Massive Neutrinos and (Heterotic) String Theory

Size: px
Start display at page:

Download "Massive Neutrinos and (Heterotic) String Theory"

Transcription

1 Massive Neutrinos and (Heterotic) String Theory Introduction Neutrino preliminaries The GUT seesaw A string primer The Z 3 heterotic orbifold (In collaboration with J. Giedt, G. Kane, B. Nelson.)

2 Neutrino mass Nonzero mass may be first break with standard model Enormous theoretical effort: GUT, family symmetries, bottom up Majorana masses may be favored because not forbidden by SM gauge symmetries GUT seesaw (heavy Majorana singlet). Usually ordinary hierarchy. Higgs triplets ( type II seesaw ), often assuming GUT, Left- Right relations

3 Very little work from string constructions, even though probably Planck scale E. Witten, Nucl. Phys. B 268, 79 (1986). (E 6 difficulties.) C. Coriano and A. E. Faraggi, Phys. Lett. B 581, 99 (2004); A. E. Faraggi and M. Thormeier, Nucl. Phys. B 624, 163 (2002). (Heterotic inspired. Extended seesaw with extra dynamical assumptions.) J. R. Ellis, G. K. Leontaris, S. Lola and D. V. Nanopoulos, Eur. Phys. J. C 9, 389 (1999). (Flipped SU(5). May be seesaw, but nonstandard and non-gut-like Majorana, Dirac matrices. Flatness?) L. E. Ibanez, F. Marchesano and R. Rabadan, JHEP 0111, 002 (2001). (Intersecting brane. L conserved.) I. Antoniadis, E. Kiritsis, J. Rizos and T. N. Tomaras, Nucl. Phys. B 660, 81 (2003). (D-brane. L conserved.) J. Giedt, G. Kane, PL, B. Nelson, this work. (Systematic study of heterotic Z 3 orbifolds.)

4 Key ingredients of most bottom up models forbidden in known constructions (heterotic or intersecting brane) (Due to string symmetries or constraints, not simplicity or elegance) Right-handed neutrinos may not be gauge singlets Large representations difficult to achieve (bifundamentals, singlets, or adjoints) GUT Yukawa relations broken String symmetries/constraints severely restrict couplings, e.g., Majorana masses, or simultaneous Dirac and Majorana masses Small Dirac masses from HDO, extended (TeV-scale) seesaw, or triplet seesaw (with inverted hierarchy) may be more likely

5 Models and spectra Weyl fermion Minimal (two-component) fermionic degree of freedom ψ L ψr c by CPT Active Neutrino (a.k.a. ordinary, doublet) in SU(2) doublet with charged lepton normal weak interactions ν L νr c by CPT Sterile Neutrino (a.k.a. singlet, right-handed) SU(2) singlet; no interactions except by mixing, Higgs, or BSM N R NL c by CPT Almost always present: Are they light? Do they mix?

6 Dirac Mass Connects distinct Weyl spinors (usually active to sterile): (m D ν L N R + h.c.) 4 components, L = 0 I = 1 2 Higgs doublet Why small? HDO? LED? Variant: couple active to antiactive, e.g., m D ν el ν c µr L e L µ conserved; I = 1 ν L h N R v = φ m D = hv

7 Majorana Mass Connects Weyl spinor with itself: 1 2 (m T ν L νr c + h.c.) (active); 1 2 (m S N L cn R + h.c.) (sterile) 2 components, L = ±2 Active: I = 1 triplet or seesaw Sterile: I = 0 singlet or bare mass Mixed Masses Majorana and Dirac mass terms ν L ν c R ν L ν L Seesaw for m S m D Ordinary-sterile mixing for m S and m D both small and comparable (or m S m d (pseudo-dirac))

8 3 ν Patterns Solar: LMA (SNO, Kamland) m ev 2, nonmaximal Atmospheric: m 2 Atm ev 2, near-maximal mixing Reactor: U e3 small

9 Mixings: let ν ± 1 2 (ν µ ± ν τ ): ν 3 ν + ν 2 cos θ ν sin θ ν e ν 1 sin θ ν + cos θ ν e Hierarchical pattern Analogous to quarks, charged leptons ββ 0ν rate very small Inverted quasi-degenerate pattern ββ 0ν if Majorana SN1987A energetics (if U e3 0)? May be radiative unstable

10 Degenerate patterns Motivated by CHDM (no longer needed) Strong cancellations needed for ββ 0ν if Majorana May be radiative unstable

11 4 ν Patterns LSND: m 2 LSND 1 ev 2 Z lineshape: 2.986(7) active ν s lighter than M Z /2 fourth sterile ν S patterns patterns Pure (ν µ ν s ) excluded for atmospheric by SuperK, MACRO Pure (ν e ν s ) excluded for solar by SNO, SuperK More general admixtures possible, but very poor global fits Additional sterile (e.g., 3 + 2) fit better but may have cosmological difficulties

12 The minimal seesaw Active (sterile) neutrinos ν L (N R ) (3 flavors each) L = 1 2 ( νl N L) ( c m T m D m T D m S ) ( ) ν c R N R + hc m T = m T T = triplet Majorana mass matrix (Higgs triplet) m D = Dirac mass matrix (Higgs doublet) m S = m T S = singlet Majorana mass matrix (Higgs singlet)

13 Ordinary (type I) seesaw: m T = 0 and (eigenvalues) m S m D : m eff ν = m Dm 1 S mt D with U P MNS = U e U ν

14 Implementation in GUTs Elegant mechanism for small Majorana masses Leptogenesis Expect small mixings in simplest versions (can evade by lopsided e/d, Majorana textures, etc.) Most models require large Higgs representations, e.g., 126 of SO(10) (alternative: higher dimensional operators) Large Majorana often forbidden, e.g., by extra U(1) s LSND: active-sterile difficult in simple versions

15 Neutrinos in string constructions Key ingredients of most GUT/bottom up models forbidden or different in known constructions (heterotic or intersecting brane) Bifundamentals, singlets, or adjoints; not large representations L may be conserved, or extra U(1) charge for N R String constraints may forbid couplings allowed by 4d symmetries Superpotential terms leading to Majorana masses, or diagonal (same family or same flavor) Majorana usually absent GUT Yukawa relations broken Non-zero superpotential terms may be equal (gauge couplings) Hierarchies from HDO (heterotic), intersection triangles (intersecting brane)

16 Dirac masses Can achieve small Dirac masses (neutrino or other) by higher dimensional operators or by large intersection areas L ν ( S M P l ) p LN c L H 2, S M P l m D ( S M P l ) p H 2 Large p S close to M P l (e.g., anomalous U(1) A ) Small p intermediate scale M P l Similar HDO may give light steriles and ordinary/sterile mixing

17 Majorana masses Can one generate large effective m S from S q+1 S q+1 W ν c ij N i N j (m S ) ij c ij, M q P l consistent with D and F flatness? M q P l Can one have such terms simultaneously with Dirac couplings, consistent with flatness and other constraints? Are bottom-up model assumptions for relations to quark, charged lepton masses maintained?

18 Seesaws in String Constructions No completely realistic constructions Existing constructions usually focus on quark sector Neutrino masses rarely considered, and then as afterthought No construction has yielded GUT-like seesaw Analyze Z 3 heterotic orbifolds (semi-realistic 3- family models) in detail, focussing on neutrino sector (Joel Giedt, G. Kane, PL, Brent Nelson) Large number of possible vacua: Is the minimal seesaw generic? Is some subclass of vacua favored? Any clue about hierarchies, mixings, etc?

19 A String Primer Two classes of quasi-realistic: intersecting D-brane, heterotic Intersecting D-brane Closed strings (gravitons) and open strings ending on D-branes D6-branes: fill ordinary space and 3 of the 6 extra dimensions Stringy implementation of brane world ideas

20 Gauge interactions from strings beginning/ending on stack of parallel branes (one for each group factor) Chiral matter: strings at intersection of branes, e.g., SU(N) SU(M) bifundamental (N, M) a Gauge bosons in adj. U(1) W U(1) b W + Chiral matter in (N, M)

21 Family replication from multiple intersections on compactified geometry Yukawa interactions exp( A ijk ) hierarchies Existing models: conserved L; no diagonal (Majorana) triangles (1, 1) (1,3) (1, 1) (1,2) (1,0) (1,1) T 2 T 2 T 2 H Q 3 L U 3 SU(3) Q 2 L U2 Q 1 L SU(3) SU(2) U U(1) 1 SU(3)

22 The Z 3 Heterotic Orbifold }{{} E 8 }{{} E 8 SU(3) SU(2) U(1) 5 hidden closed strings Three families automatic Tremendous symmetry, stringy selection rules restricted couplings Chiral fermions, N = 1 supersymmetry orbifold Anomalous U(1) A ; F and D flatness; vacuum, restabilization

23 The Z 3 Orbifold Compactify on three two-torii T 2

24 n = 0 strings closed on R 2 ; winding states n = 1, 2 closed on T 2 (not R 2 ) Z 2 orbifold: identify x and x two fixed points; twisted states closed on orbifold (n = 0) e 2 (n = 1) e 1 e 2 x x x x (n = 2) e 1 x x

25

26 Z 3 orbifold: identify 2π/3 rotations three fixed points

27 Anomalous U(1) A ; F and D flatness; vacuum restabilization One linear combination of the U(1) 5 may be anomalous Green-Schwarz mechanism cancels anomaly in 4d U(1) SU(N) SU(N) U(1) + = 0 B 2 SU(N) SU(N) Fayet-Iliopoulous term added to the D- term of U(1) A ξ FI = g2 STR 192π 2 Tr QA M 2 PL

28 Supersymmetry is restored when certain scalar fields acquire VEV s such that D- and F flatness conditions are satisfied: D A i Q (A) i S i 2 + ξ FI = 0 D a i Q (a) i S i 2 = 0 F i W S i = 0; W = 0 VEVs S i reduce gauge symmetries, give masses (restabilization) Other S i VEVs can acquire intermediate scale masses by radiative breaking

29 Search for Minimal Seesaw Look for structure in Z 3 heterotic orbifold: ( W eff = (ν i, N i ) 0 (m D ) ij (m D ) ji (m M ) ij ) ( νj N j ) Require simultaneous Majorana and Dirac couplings, and appropriate hypercharge Don t insist on realistic quark sector Majorana mass from S 1 S n 2 NN/M n 3 PL Dirac mass from S 1 S d 3 NLH u/m d 3 PL Only 5 embeddings into E 8 E 8, 4 realistic hidden sector groups 175 models in 20 patterns with same ξ FI (Giedt)

30 Pattern No. G hid r FI Species SO(10) U(1) 3 No U(1) A SO(10) U(1) SU(5) SU(2) U(1) SU(5) SU(2) U(1) SU(5) SU(2) U(1) SU(5) SU(2) U(1) SU(5) SU(2) U(1) SU(5) SU(2) U(1) SU(4) SU(2) 2 U(1) SU(4) SU(2) 2 U(1) SU(4) SU(2) 2 U(1) SU(4) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1) SU(3) SU(2) 2 U(1)

31 Classified superpotential terms of degree 9 Large number (O(50)) fields in each, half are SM singlets None are singlets under all U(1) s Huge number of terms, but small wrt number of fields due to symmetries/selection rules r FI = ξ FI /M PL S i /M PL

32 Pattern

33 Require F and D flatness Examined 3 models from each pattern (conjecture: all models in pattern equivalent) Studied subset of flat directions with 1d D flatness and minimal F -flatness (more general directions very complicated) Huge number of D-flat directions, reduced drastically by F -flatness

34 Pattern w/o w/3 w/

35 For each surviving direction, looked for candidate Majorana mass terms S 1 S n 2 NN, where the S i 0 for that direction Only two patterns out of 20 (2.6 and 1.1) have candidate Majorana mass terms Must still check: Is there a surviving hypercharge Y with Y N = 0? Are there candidate Dirac couplings S 1 S d 3 NLH u at low enough order? Do L, H, and quark candidates have correct Y?

36 Pattern 2.6 Six directions have Majorana mass terms of form I monomial : (4, 4, 6, 7, 18, 35, 43, 43), Eff. Maj. mass : (4, 5, 5) Numbers refer to a classification of the chiral matter superfields I-monomial lists S i fields with VEVs (of order r FI M PL 0.1M PL ) Underlined fields are the S i, others (N 5 ) are Majorana neutrinos Family indices suppressed

37 However, no Dirac couplings involving N 5 through degree d 6, i.e., none through order S d 3 N 5 LH u Light seesaw masses would be of order m ν (rd 3 FI v u ) 2 r FI M PL r 2d 7 FI 10 5 ev }{{} d>6 < ev Also eight directions of form I monomial : (4, 4, 7, 18, 19, 27, 43, 43), Eff. Maj. mass : (7, 7, 19, 27, 43, 43, 43, 34, 34) However, no Dirac couplings of degree < 9 m ν ev

38 Pattern 1.1 No anomalous U(1) A ; VEVs may still be determined, e.g., by radiative breaking of non-anomalous, typically at intermediate scale Two classes of directions with Majorana masses, but first has no Dirac couplings through (needed) degree 6. Second class promising: I monomial : (3, 3, 8, 21, 22, 29, 46, 72), Eff. Maj. mass : (8, 22, 46, 72, 9, 9) There is also a candidate Dirac mass: N 9 L 36 L 64, where L 36, L 64 are two SU(2) doublets

39 Can define appropriate hypercharge for all fields L 36 = L, L 64 = H u (family indices suppressed) A second set of Majorana and Dirac couplings of higher degree also present (not shown) No realistic quark Yukawas (and no GUT-type relations) Undesired doubling of leptons and Higgs Apparently, we have found an example of a seesaw, even if not fully realistic! We were about to study family structure (scale, hierarchy, mixings)

40 The Fatal Flaw The same direction has degree 3 mass terms coupling N 9 to other fields Ñ: W mix = λs 8 N 9 Ñ 14 + λs 22 N 9 Ñ 27 + λs 72 N 9 Ñ 50 + λs 46 N 9 Ñ 81 with B C A L = (ν L Ñ N) 0 0 A 0 0 B A B C ν LÑ N, Three massless and six supermassive neutrinos! (no additional terms generated to needed order) This could also occur for other apparent seesaws

41 Outlook Neutrino mass likely due to large or Planck scale effects, but little previous work in string context No viable examples of minimal seesaw in huge class of Z 3 orbifold vacua Could consider more general vacua (two independent VEVs, cancellations of F terms) Other types of orbifolds and heterotic constructions? Will also have strong gauge and stringy constraints. (L conserved in existing intersecting brane) Even if a few examples are found, they don t appear generic

42 Consider alternatives seriously Small Dirac masses from high degree terms (very common in constructions) (could also give light sterile ν s and mixing) Extended seesaws, m ν m 2+k D /M 1+k, with k 1 and low (e.g., TeV) scale M Higgs triplet models: non-trivial to embed in strings (higher level), but very predictive (e.g., inverted hierarchy with nearly bi-maximal mixing) (B. Nelson, PL)

43 Extended (TeV) Seesaw? m ν m p+1 /m p S, p > 1 (e.g., m 100 MeV, m S 1 TeV for p = 2) ν L, N R, N R (3 flavors each) L = 1 ( νl N c L 2 N 0 m D m D L) c m T D 0 m SS m T D m T SS 0 νc R N R N R + hc or L = 1 2 ( νl N c N L L) c 0 m D 0 m T D 0 m SS 0 m T SS m S νc R N R N R + hc (Faraggi et al.: may occur in specific heterotic model, with dynamical assumptions.)

44 Triplet models Introduce Higgs triplet T = (T ++ T + T 0 ) T with weak hypercharge Y = 1 Majorana masses m T generated from L ν = λ T ij L it L j if T 0 0 Old Gelmini-Roncadelli model: T 0 EW scale with spontaneous L violation Excluded by Z Majoron + scalar (equivalent to N ν = 2) Modern triplet models (type II seesaw) break L explicity by T HH couplings, giving large Majoron mass (Lazarides, Shafi, Wetterich, Mohapatra, Senjanovic, Schechter, Valle, Ma, Hambye, Sarkar, Rossi,...) Often considered in SO(10) or LR context, with both ordinary and triplet mechanisms competing and with related parameters, but can consider independently.

45 General SUSY case W ν = λ T ij L it L j + λ 1 H 1 T H 1 + λ 2 H 2 T H 2 +M T T T + µh 1 H 2 T, T are triplets with Y = ±1, M T GeV. Typically, T 0 λ H /m T m ν ij = λt ij λ 2 v 2 2 M T

46 String constructions Expect λ T ij = 0 for i = j (off-diagonal) mν ii = 0 Also, need multiple Higgs doublets H 1,2 with λ 1,2 off diagonal Partial explanation: SU(2) triplet with Y 0 requires higher level embedding, e.g., of SU(2) SU(2) SU(2) (Have Z 3 constructions with some but not all of the features.) W λ T 1j L 1(2, 1)T (2, 2)L j (1, 2), j = 2, 3 yields m ν = 0 a b a 0 0 b 0 0 Typical string case: a = b

47 HDO (or SU(2) SU(2) SU(2) SU(2)) can give m ν 23 0 For m ν = 0 a b a 0 c b c 0 can take a, b, c real w.l.o.g. by redefinition of fields (not true for general m ν ) Tr m ν = 0 and m ν = m ν m 1 + m 2 + m 3 = 0

48 m 2 Atm ev 2, m ev 2 two solutions For m 2 =0 (a) m i 1, 1 2, 1 (ordinary, with shifted masses) 2 (b) m i 1, 1, 0 (inverted) With m 2 0 (a) m i = 0.054, 0.026, ev ( m i = ev (cosmology)) (b) m i = 0.046, 0.045, ev ( m i = ev (cosmology)) m ν a m ν b 0 a b a 0 0 b 0 0 (a) leads to unrealistic mixing matrix consider (b)

49 A special texture The L e L µ L τ conserving texture m ν 0 a b a 0 0 b 0 0 has been considered phenomenologically by many authors (Zee; Barbieri, Hall, Smith, Strumia, Weiner; King, Singh; Ohlsson; Barbieri, Hambye, Romanino; Lebed, Martin; Babu, Mohapatra; Lavignac, Masina, Savoy; Feruglio, Strumia, Vissani; Altarelli, Feruglio, Masina)

50 m ν 0 a b a 0 0 b 0 0 New aspects Strong string motivation Motivation for special case a = b Most likely perturbation in 23 element from HOT Diagonalization: tan θ Atm = b/a need b = a for maximal tan 2 θ = 1 (maximal) (experiment tan 2 θ = )

51 Majorana mass matrix m ν Inverted hierarchy Bimaximal mixing for U e = I: U ν

52 Perturbations on m ν cannot give both m 2 and π 4 θ θ C 0.23 without fine-tuning between terms, e.g., 1 m m 2 Atm = ɛ π 4 θ 0.23

53 However, U e I with small angles (comparable to CKM) can can give agreement with experiment (Frampton, Petcov, Rodejohann; Romanino; Altarelli, Feruglio, Masina) U e 1 se 12 0 s e yields θ π 4 se 12 2 = U e3 2 (se 12 )2 2 ( ), 90% (exp : < 0.03) m ββ m 2 (cos 2 θ sin 2 θ ) ev

54 Conclusions Neutrino mass likely due to large or Planck scale effects, but little work in string context Specific orbifold string constructions (heterotic, intersecting brane) not consistent with common GUT and bottom up assumptions for m ν No examples of minimal seesaw in large class of heterotic Z 3 orbifold vacua Small Dirac, extended seesaw, Higgs triplet (inverted hierarchy in string context) may be more likely

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Overview of cosmological constraints on neutrino mass, number, and types

Overview of cosmological constraints on neutrino mass, number, and types Overview of cosmological constraints on neutrino mass, number, and types Preliminaries Big Bang Nucleosynthesis Large Scale Structure and CMB Brief Comments Supernovae Magnetic Moments Decays Ultra High

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac/Majorana masses The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino Masses

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac or Majorana masses (or both) The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Neutrino Mass Models: a road map

Neutrino Mass Models: a road map Neutrino Mass Models: a road map S.F.King School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK E-mail: king@soton.ac.uk Abstract. In this talk we survey some of the recent

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

New Physics from Type IIA Quivers

New Physics from Type IIA Quivers New Physics from Type IIA Quivers The string vacuum Tadpoles and extended MSSM quivers New matter and Z s Axigluons from type IIa quivers M. Cvetič, J. Halverson, PL: Implications of String Constraints

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Fuzzy extra dimensions and particle physics models

Fuzzy extra dimensions and particle physics models Fuzzy extra dimensions and particle physics models Athanasios Chatzistavrakidis Joint work with H.Steinacker and G.Zoupanos arxiv:1002.2606 [hep-th] Corfu, September 2010 Overview Motivation N = 4 SYM

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Strings, Exotics, and the 750 GeV Diphoton Excess

Strings, Exotics, and the 750 GeV Diphoton Excess Strings, Exotics, and the 750 GeV Diphoton Excess Events / 0 GeV 4 ATLAS Preliminary Data Background-only fit Spin-0 Selection s = 1 TeV,. fb The ATLAS and CMS results 1 Phenomenology and theory Data -

More information

Steve King, DCPIHEP, Colima

Steve King, DCPIHEP, Colima !!! 1/6/11 Lecture I. The Flavour Problem in the Standard Model with Neutrino Mass Lecture II. Family Symmetry and SUSY Lecture III. SUSY GUTs of Flavour with Discrete Family Symmetry Steve King, DCPIHEP,

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS Alon E. Faraggi AEF, 990 s (top quark mass, CKM, MSSM w Cleaver and Nanopoulos) AEF, C. Kounnas, J. Rizos, 003-009 AEF, PLB00, work in progress with Angelantonj,

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Status and Phenomenology of the Standard Model

Status and Phenomenology of the Standard Model Status and Phenomenology of the Standard Model The new standard model Experimental tests, unique features, anomalies, hints of new physics Precision tests Higgs Heavy quarks Neutrinos FCNC and EDMs Astrophysics

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

arxiv:hep-ph/ v2 5 Jan 2004

arxiv:hep-ph/ v2 5 Jan 2004 OUTP 03 15P hep-ph/0306186 June 2003 String Inspired Neutrino Mass Textures in Light of KamLAND and WMAP arxiv:hep-ph/0306186v2 5 Jan 2004 Claudio Coriano 1 and Alon E. Faraggi 2 1 Dipartimento di Fisica,

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Flavour and Higgs in Pati-Salam Models

Flavour and Higgs in Pati-Salam Models Flavour and Higgs in Pati-Salam Models Florian Hartmann Universität Siegen Theoretische Physik I Siegen, 16.11.2011 Florian Hartmann (Uni Siegen) Flavour and Higgs in Pati-Salam Models Siegen 16.11.2011

More information

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B.

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B. A Derivation of the Standard Model ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera A Derivation of the Standard Model discrete structure of

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Left-Right Symmetric Models with Peccei-Quinn Symmetry Left-Right Symmetric Models with Peccei-Quinn Symmetry Pei-Hong Gu Max-Planck-Institut für Kernphysik, Heidelberg PHG, 0.2380; PHG, Manfred Lindner, 0.4905. Institute of Theoretical Physics, Chinese Academy

More information

Lepton Masses and Dimensional Deconstruction

Lepton Masses and Dimensional Deconstruction Technische Universitt Mnchen Physik Department Institut für Theoretische Physik T30d Univ.-Prof. Dr. M. Lindner Lepton Masses and Dimensional Deconstruction Dipl.-Phys. Univ. Gerhart Seidl Vollständiger

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Proton Stability and Superstring Z

Proton Stability and Superstring Z OUTP 00 46P hep-th/00006 November 000 Proton Stability and Superstring Z Alon E. Faraggi Theoretical Physics Department, University of Oxford, Oxford, OX 3NP, United Kingdom Abstract Recently it was argued

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Towards particle physics models from fuzzy extra dimensions

Towards particle physics models from fuzzy extra dimensions Towards particle physics models from fuzzy extra dimensions Athanasios Chatzistavrakidis National Technical University and NCSR Demokritos, Athens Joint work with H.Steinacker and G.Zoupanos Particles

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University) SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX Min-Seok Seo (Seoul National University) INTRODUCTION Flavor Issues in Standard Model: 1. Mass hierarchy of quarks and leptons 2. Origin of

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

Neutrinos, GUTs, and the Early Universe

Neutrinos, GUTs, and the Early Universe Neutrinos, GUTs, and the Early Universe Department of Physics Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) What is nu...?, Invisibles 12, Smirnov Fest GGI, Florence June 26, 2012 Three challenges

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Neutrino masses : beyond d=5 tree-level operators

Neutrino masses : beyond d=5 tree-level operators Neutrino masses : beyond d=5 tree-level operators Florian Bonnet Würzburg University based on arxiv:0907.3143, JEP 10 (2009) 076 and arxiv:1205.5140 to appear in JEP In collaboration with Daniel ernandez,

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

arxiv:hep-ph/ v2 5 Jan 2000

arxiv:hep-ph/ v2 5 Jan 2000 WM-99-7 JLAB-THY-99-3 U(2) Flavor Physics without U(2) Symmetry Alfredo Aranda a, Christopher D. Carone a, and Richard F. Lebed b a Nuclear and Particle Theory Group, Department of Physics, College of

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

No-go for exactly degenerate neutrinos at high scale? Abstract

No-go for exactly degenerate neutrinos at high scale? Abstract hep-ph/0010079 CERN-TH/2000-301 No-go for exactly degenerate neutrinos at high scale? Amol S. Dighe 1 and Anjan S. Joshipura 1,2 1 Theory Division, CERN, CH-1211 Geneva 23, Switzerland. 2 Theoretical Physics

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Family Replicated Gauge Group Models

Family Replicated Gauge Group Models Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 77 74 Family Replicated Gauge Group Models C.D. FROGGATT, L.V. LAPERASHVILI, H.B. NIELSEN and Y. TAKANISHI Department of

More information

The S 3. symmetry: Flavour and texture zeroes. Journal of Physics: Conference Series. Related content. Recent citations

The S 3. symmetry: Flavour and texture zeroes. Journal of Physics: Conference Series. Related content. Recent citations Journal of Physics: Conference Series The S symmetry: Flavour and texture zeroes To cite this article: F González Canales and A Mondragón 2011 J. Phys.: Conf. Ser. 287 012015 View the article online for

More information

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1)

More information

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics

For Review Only. General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model. Canadian Journal of Physics General Structure of Democratic Mass Matrix of Lepton Sector in E 6 Model Journal: Canadian Journal of Physics Manuscript ID cjp-2017-0783.r1 Manuscript Type: Article Date Submitted by the Author: 08-Jan-2018

More information

Geography on Heterotic Orbifolds

Geography on Heterotic Orbifolds Geography on Heterotic Orbifolds Hans Peter Nilles Physikalisches Institut, Universität Bonn and CERN, Geneva Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th/0504117

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

Strings, Exceptional Groups and Grand Unification

Strings, Exceptional Groups and Grand Unification Strings, Exceptional Groups and Grand Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Strings, Exceptional Groups and Grand Unification, Planck11, Lisbon, June 2011 p. 1/39 Outline

More information

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Proton Decay Without GUT Hitoshi Murayama (IAS) UCLA Dec 3, 2003 Outline Why We Expect Proton Decay Story with Supersymmetry A Very Ambitious Model More on GUTs Conclusions Hitoshi Murayama UCLA 2003 2

More information