Neutrinos as a Unique Probe: cm

Size: px
Start display at page:

Download "Neutrinos as a Unique Probe: cm"

Transcription

1 Neutrinos as a Unique Probe: cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing Neutral current, Z-pole, atomic parity: electroweak unification, field theory, m t ; severe constraint on physics to TeV scale Neutrino mass: constraint on TeV physics, grand unification, superstrings, extra dimensions; seesaw: m ν m 2 q /M GUT P529 Spring,

2 Astrophysics/Cosmology Core of Sun Supernova dynamics Atmospheric neutrinos (cosmic rays) Violent events (AGNs, GRBs, cosmic rays) Large scale structure (dark matter) Nucleosynthesis (big bang - small A; stars iron; supernova - large N) Baryogenesis Simultaneous probes of ν and astrophysics Interior of Earth P529 Spring,

3 Neutrino Oscillations: a first look Weak versus mass eigenstates: ν e }{{} weak = ν 1 cos θ + ν 2 sin θ, ν }{{} µ = ν 1 sin θ + ν 2 cos θ mass t = 0: ν(0) = ν µ (from π + µ + ν µ ) t > 0: ν(t) = ν 1 sin θe ie1t + ν 2 cos θe ie 2t [ ] ν 1 sin θe im2 1 t 2E + ν2 cos θe im2 2 t 2E e iet E i = p 2 + m 2 i E + m2 i /2E where E p for definite p m i (same for definite E or wave packets) P529 Spring,

4 Probability of oscillating to ν e (observe by ν e n e p) P νµ ν e (L) = ν e ν(t) 2 = sin 2 θ cos 2 θ ( m = sin 2 2θ sin 2 2 ) L 4E e im = sin 2 2θ sin 2 [ 1.27 m 2 (ev 2 )L(km) E(GeV) 2 1 t 2E t + e im2 2 t 2 2E t ] m 2 = m 2 2 m2 1, L t µ+ π + ν µ L e ν e p Oscillation length: L osc = 4πE m 2 Survival probability: P νµ ν µ (L) = 1 P νµ ν e (L) P529 Spring,

5 Neutrino Spectra ν Oscillations P νa ν b = sin 2 2θ sin 2 ( m 2 L 4E ) 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CDHSW CHORUS NOMAD CHORUS LSND 90/99% 3 ν Patterns (U V l ) Solar: LMA (SNO, KamLAND, Borexino) m ev 2, mixing large but nonmaximal Atmospheric + K2K + MINOS: m 2 Atm ev 2, near-maximal mixing Reactor: U e3 small 0.15 m 2 [ev 2 ] Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν e ν X ν µ ν τ ν e ν τ ν e ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS tan 2 θ K2K KamLAND 95% Super-K 95% 10 2 P529 Spring,

6 Mixings: let ν ± 1 2 (ν µ ± ν τ ): ν 3 ν + ν 2 cos θ ν sin θ ν e ν 1 sin θ ν + cos θ ν e 3 2 m 2 m 2 atm 1 m 2 atm Normal hierarchy 2 1 m2 3 Inverted hierarchy Analogous to quarks, charged leptons ββ 0ν rate very small ββ 0ν if Majorana Degenerate pattern for m m 2 P529 Spring,

7 Mass, Mixing, and Intrinsic Properties Weyl fermion Minimal (two-component) fermionic degree of freedom ψ L ψ c R by CP (ψc R ψ L ) Active Neutrino (a.k.a. ordinary, doublet) in SU(2) doublet with charged lepton normal weak interactions νr c by CP Sterile Neutrino (a.k.a. singlet, right-handed) SU(2) singlet; no interactions except by mixing, Higgs, or BSM ν R νl c by CP Almost always present: Are they light? Do they mix? P529 Spring,

8 Fermion Mass Transition between right and left Weyl spinors: m ψ L ψ R + m ψr ψ L m ( ψl ψ R + ψ R ψ L ) ( m 0 by ψ L,R phase changes) Dirac Mass Connects two distinct Weyl spinors (usually active to sterile): m D ( ν R + ν R ) = m D ν D ν D h ν ν R Dirac field: ν D + ν R 4 components, L = 0 t 3 L = ±1 2 Higgs doublet Why small? (Large dimensions? Higherdimensional operators? String instantons?) φ 0 m D = h ν ν = 2h ν ϕ 0 P529 Spring,

9 Majorana Mass Connects Weyl spinor with itself: m T 2 ( νl ν c R + νc R m S 2 ( ν c L ν R + ν R ν c L Majorana fields: ν M + ν c R = νc M ) = m T 2 ν M ν M (active) ) = m S 2 ν MS ν MS (sterile) ν c R m T m T The Standard Electroweak Theo h T ν MS ν c L + ν R = ν c M S 2 components, L = ±2, self-conjugate φ 0 T Active: t 3 L = ±1 (triplet or higher-dimensional operator) Sterile: t 3 L = 0 (singlet or bare mass) φ 0 φ 0 Phase of or ν c L fixed by m T,S 0 P529 Spring,

10 Neutrinoless Double Beta Decay (ββ 0ν ) L = 2: Majorana mass only (m ββ m T ) p e e p m ββ W W n n Other mechanisms, e.g., R P violation in supersymmetry P529 Spring,

11 Mixed Models Can have simultaneous Majorana and Dirac mass terms L = 1 2 ( ) ( ( ) ν 0 L ν }{{ L 0c mt m D ν 0c R } m D m S νr 0 weak eigenstates ) + h.c. m T : L = 2, t 3 L = 1 (Majorana) m D : L = 0, t 3 L = 1 2 (Dirac) m S : L = 2, t 3 L = 0 (Majorana) P529 Spring,

12 Mass eigenvalues: A ν L ( ) ( ) mt m D A ν m D m R = m1 0 }{{ S 0 m } 2 M=M T (Majorana) mass eigenstates: ν im = ν il + ν c ir = νc im, i = 1, 2 ( ν1l ν 2L ) = A ν L ( ν 0 L ν 0c L ), ( ν c 1R ν c 2R ) = A ν R ( ν 0c R ν 0 R ) M = M T (unlike Dirac mass matrix) A = Aν R P529 Spring,

13 Special Cases L = 1 2 ( ν 0 L ν 0c L ) ( ) ( m T m D ν 0c R m D m S ν 0 R ) + h.c. Majorana (m D = 0): m 1 = m T : ν 1L = ν 0 L, νc 1R = ν0c R m 2 = m S : ν 2L = ν 0c L, νc 2R = ν0 R P529 Spring,

14 Dirac (m T = m S = 0): m 1 = +m D : ν 1L = 1 (ν 0 L + ν0c L ), νc 1R = 1 (ν 0c R + ν0 R ) 2 2 m 2 = m D : ν 2L = 1 (ν 0 L ν0c L ), νc 2R = 1 (ν 0c R ν0 R ) 2 2 Dirac ν (4 components) equivalent to two degenerate ( m 1 = m 2 ) Majorana ν s with m 1 = m 2 and 45 mixing (cancel in ββ 0ν ) Useful description for Dirac limit of general case Recover usual Dirac expression L = m D 2 ( ν 1Lν c 1R ν 2Lν c 2R ) + h.c. = m D( ν 0 L ν0 R + ν0 R ν0 L ) No ν 0 L ν0c L or ν0c R ν0 R mixing L conserved P529 Spring,

15 Seesaw (a.k.a. minimal or Type I seesaw) (m S m D,T ) : m 1 m T m2 D m S : ν 1L ν 0 L m D m S ν 0c L ν0 L, m 2 m S : E.g., m T = 0, m D = O(m u,e,d ), m S = O(M X GeV): ν 2L m D ν 0 L m + ν0c L S ν0c L φ 0 T φ S m 1 m 2 D /m S m D ν R ν R ν 1M ν 0 L + ν0c R (active) Lower m S possible (even TeV) φ 0 φ 0 Heavy ( sterile) ν 2M decouples at low energy ν 2M decays leptogenesis P529 Spring,

16 Active-sterile (ν 0 L ν0c L ) mixing (LSND) No active-sterile mixing for Majorana, Dirac, or seesaw m D and m S (and/or m T ) both small and comparable: Mechanism? Pseudo-Dirac ( m T, m S m D ): Small mass splitting, small L violation, e.g., m T = ɛ, m S = 0 m 1,2 = m D ± ɛ/2 Reactor and accelerator disappearance limits? Cosmological implications? P529 Spring,

17 Extension to Three Families Dirac mass: L D = ν 0 L M Dν 0 R + ν0 R M D ν0 L ν 0 L ν0 1L ν 0 2L ν 0 3L = A, ν 0 R ν0 1R ν 0 2R ν 0 3R = A ν R ν R M D = arbitrary 3 3 Dirac mass matrix A ν L M DA ν R = m m m 3 P529 Spring,

18 Leptonic weak charge lowering current J lµ W = 2ē Lγ µ V l = (ē µ τ )γ µ (1 γ 5 )V l ν 1 ν 2 ν 3 U V l = A e L A (PMNS) matrix (leptonic analog of CKM) is Pontecorvo-Maki-Nakagawa-Sakata Choose, e L phases: remove 5 unobservable phases from V l (choose ν R, e R phases for real non-negative masses) U = c 23 s 23 c 13 0 s 13 e iδ c 12 s 12 0 s 12 c s 23 c }{{ 23 s } 13 e iδ 0 c }{{ }}{{} atmospheric reactor limits Solar c ij cos θ ij, s ij sin θ ij, δ = CP -violating phase (if s 13 0) (s ij, δ CKM angles/phase) P529 Spring,

19 More on unobservable phases: Most general unitary 3 3 PMNS matrix Û: 3 angles, 6 phases J lµ W = (ē µ τ )γµ (1 γ 5 )Û ν 1 ν 2 ν 3 Û = e iβ e iα e iβ 2 0 }{{} U 0 e iα e iβ 3 s ij,δ 0 0 e iα 3 β i, α j not determined by diagonalization (Û Û = ÛÛ = I) Only depends on α j β i can choose α 3 = 0 Redefine ν jl e iα jν jl, e il e iβ ie il Û U (Independent) e ir, ν jr phases chosen so that m ei, m νj 0 P529 Spring,

20 Majorana mass: L T = 1 2 ( ) ν L 0 M T νr 0c + ν0c R M T ν0 L Diagonalize: M T A ν L M T A ν R by ν0 L = A, ν 0c R = Aν R νc R But ψ al ψ c br = ψ bl ψ c ar, where ψc R = C ψ T L Therefore M T = M T T A = Aν R Phases determined by m i 0 two unremovable Majorana phases in U (observable in ββ 0ν?) U = c 13 0 s 13 e iδ c 12 s 12 0 e iα c 23 s s 12 c e iα s 23 c 23 s }{{} 13 e iδ 0 c }{{}}{{}}{{} atmospheric, s s , δ=? Solar, s Majorana only Same results for active sector in seesaw model P529 Spring,

21 General case (3 active and 3 sterile): L = 1 2 ( ν 0 L ν 0c L ) ( M T M D MD T M S ) ( ν 0c R ν 0 R ) + h.c. M D, M T = MT T, M S = MS T are Majorana mass eigenstates Majorana, Dirac, seesaw, active-sterile mixing (LSND) limits Can also have > 3 or < 3 sterile P529 Spring,

22 Neutrino Counting Invisible Z width: N ν = 3 + N ν N ν = 0.015(9) (also counts light ν (1/2), triplet Majoron + scalar (2), etc.) Cosmology: big bang nucleosynthesis, large scale structure P529 Spring,

23 Dirac or Majorana ββ 0ν nn ppe e (m ββ i U 2 ei m i) Magnetic or electric dipole moments Dirac: may have diagonal ( νσ αβ νf αβ ) or transition ( ν i σ αβ ν j F αβ, i j) moments Majorana: only transition moments (diagonal Dirac from off-diagonal Majorana) One loop (Dirac): µ i 3eG F m i ( 19 m i 2π 2 (much larger in some models) Laboratory, astrophysical limits: µ < µ B 1 ev) µb p e e p n m ee ev W m ββ W General theory prediction Disfavored by 0ΝΒΒ decay m IO m NO Disfavored by cosmology m ev Winter, n P529 Spring,

24 Tritium β spectrum (KATRIN) m ν e ( i U ei 2 m 2 i Absolute Mass Scale ) 1/2 2 ev 0.2 ev Large scale structure: Σ i m i (0.5 1) ev O(0.05) ev If ββ 0ν observed (m ββ 0.01 ev) inverted or degenerate P529 Spring,

25 P529 Spring,

26 Neutrino Oscillations and Propagation The two flavor case: ν e }{{} weak = ν 1 cos θ + ν 2 sin θ, ν }{{} µ = ν 1 sin θ + ν 2 cos θ mass t = 0: ν(0) = ν µ (from π + µ + ν µ ) t > 0: ν(t) = ν 1 sin θe ie1t + ν 2 cos θe ie 2t [ ] ν 1 sin θe im2 1 t 2E + ν2 cos θe im2 2 t 2E e iet P529 Spring,

27 Probability of oscillating to ν e (appearance experiment) P νµ ν e (L) = ν e ν(t) 2 = sin 2 θ cos 2 θ ( m = sin 2 2θ sin 2 2 ) L 4E e im m 2 L/4E large 2 1 t 2E t + e im2 2 t 2 2E t 1 2 sin2 2θ µ+ π + ν µ L e ν e p m 2 = m 2 2 m2 1, Oscillation length: L osc = 4πE m 2 L t Survival probability (disappearance experiment): P νµ ν µ (L) = 1 P νµ ν e (L) P529 Spring,

28 Three or More Families ν(0) = ν a }{{} weak = i U ai ν i }{{} mass ν(t) i U ai ν i e im2 i t 2E P νa ν b (L) = ν b ν(t) 2 =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j + 2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating ij m 2 i m2 j Rephasing invariant P529 Spring,

29 Antineutrinos P νal ν bl (L) =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j +2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating P νal ν bl (L) U U P νbl ν al (L) P ν c ar ν c br (L) = P ν bl ν al (L) (by CP T ) =δ ab 4 i<j Re ( U ai U biu aj U bj 2 i<j Im ( U ai U biu aj U bj ( ) ) sin 2 ij L 4E ( ) ) ij L sin 2E P529 Spring,

30 Propagation in Matter Coherent forward scattering in matter potential (cf optics) Two flavor oscillations in vacuum: ν(t) = a c a(t) ν a i d dt ( ca (t) c b (t) ) = m2 4E ( ) ( cos 2θ sin 2θ ca (t) sin 2θ cos 2θ c b (t) ) In matter (different interactions of ν a and ν b ): ν µ e e ν e ν e e Z W Z ν µ e ν e e ν e e P529 Spring,

31 i d dt ( ca (t) c b (t) ) = n = m2 4E cos 2θ + G F 2 n m 2 4E sin 2θ m 2 4E m 2 4E sin 2θ cos 2θ G F n e for ν el ν µl, ν τ L 0 for ν µl ν τ L n e 2 1n n for 1 2 n n for ν el νl c ν µl, ν τ L νl c 2 n ( ca (t) c b (t) ) Signs reversed for ν c R, ν R Solar (MSW), atmospheric (not sterile; (hierarchy), supernovae also WNC), long baseline MINOS vs νr c : new flavor-dependent matter interaction? (to mimic CP T violation) P529 Spring,

32 Long Baseline (LBL) Oscillation Experiments 3 ν oscillations, small s 13 and m 2 (Akhmedov et al, JHEP 04, 078): P ν µ νe = α 2 sin 2 2θ 12 c 2 sin 2 A s 2 sin 2 (A 1) A 2 13 s2 23 (A 1) 2 where α = + 2 α s 13 sin 2θ 12 sin 2θ 23 cos( + δ) m2 m 2 Atm 0.03, δ δ and A A for P νµ ν e, A > 0 (normal),, A < 0 (inverted) sin A A sin(a 1) A 1 = m2 Atm L 4E, A = 2 2EGF n e m }{{ 2 Atm } matter In principle, determine s 13, δ, hierarchy (easier if s 13 from reactor) P529 Spring,

33 Sterile Neutrinos CDHSW 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CHORUS NOMAD CHORUS LSND 90/99% 1 st class oscillations: ν a ν b, both active m 2 [ev 2 ] Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν e ν X ν µ ν τ ν e ν τ ν e ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS tan 2 θ K2K KamLAND 95% Super-K 95% nd class: active sterile LSND: third ij sterile ν s LSND + MiniBooNE: sterile ν s and CP violation (but reactor, accelerator disappearance; other ν e appearance; cosmology?) ν c L appearance (need new interactions) Non-orthogonal light neutrinos (from mixing with heavy) P529 Spring,

34 m2 atm m 2 LSND m 2 LSND m 2 m 2 atm m 2 P529 Spring,

35 Models No unbroken gauge symmetry forbids Majorana mass for active ν s Seesaw leptogenesis (heavy ν 2M decay in Type I) But New TeV physics or string constraints may forbid seesaw Appropriate masses not automatic (e.g., SO(10) Higgs 126 or HDO) so that Majorana may be negligible Alternative baryogenesis (e.g., electroweak) Other plausible mechanisms for both Majorana and Dirac (especially in strings) Type, mechanism, scale is open question P529 Spring,

36 Small Dirac masses Usually forbid bare mass (string? U(1)?) Higher dimensional operator (m D ν ϕ S /M P ) Large extra dimension (wave function overlap) String instanton Non-holomorphic soft h ν ν R φ 0 ν R φ S φ 0 φ S P529 Spring,

37 Small Majorana masses The Standard Electroweak Theory Higgs triplet (spontaneous L excluded) Stringy Weinberg operator h T νl φ 0 T φ 0 φ 0 φ 0 φ 0 Heavy ν R (Type I seesaw) Heavy Higgs triplet (Type II seesaw) φ S ν R ν R h S h T φ 0 T κ Loops (new scalars) TeV (extended) seesaws φ 0 φ 0 φ 0 φ 0 φ 0 φ 0 R P violation φ 0 Typeset by FoilTEX ν µl e e ν el h φ φ 0 P529 Spring,

38 Outstanding Issues (intrinsic properties) Scale of underlying physics? (string, GUT, TeV?) (LHC, flavor) Mechanism? (seesaw, LED, HDO, stringy instanton?)(indirect: LHC) Hierarchy, U e3, leptonic CP violation? (mechanism, leptogenesis) (long baseline, reactor, ββ 0ν, supernova) Absolute mass scale? (cosmology) (β decay, cosmology, ββ 0ν, supernova) Dirac or Majorana? (mechanism, scale, leptogenesis) (ββ 0ν ) Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?) (indirect: LHC) P529 Spring,

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Frontiers in Neutrino Physics

Frontiers in Neutrino Physics Frontiers in Neutrino Physics Neutrinos as a Probe Spectra Intrinsic Properties Astrophysics/Cosmology/Geophysics Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac or Majorana masses (or both) The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino

More information

Overview of cosmological constraints on neutrino mass, number, and types

Overview of cosmological constraints on neutrino mass, number, and types Overview of cosmological constraints on neutrino mass, number, and types Preliminaries Big Bang Nucleosynthesis Large Scale Structure and CMB Brief Comments Supernovae Magnetic Moments Decays Ultra High

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

March 30, 01 Lecture 5 of 6 @ ORICL Philosophical Society Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu 1. Concept/misconception of mass in Special Relativity (March,9). and n Oscillations:

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons Neutrinos Thanks to Ian Blockland and Randy Sobie for these slides spin particle with no electric charge; weak isospin partners of charged leptons observed in 193, in 1962 and in the 199s neutrino physics

More information

Neutrinos and Astrophysics

Neutrinos and Astrophysics Neutrinos and Astrophysics Astrophysical neutrinos Solar and stellar neutrinos Supernovae High energy neutrinos Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac/Majorana masses The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino Masses

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? PHYS 294A Jan 24, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of the neutrino with neutrinoless double-beta decay 2 What s a

More information

Status and Phenomenology of the Standard Model

Status and Phenomenology of the Standard Model Status and Phenomenology of the Standard Model The new standard model Experimental tests, unique features, anomalies, hints of new physics Precision tests Higgs Heavy quarks Neutrinos FCNC and EDMs Astrophysics

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB Neutrino Oscillation Measurements, Past and Present Art McDonald Queen s University And SNOLAB Early Neutrino Oscillation History -1940 s to 1960 s: - Neutrino oscillations were proposed by Pontecorvo

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1 Neutrino Phenomenology Boris Kayser ISAPP July, 2011 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Neutrino Physics: Lecture 12

Neutrino Physics: Lecture 12 Neutrino Physics: Lecture 12 Sterile neutrinos Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Apr 5, 2010 Outline 1 Short baseline experiments and LSND anomaly 2 Adding

More information

Neutrinos as Probes of new Physics

Neutrinos as Probes of new Physics Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin

More information

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1 Neutrino Phenomenology Boris Kayser INSS August, 2013 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay) Sterile neutrinos Stéphane Lavignac (IPhT Saclay) introduction active-sterile mixing and oscillations cosmological constraints experimental situation and fits implications for beta and double beta decays

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007 Cosmic Neutrinos Chris Quigg Fermilab quigg@fnal.gov XXXV SLAC Summer Institute Dark Matter 10 August 2007 Neutrinos are abundant! Each second, some 10 14 neutrinos made in the Sun pass through your body.

More information

Chart of Elementary Particles

Chart of Elementary Particles Chart of Elementary Particles Chart of Elementary Particles Better Chart! Better Chart! As of today: Oscillation of 3 massive active neutrinos is clearly the dominant effect: If neutrinos have mass: For

More information

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006 Neutrino Physics After the Revolution Boris Kayser PASI 2006 October 26, 2006 1 What We Have Learned 2 The (Mass) 2 Spectrum ν 3 ν 2 ν 1 } Δm 2 sol (Mass) 2 Δm 2 atm or Δm 2 atm ν ν 2 } Δm 2 sol 1 ν 3

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006 Unbound Neutrino Roadmaps MARCO LAVEDER Università di Padova e INFN NOW 2006-11 September 2006 Experimental Data : 2006 Experiment Observable (# Data) Measured/SM Chlorine Average Rate (1) [CC]=0.30 ±

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Heidi Schellman June 6, 2000 Lots of help from Janet Conrad Charge mass,mev tandard Model of Elementary Particles 3 Generations of Fermions Force Carriers Q u a r k s u d 2/3 2/3

More information

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Karsten M. Heeger Lawrence Berkeley National Laboratory 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 0 0 1 2 3 4 5 6

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

Neutrino properties: nature, mass & CP violation

Neutrino properties: nature, mass & CP violation Neutrino properties: nature, mass & CP violation I. Schienbein LPSC prepared together with P. Serpico (LAPTH) and A. Wingerter (LPSC) Kick-off meeting, 2/0/202, Annecy Facts of life with neutrinos Neutrino

More information

Grand Unification Theories

Grand Unification Theories Grand Unification Theories After the success of the unified theroy of electroweak interactions it was natural to ask if strong interactions are united with the weak and em ones. The greater strength of

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Massive Neutrinos and (Heterotic) String Theory

Massive Neutrinos and (Heterotic) String Theory Massive Neutrinos and (Heterotic) String Theory Introduction Neutrino preliminaries The GUT seesaw A string primer The Z 3 heterotic orbifold (In collaboration with J. Giedt, G. Kane, B. Nelson.) Neutrino

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter Very-Short-BaseLine Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

arxiv: v2 [hep-ph] 2 Mar 2018

arxiv: v2 [hep-ph] 2 Mar 2018 CP Violation in the Lepton Sector and Implications for Leptogenesis arxiv:1711.02866v2 [hep-ph] 2 Mar 2018 C. Hagedorn, R. N. Mohapatra, E. Molinaro 1, C. C. Nishi, S. T. Petcov 2 CP 3 -Origins, University

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

The NOνA Experiment and the Future of Neutrino Oscillations

The NOνA Experiment and the Future of Neutrino Oscillations f Axis The NOνA Experiment and the Future of Neutrino Oscillations NOνA SLAC 26 January 2006 Gary Feldman Why are Neutrinos Particularly Interesting? Masses are anomalously low From CMB data m ν < 0.2

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

1 Neutrinos. 1.1 Introduction

1 Neutrinos. 1.1 Introduction 1 Neutrinos 1.1 Introduction It was a desperate attempt to rescue energy and angular momentum conservation in beta decay when Wolfgang Pauli postulated the existence of a new elusive particle, the neutrino.

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

NEUTRINOS: THEORY. Contents

NEUTRINOS: THEORY. Contents NEUTRINOS: THEORY Contents I. Introduction 2 II. Standard Model of Massless Neutrinos 3 III. Introducing Massive Neutrinos 6 A. M N = 0: Dirac Neutrinos 8 B. M N M D : The Type I see-saw mechanism 9 C.

More information

Leptonic CP violation and neutrino mass models

Leptonic CP violation and neutrino mass models Leptonic CP violation and neutrino mass models Gustavo C Branco and M N Rebelo Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001

More information

Neutrino Oscillations

Neutrino Oscillations 1. Introduction 2. Status and Prospects A. Solar Neutrinos B. Atmospheric Neutrinos C. LSND Experiment D. High-Mass Neutrinos 3. Conclusions Plenary talk given at DPF 99 UCLA, January 9, 1999 Introduction

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Lecture III: Majorana neutrinos

Lecture III: Majorana neutrinos Lecture III: Majorana neutrinos Petr Vogel, altech NLDD school, October 31, 2017 Whatever processes cause 0νββ, its observation would imply the existence of a Majorana mass term and thus would represent

More information

A. Yu. Smirnov. A. Yu. Smirnov

A. Yu. Smirnov. A. Yu. Smirnov A. Yu. Smirnov A. Yu. Smirnov before nu2012 G. L. Fogli Serious implications for theory Non-zero, relatively Large 1-3 mixing Substantial deviation of the 2-3 mixing from maximal d CP ~ p DB new Robust?

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

eutrino oscillations - Wikipedia, the free encyclopedia

eutrino oscillations - Wikipedia, the free encyclopedia 1 of 15 09.10.2010 г. 20:28 Neutrino oscillations From Wikipedia, the free encyclopedia Neutrino oscillations are a quantum mechanical phenomenon predicted by Bruno Pontecorvo whereby a neutrino created

More information

THE NEUTRINOS. Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory

THE NEUTRINOS. Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory June 9, 2009 THE NEUTRINOS Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory Recent, irrefutable evidence establishes that the ubiquitous neutrinos have tiny masses. Neutrino mass is physics

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Flavor oscillations of solar neutrinos

Flavor oscillations of solar neutrinos Chapter 11 Flavor oscillations of solar neutrinos In the preceding chapter we discussed the internal structure of the Sun and suggested that neutrinos emitted by thermonuclear processes in the central

More information

Particle Physics: Neutrinos part I

Particle Physics: Neutrinos part I Particle Physics: Neutrinos part I José I. Crespo-Anadón Week 8: November 10, 2017 Columbia University Science Honors Program Course policies Attendance record counts Up to four absences Lateness or leaving

More information

Neutrino Oscillation and CP violation

Neutrino Oscillation and CP violation Neutrino Oscillation and CP violation Contents. Neutrino Oscillation Experiments and CPV. Possible CP measurements in TK 3. Summary Nov.4, 4 @Nikko K. Nishikawa Kyoto niversity CP Violation Asymmetry between

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

R. D. McKeown. Jefferson Lab College of William and Mary

R. D. McKeown. Jefferson Lab College of William and Mary R. D. McKeown Jefferson Lab College of William and Mary Jlab User Meeting, June 2010 1 The Standard Model Renormalizable Gauge Theory Spontaneous Symmetry Breaking n 1 n 2 n 3 Massless g,g Higgs Particle

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information