 MeV, when Γ weak H Γ weak = cg 2 F T 5 H = [ 8π 3 G Nρ ] 1/2 1.66g 1/2 T 2 /M P l g = g B g F, with g F = N ν ( ) 1/3 T n n n p g 1/2 G 2 F M P l = e (m n m p +µ ν e )/T 4 He 4 He mass fraction: Y p = 4n 4 He depends strongly on N n ν H ( Y p N ν ) and ξ e, weakly on η Y 2 = D depends on η (baryometer) H Independent determination of η from CMB

26

27 Central 4 He somewhat low Best fit for N ν < 0, but consistent with zero Most new physics yields N ν > 0 strongly constrained Z ν R ν R ; sterile neutrinos (LSND); ξ µ,τ Can compensate by ξ e 0.1; naively expect 10 10

28 δm m 2 /ev ν ν e s LMA ν ν µ,τ s ATM Exclusion on sterile for N ν < sin 2 2θ sin θ0 Compensation of ξ e and N ν

29 Large-scale structure (LSS) and CMB Hot Dark Matter (HDM) Ω ν h 2 = l m ν i /92.5 ev HDM excluded by free-streaming: not enough time for large structures to fragment Mixed CHDM models, typically Ω matter 1 and i m ν i few ev motivated degenerate ν spectra Now excluded by (a) Ω matter 0.3 (clusters, etc); (b) Ω total = Ω DE +Ω matter 1, DE = dark energy (1st CMB peak, WMAP); (c) Ω DE 0 (Type Ia supernovae)

30 Small admixture of HDM still possible LSS (2dF, SDSS) sensitive to Σ ν i m ν i CMB (WMAP) fixes other (degenerate) parameters Current: Σ ν < ev m νi < 0.3 ev 6000 CMB TT power spectrum l(l + 1)C l / 2π [µκ 2 ] P g (k) [(h -1 Mpc) 3 ] Multipole l k [h/mpc] Σ ν = 0.28 ev (solid), 1.5 ev (dotted), 3.0 ev (dashed)

31 Current: Σ ν < ev m νi < 0.3 ev Future: sensitive to 0.1 ev, weak lensing, LSS, CMB cf. tritium β decay: m ν < 2.4 ev (future: KATRIN, 0.3 ev) cf. ββ 0ν < few 10 1 ev (future: 0.02 ev)

32 CMB has some sensitivity to N ν (matter-radiation transition) Warm dark matter (e.g. 10 kev decaying ν) may still be viable

33 Relic neutrinos ν i, ν i decoupled at T D few MeV, while still relativistic Subsequently, p redshifted to p = p /η, where η R(t)/R(t D ) Now have form of relativistic thermal distribution, with T ν T D η = ( ) 4 1/3 Tγ 1.9K, and m 11 effi m i η m i

34 For hierarchical pattern m ev, m ev, m 1 m 2 ( v , v ) For degenerate pattern, m 1 m 2 m < ev (WMAP), ( ) v i ev m i Clustering? v esc 10 4 (Sun), (Galaxy), (Large Cluster) Little effect on velocities except degenerate case Little clustering unless m i > 0.3 ev, and then on supercluster scale

35 Indirect detection: effects of BBN, LSS Direct detection? Incoherent scattering? Impossible Coherent effects (forces, torques)? Impossible Z-burst: only known plausible mechanism, but only if flux of ultra high energy ν

36 Conclusions (From Neutrino Facilities Assessment Committee report (NAS 2002))

Overview of cosmological constraints on neutrino mass, number, and types

Overview of cosmological constraints on neutrino mass, number, and types Overview of cosmological constraints on neutrino mass, number, and types Preliminaries Big Bang Nucleosynthesis Large Scale Structure and CMB Brief Comments Supernovae Magnetic Moments Decays Ultra High

More information

Relic Neutrinos. Relic Neutrinos in the Standard Model. Beyond the Standard Model ! RELIC. BBN and CMB. Direct Detection by Coherent Scattering

Relic Neutrinos. Relic Neutrinos in the Standard Model. Beyond the Standard Model ! RELIC. BBN and CMB. Direct Detection by Coherent Scattering Relic Neutrinos! COSMIC RAY Relic Neutrinos in the Standard Model BBN and CMB! RELIC Beyond the Standard Model Direct Detection by Coherent Scattering D GZK ~50 Mpc Z 0 " 20 # } 10 2 nucleons 17 " - +

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB Neutrino Oscillation Measurements, Past and Present Art McDonald Queen s University And SNOLAB Early Neutrino Oscillation History -1940 s to 1960 s: - Neutrino oscillations were proposed by Pontecorvo

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Frontiers in Neutrino Physics

Frontiers in Neutrino Physics Frontiers in Neutrino Physics Neutrinos as a Probe Spectra Intrinsic Properties Astrophysics/Cosmology/Geophysics Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties

More information

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay) Sterile neutrinos Stéphane Lavignac (IPhT Saclay) introduction active-sterile mixing and oscillations cosmological constraints experimental situation and fits implications for beta and double beta decays

More information

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons Neutrinos Thanks to Ian Blockland and Randy Sobie for these slides spin particle with no electric charge; weak isospin partners of charged leptons observed in 193, in 1962 and in the 199s neutrino physics

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst. MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the Far Detector 54 observed, 0.7σ excess 26 MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the

More information

Prospects for the Direct Detection of the Cosmic Neutrino Background

Prospects for the Direct Detection of the Cosmic Neutrino Background Prospects for the Direct Detection of the Cosmic Neutrino Background Andreas Ringwald http://www.desy.de/ ringwald DESY PANIC 2008 November 9 14, 2008, Eilat, Israel Prospects for the Direct Detection

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Karsten M. Heeger Lawrence Berkeley National Laboratory 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 0 0 1 2 3 4 5 6

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007 Cosmic Neutrinos Chris Quigg Fermilab quigg@fnal.gov XXXV SLAC Summer Institute Dark Matter 10 August 2007 Neutrinos are abundant! Each second, some 10 14 neutrinos made in the Sun pass through your body.

More information

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000 Tau Neutrino Physics Introduction Barry Barish 18 September 2000 ν τ the third neutrino The Number of Neutrinos big-bang nucleosynthesis D, 3 He, 4 He and 7 Li primordial abundances abundances range over

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 NEUTRINO COSMOLOGY ν e ν µ ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006 OUTLINE A BRIEF REVIEW OF PRESENT COSMOLOGICAL DATA BOUNDS ON THE NEUTRINO MASS STERILE NEUTRINOS WHAT IS TO COME

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Sterile Neutrinos in Cosmology and Astrophysics

Sterile Neutrinos in Cosmology and Astrophysics Kalliopi Petraki (UCLA) October 27, 2008 Particle Physics Neutrino Oscillation experiments: neutrinos have mass Cosmology and Astrophysics Plenty of unexplained phenomena Dark Matter Pulsar Kicks Supernova

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

Neutrinos as Probes of new Physics

Neutrinos as Probes of new Physics Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin

More information

Neutrino Physics: Lecture 12

Neutrino Physics: Lecture 12 Neutrino Physics: Lecture 12 Sterile neutrinos Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Apr 5, 2010 Outline 1 Short baseline experiments and LSND anomaly 2 Adding

More information

Neutrino Physics: Lecture 1

Neutrino Physics: Lecture 1 Neutrino Physics: Lecture 1 Overview: discoveries, current status, future Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 1, 2010 Plan of the course Omnipresent

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010 Neutrinos: Yesterday, Today and Tomorrow August 13, 2010 1 My Marching Orders 2 My Marching Orders...the summary talk should be visionary, rather than a dedicated summary of the SSI program. 2 My Marching

More information

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis Absolute Neutrino Mass from Cosmology Manoj Kaplinghat UC Davis Kinematic Constraints on Neutrino Mass Tritium decay (Mainz Collaboration, Bloom et al, Nucl. Phys. B91, 273, 2001) p and t decay Future

More information

Those invisible neutrinos

Those invisible neutrinos Those invisible neutrinos and their astroparticle physics Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai Bhoutics, IITM, March 31st, 2017 Those invisible neutrinos...

More information

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL Thermalisation of Sterile Neutrinos Thomas Tram LPPC/ITP EPFL Outline Introduction to ev sterile neutrinos. Bounds from Cosmology. Standard sterile neutrino thermalisation. Thermalisation suppression by

More information

An overview of neutrino physics

An overview of neutrino physics An overview of neutrino physics A biased sampling Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Candles of Darkness, ICTS-TIFR, Bengaluru, Jun 8th, 2017 Omnipresent

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Heidi Schellman June 6, 2000 Lots of help from Janet Conrad Charge mass,mev tandard Model of Elementary Particles 3 Generations of Fermions Force Carriers Q u a r k s u d 2/3 2/3

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Indirect Searches for Gravitino Dark Matter

Indirect Searches for Gravitino Dark Matter Indirect Searches for Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid PLANCK 202 From the Planck Scale to the Electroweak

More information

Relic Supernova νʻs. Stanley Wojcicki

Relic Supernova νʻs. Stanley Wojcicki Relic Supernova νʻs 53 Relic Supernova νʻs In the whole universe, supernovas occur very frequently They leave behind relic neutrinos 53 Relic Supernova νʻs In the whole universe, supernovas occur very

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

Conceptos generales de astrofísica

Conceptos generales de astrofísica Tema 14 Conceptos generales de astrofísica Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela 1 1. Nuclear Astrophysic s domain Nuclear Astrophysics is a relatively

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo Neutrino Workshop@ICRR June 29 th 2005 Neutrino Probes of Extragalactic Supernovae Shin ichiro Ando University of Tokyo 1. Introduction Core-Collapse Supernova and Neutrino Burst Gravitational binding

More information

Hot Big Bang model: early Universe and history of matter

Hot Big Bang model: early Universe and history of matter Hot Big Bang model: early Universe and history of matter nitial soup with elementary particles and radiation in thermal equilibrium. adiation dominated era (recall energy density grows faster than matter

More information

Neutrino Oscillations

Neutrino Oscillations 1. Introduction 2. Status and Prospects A. Solar Neutrinos B. Atmospheric Neutrinos C. LSND Experiment D. High-Mass Neutrinos 3. Conclusions Plenary talk given at DPF 99 UCLA, January 9, 1999 Introduction

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

1. Introduction on Astroparticle Physics Research options

1. Introduction on Astroparticle Physics Research options Research options Large variety of topics in astro physics and particle physics Cosmic rays (sources, production and acceleration mechanisms) Stability of matter or proton decay (GUTs) Solar neutrinos (the

More information

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Padova, 24 febbraio 2007 Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Gianluigi Fogli Dipartimento di Fisica dell Università di Bari & Sezione INFN

More information

Neutrino Mass Limits from Cosmology

Neutrino Mass Limits from Cosmology Neutrino Physics and Beyond 2012 Shenzhen, September 24th, 2012 This review contains limits obtained in collaboration with: Emilio Ciuffoli, Hong Li and Xinmin Zhang Goal of the talk Cosmology provides

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer,

More information

Grand Unification Theories

Grand Unification Theories Grand Unification Theories After the success of the unified theroy of electroweak interactions it was natural to ask if strong interactions are united with the weak and em ones. The greater strength of

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 7/67 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Identifying the neutrino mass hierarchy with supernova neutrinos

Identifying the neutrino mass hierarchy with supernova neutrinos Identifying the neutrino mass hierarchy with supernova neutrinos Ricard Tomàs AHEP Group - Institut de Física Corpuscular (CSIC - Universitat de València) IPM School & Conference on Lepton & Hadron Physics

More information

The Dark Matter Problem

The Dark Matter Problem The Dark Matter Problem matter : anything with equation of state w=0 more obvious contribution to matter: baryons (stars, planets, us!) and both Big Bang Nucleosynthesis and WMAP tell us that Ω baryons

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Neutrino mass and neutrino dark matter Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001 Dr. Theo M. Nieuwenhuizen Institute for Theoretical Physics University

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

Neutrino masses. Universe

Neutrino masses. Universe Università di Padova,, 8 May, 2008 Neutrino masses and the matter-antimatter antimatter asymmetry of the Universe (new results in collaboration with Steve Blanchet to appear soon) Pasquale Di Bari (INFN,

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Cosmological neutrinos. The neutrino sector. Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen)

Cosmological neutrinos. The neutrino sector. Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Cosmological neutrinos The neutrino sector Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Lectures overview Lecture 1: A brief introduction / Neutrino masses / Supernova Neutrinos Lecture

More information

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics Lecture 8 Experimental Nuclear Physics PHYS 741 Text heeger@wisc.edu References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics 1 Review: Parity

More information

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Recent advances in neutrino astrophysics Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Flux (cm -2 s -1 MeV -1 ) 10 24 10 20 10 16 10 12 10 8 10 4 10 0 10-4 10-8 Neutrinos in Nature Cosmological

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Fundamental Physics with Cosmic Rays. Kate Scholberg MIT NEPPSR 2003

Fundamental Physics with Cosmic Rays. Kate Scholberg MIT NEPPSR 2003 Fundamental Physics with Cosmic Rays Kate Scholberg MIT NEPPSR 2003 OUTLINE Introduction to cosmic rays Cosmic rays in particle physics history A few selections from the smorgasbord: Ultrahigh energy cosmic

More information

Status and Phenomenology of the Standard Model

Status and Phenomenology of the Standard Model Status and Phenomenology of the Standard Model The new standard model Experimental tests, unique features, anomalies, hints of new physics Precision tests Higgs Heavy quarks Neutrinos FCNC and EDMs Astrophysics

More information

Neutrinos from Black Hole Accretion Disks

Neutrinos from Black Hole Accretion Disks Neutrinos from Black Hole Accretion Disks Gail McLaughlin North Carolina State University General remarks about black hole accretion disks Neutrinos and nucleosynthesis - winds Neutrino flavor transformation

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

Two hot issues in neutrino physics

Two hot issues in neutrino physics Bari Xmas Workshop /1/011 Two hot issues in neutrino physics Antonio Palazzo Excellence Cluster Universe - TUM 1 Outline! - Introduction - The evidence of! 13 >0 - Hints of new light sterile neutrinos

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Neutrino masses, dark matter and baryon asymmetry of the universe

Neutrino masses, dark matter and baryon asymmetry of the universe Neutrino masses, dark matter and baryon asymmetry of the universe Takehiko Asaka (Tohoku University) @ The 4 th COE Symposium The 21 st Century Center-of-Excellence Program Sendai International Center,

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

Probing New Physics with Astrophysical Neutrinos

Probing New Physics with Astrophysical Neutrinos 1 Probing New Physics with Astrophysical Neutrinos Nicole Bell The University of Melbourne 2 Introduction New Physics New Particle Physics Astrophysical Neutrinos from beyond Neutrinos the solar system

More information

- Future Prospects in Oscillation Physics -

- Future Prospects in Oscillation Physics - Measuring θ 13 and the Search for Leptonic CP Violation - Future Prospects in Oscillation Physics - Karsten M. Heeger Lawrence Berkeley National Laboratory ν e flux θ 13 =? P ee, (4 MeV) 1/r 2 Evidence

More information

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran

Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos. Yasaman Farzan IPM, Tehran Neutrinos secretly converting to lighter particles to please both KATRIN and Cosmos Yasaman Farzan IPM, Tehran Outline Motivation for the KATRIN experiment Effect of neutrinos on cosmological scales and

More information

Quark Nugget Dark Matter. Kyle Lawson May 15, 2017

Quark Nugget Dark Matter. Kyle Lawson May 15, 2017 Quark Nugget Dark Matter Kyle Lawson May 15, 2017 Outline High density QCD and quark matter Compact composite dark matter Baryogenesis as separation of charges Observational constraints High density QCD

More information

The Hyper-Kamiokande project

The Hyper-Kamiokande project 22-July-2017 @Quy Nhon The Hyper-Kamiokande project Yasuo Takeuchi Kobe University Hyper-Kamiokande detector & current R&Ds Current status of the project Physics/Observation targets in HK Summary 1 Hyper-Kamiokande

More information

. Thus his equation would have to be of the form. 2 t. but must also satisfy the relativistic energy-momentum relation. H 2 φ = ( p 2 + m 2 )φ (3)

. Thus his equation would have to be of the form. 2 t. but must also satisfy the relativistic energy-momentum relation. H 2 φ = ( p 2 + m 2 )φ (3) 1 Antiparticles The Klein-Gordon equation 2 φ t 2 + 2 φ = m 2 φ 1 that we derived in the previous lecture is not satisfactory for dealing with massive particles that have spin. Such an equation must take

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Search for Heavy Majorana Neutrinos

Search for Heavy Majorana Neutrinos Search for Heavy Majorana Neutrinos Workshop on Lepton Baryon Number Violation Madison, WI Anupama Atre Fermilab Outline A Brief Introduction: What we know about neutrinos Simplest extension The Search

More information

Making Light from the Dark Universe

Making Light from the Dark Universe Oxford University Physics Society, 1st May 2014 Talk Structure 1. Prelude: What is Dark Radiation? 2. Experimental motivation for dark radiation: CMB and BBN 3. Theoretical motivation for dark radiation:

More information