13 11 Ball Bearing Motor

Size: px
Start display at page:

Download "13 11 Ball Bearing Motor"

Transcription

1 11 Ball Bearing Motor

2 11. Ball Bearing Motor uses electrical energy to create rotational motion. On what parameters do the motor efficiency and the velocity of the rotation depend? 2

3 INTRODUCTION 3

4 What is a Bearing Motor? 4

5 What is a Bearing Motor? 5

6 What is a Bearing Motor? 6

7 What is a Bearing Motor? 7

8 What is a Bearing Motor? 8

9 It Works! 9

10 EXPERIMENTS 10

11 Experimental apparatus 11

12 Experimental apparatus 12

13 Experimental apparatus M V V 13

14 Experimental Results 14

15 Max Speed Measurement 15

16 max speed [RPM] 13 Max Speed Measurement 400 disconnected push time [s] 16

17 max speed [RPM] 13 Max Speed vs. Current current [A] current was changing in time during experiments (battery discharging etc.) 17

18 Efficiency Measurement efficiency output power η = P o P i input power Δ rotational energy Δ time Δ work of electric current Δ time 18

19 Efficiency Measurement efficiency output power η = P o P i input power = Δ 1 2 Jω2 Δt Δ rotational energy Δ time J = kg m 2 (see Appendix) Δ work of electric current Δ time 19

20 Efficiency Measurement efficiency output power η = P o P i input power = Δ 1 2 Jω2 Δt Δ rotational energy Δ time Δ work of electric current Δ time 20

21 Efficiency Measurement efficiency output power I η = P o P i input power = Δ 1 2 Jω2 Δt U e I Δ rotational energy Δ time Δ work of electric current Δ time M V Ue V too large to be measured directly 21

22 Efficiency Measurement efficiency output power I η = P o P i input power R w = Δ 1 2 Jω2 Δt U e I Δ rotational energy Δ time Δ work of electric current Δ time M V Ue V U d too large to be measured directly drop on wire! I = U d R w 22

23 Efficiency Measurement efficiency output power η = P o P i = Δ 1 2 Jω2 Δt input power U e I R w U d R w Δ rotational energy Δ time Δ work of electric current Δ time M V Ue V U d R w (t): R w = R α T 23

24 Efficiency Measurement efficiency output power η = P o P i = Δ 1 2 Jω2 Δt input power U e I R w U d R w (t) Δ rotational energy Δ time Δ work of electric current Δ time M V Ue V U d 24

25 efficiency [%] 13 Efficiency Measurement time [s] 25

26 efficiency [%] 13 Efficiency Measurement 1 0,8 0,6 0,4 0, time [s] 26

27 input power voltage current internal resistance of source maximal current resistance battery heat capacity temperature running time 28

28 output power number of bearings inner friction moment of inertia amount of lubricant coaxiality rolling resistance axle type of bearings 29

29 EXISTING THEORIES 13

30 #1: Magnetic Theory explanation of rotation: eddy currents in rollers/axle (several variations) Kirk T. McDonald. Ball-Bearing Motor, Joseph Henry Laboratories, Princeton University, Princeton 31

31 #2: Thermal Theory explanation of rotation: local deformations of surface caused by heating due to extreme current density 32

32 #2: Thermal Theory 33

33 Which one is valid in our case? 34

34 Experiment #1: Cylindrical Bearings 13 should be qualitatively the same could be different (different shape different deformation) 35

35 Experiment #1: Cylindrical Bearings 13 36

36 Which one is valid in our case? experiments: #1: cylindrical bearings the same different 37

37 Experiment #2: Strong External Magnetic Field ( > 1T) 13 could be different should be the same 38

38 Experiment #2: Strong External Magnetic Field ( > 1T) 13 39

39 Which one is valid in our case? experiments: #1: cylindrical bearings #2: external magnetic field the same possibly different different the same 40

40 Experiment #3: Deforming the Bearing 13 power decrease (greater friction) power might increase (greater normal forces) 41

41 peak output power [W] Experiment #3: Deforming the Bearing ,5 1 1,5 deformation [mm] 42

42 Which one is valid in our case? experiments: #1: cylindrical bearings #2: external magnetic field #3: deforming the bearing the same possibly different power decrease different the same power increase 43

43 Which one is valid in our case? experiments: #1: cylindrical bearings #2: external magnetic field #3: deforming the bearing the same possibly different power decrease different the same power increase 44

44 Conclusion DETERMINED RELEVANT PARAMETERS Thank you for your attention! ILLUSTRATED CONSTRUCTION & BUILT APPARATUS EXPLORED EXISTING THEORIES (THERMAL, MAGNETIC) M I V Ue R w V U d + SHOWED VALIDITY OF THERMAL FOR OUR CASE η 13 t MEASURED EFFICIENCY P i P o U I c N f J T R R s I max t r amount of lubricant coaxiality R r axle 45 type of bearings

45 Conclusion DETERMINED RELEVANT PARAMETERS Thank you for your attention! ILLUSTRATED CONSTRUCTION & BUILT APPARATUS EXPLORED EXISTING THEORIES (THERMAL, MAGNETIC) M I V Ue R w V U d + SHOWED VALIDITY OF THERMAL FOR OUR CASE η 13 t MEASURED EFFICIENCY P i P o U I c N f J T R R s I max t r amount of lubricant coaxiality R r axle 46 type of bearings

46 Appendices 48

47 Measuring Current current very large (> 100 A) directly solution: voltage drop on wire 1.25 V drop on thick copper wire! but: wire resistance R unknown too small to be measured directly calculation prone to errors cannot measure I = U d M R w I V U e 49 R w V U d

48 Measuring Current current very large (> 100 A) directly solution: voltage drop on wire 1.25 V drop on thick copper wire! but: wire resistance R unknown too small to be measured directly calculation prone to errors cannot measure I = U d M R w I V U e 50 R w V U d

49 Measuring Current solution: voltage drop on wire 1.25 V drop on thick copper wire! M I = U d R w I V U e R w V U d R: 1. discharge the battery so it sources measurable current ( 2. measure current & voltage drop simultaneously 3. calculate the resistance R w = U d I = Ω 51

50 Importance of temperature change T = UI dt mc T 80 but it is also cooled by air from R w = R α T : α Cu = K 1 20% resistance change 52

51 Determining Wire Temperature R w = R α T Q = mcδt = P w t dt P w = U d 2 R R w t = R α U d 2 Δt R prev mc 53

52 Our Bearings Type: 6206 Type: 6303 Type: NJ206EC welded together with our currents braked (will come back to later) d D B mm mm mm d D B mm mm mm d D B mm mm mm 54

53 Calculation of moment of inertia Inner race 1 - Main inner race 2 - Bearing holder 3 - Flyback wheel holder 4 - Outer race 5 - Flyback wheel 5 J = J 3.2 = 10 2 kg J n m2 n=1 J 1,2,3 = 1 2 mr2 J 4,5 = 1 2 m(r 2 2 r 1 2 ) 55

54 Small ball bearings 56

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Lecture (20) DC Machine Examples Start of Synchronous Machines

Lecture (20) DC Machine Examples Start of Synchronous Machines Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 20-1 Energy Systems Research Laboratory, FIU All rights reserved. 20-2 Ra R f

More information

Electricity & Magnetism Qualifier

Electricity & Magnetism Qualifier Electricity & Magnetism Qualifier For each problem state what system of units you are using. 1. Imagine that a spherical balloon is being filled with a charged gas in such a way that the rate of charge

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *4817101212* PHYSICS 5054/21 Paper 2 Theory May/June 2016 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials

More information

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated. Rotational Motion 1 Purpose The main purpose of this laboratory is to familiarize you with the use of the Torsional Harmonic Oscillator (THO) that will be the subject of the final lab of the course on

More information

Lesson 7: Thermal and Mechanical Element Math Models in Control Systems. 1 lesson7et438a.pptx. After this presentation you will be able to:

Lesson 7: Thermal and Mechanical Element Math Models in Control Systems. 1 lesson7et438a.pptx. After this presentation you will be able to: Lesson 7: Thermal and Mechanical Element Math Models in Control Systems ET 438a Automatic Control Systems Technology Learning Objectives After this presentation you will be able to: Explain how heat flows

More information

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1 Chapter 6: Efficiency and Heating 9/18/2003 Electromechanical Dynamics 1 Losses As a machine transforms energy from one form to another there is always a certain power loss the loss is expressed as heat,

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Annual Exam 2012 Subject: PHYSICS Level: ADVANCED 1 ST Year Time: 3 hrs Name: Year: Answer all questions. This paper carries 200 marks.

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

THE GYROSCOPE REFERENCES

THE GYROSCOPE REFERENCES THE REFERENCES The Feynman Lectures on Physics, Chapter 20 (this has a very nice, intuitive description of the operation of the gyroscope) Copy available at the Resource Centre. Most Introductory Physics

More information

Plane Motion of Rigid Bodies: Momentum Methods

Plane Motion of Rigid Bodies: Momentum Methods Plane Motion of Rigid Bodies: Momentum Methods Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star Measurements of a 37 kw induction motor Rated values Voltage 4 V Current 72 A Frequency 5 Hz Power 37 kw Connection Star Losses of a loaded machine Voltage, current and power P = P -w T loss in Torque

More information

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ. Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

To be opened on receipt

To be opened on receipt To be opened on receipt LEVEL 3 CERTIFICATE MATHEMATICS FOR ENGINEERING H860/0 Paper * H 8 6 7 8 0 6 3 * PRE-RELEASE MATERIAL May 03 * H 8 6 0 0 * INSTRUCTIONS TO CANIATES This document consists of 8 pages.

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Tutorial 1 - Drive fundamentals and DC motor characteristics

Tutorial 1 - Drive fundamentals and DC motor characteristics University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1 - Drive fundamentals and DC motor characteristics 1. In the hoist drive system

More information

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2 Rotational Motion 1) The diameter of a flywheel increases by 1%. What will be percentage increase in moment of inertia about axis of symmetry a) 2% b) 4% c) 1% d) 0.5% 2) Two rings of the same radius and

More information

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

Physics 42 Exam 2 PRACTICE Name: Lab

Physics 42 Exam 2 PRACTICE Name: Lab Physics 42 Exam 2 PRACTICE Name: Lab 1 2 3 4 Conceptual Multiple Choice (2 points each) Circle the best answer. 1.Rank in order, from brightest to dimmest, the identical bulbs A to D. A. C = D > B > A

More information

CIRCULAR MOTION. Physics Department Electricity and Magnetism Laboratory. d dt. R is the distance from the body to the axis of rotation. v R.

CIRCULAR MOTION. Physics Department Electricity and Magnetism Laboratory. d dt. R is the distance from the body to the axis of rotation. v R. Physics Department Electricity and Magnetism Laboratory CIRCULAR MOTION 1. Aim The aim of this experiment is to study uniform circular motion and uniformly accelerated circular motion. The motion equation

More information

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector.

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector. No. of Printed Pages : 7 ET-105(A) B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI Term-End Examination June, 2017 ET-105(A)

More information

ANGULAR CONTACT BALL BEARINGS PASSED BY ELECTRIC CURRENT

ANGULAR CONTACT BALL BEARINGS PASSED BY ELECTRIC CURRENT 6th INTERNATIONALMULTIDISCIPLINARY CONFERENCE ANGULAR CONTACT BALL BEARINGS PASSED BY ELECTRIC CURRENT Racocea Cristina, Racocea Cezar, Nacu Ionuţ Technical University Gh. Asachi of Iasi Abstract. The

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

What Causes Friction?

What Causes Friction? What Causes Friction? Friction is the force that opposes the motion between two surfaces that touch (parallel to the surface). The surface of any object is rough. Even an object that feels smooth is covered

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner t W I w v 6.00-fall 017 Midterm 1 Name Problem 3 (15 pts). F the circuit below, assume that all equivalent parameters are to be found to the left of port

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

University Physics Volume II Unit 2: Electricity and Magnetism Chapter 13: Electromagnetic Induction Conceptual Questions

University Physics Volume II Unit 2: Electricity and Magnetism Chapter 13: Electromagnetic Induction Conceptual Questions University Physics Volume II Conceptual Questions 1. A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend on the actual values of the magnetic field?

More information

Target Conceptualise friction

Target Conceptualise friction Target Conceptualise friction I can define friction. I can recognise what is and is not an example of friction. I can give my own examples of friction. I can recognise what is and is not an example of

More information

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1 Chapter 3: Fundamentals of Mechanics and Heat 1/11/00 Electromechanical Dynamics 1 Force Linear acceleration of an object is proportional to the applied force: F = m a x(t) F = force acting on an object

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MICHELANGELO REFALO SIXTH FORM Annual Exam 2014 Subject: PHYSICS INT. 1 st Year Time: 2 hrs. Answer All Questions Where necessary assume the acceleration due to gravity, g = 10m/s 1) A basketball player

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

CYLINDRICAL ROLLER BEARINGS CARRYING THRUST LOAD

CYLINDRICAL ROLLER BEARINGS CARRYING THRUST LOAD CYLINDRICAL ROLLER BEARINGS CARRYING THRUST LOAD Gh. PRISACARU, Sp. CRETU, D. N. OLARU "Gh. Asachi Technical University, Department of Machine Design & Tribology, Bvd. D. Mangeron, 6-63, 66 Iasi, ROMANIA;

More information

WORK SHEET FOR MEP311

WORK SHEET FOR MEP311 EXPERIMENT II-1A STUDY OF PRESSURE DISTRIBUTIONS IN LUBRICATING OIL FILMS USING MICHELL TILTING PAD APPARATUS OBJECTIVE To study generation of pressure profile along and across the thick fluid film (converging,

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM PHYSICS 83 - LAB Experiment 9 Fall 004 THE TORSION PENDULUM In this experiment we will study the torsion constants of three different rods, a brass rod, a thin steel rod and a thick steel rod. We will

More information

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E -4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying

More information

Physics 22: Homework 4

Physics 22: Homework 4 Physics 22: Homework 4 The following exercises encompass problems dealing with capacitor circuits, resistance, current, and resistor circuits. 1. As in Figure 1, consider three identical capacitors each

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 14, 2013 3:10PM to 5:10PM Classical Physics Section 2. Electricity, Magnetism & Electrodynamics Two hours are permitted

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A grinding wheel is used to sharpen chisels in a school workshop. A chisel is forced against the edge of the grinding wheel so that the tangential force on the wheel is a

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Lesson 3. Electric Potential. Capacitors Current Electricity

Lesson 3. Electric Potential. Capacitors Current Electricity Electric Potential Lesson 3 Potential Differences in a Uniform Electric Field Electric Potential and Potential Energy The Millikan Oil-Drop Experiment Capacitors Current Electricity Ohm s Laws Resistance

More information

National 5 Physics. Electricity and Energy. Notes

National 5 Physics. Electricity and Energy. Notes National 5 Physics Electricity and Energy Notes Name. 1 P a g e Key Area Notes, Examples and Questions Page 3 Conservation of energy Page 10 Electrical charge carriers and electric fields and potential

More information

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d).

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d). 34 Chapter 7. The energy stored in an inductor of inductance and carrying current is PE 1. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Louisiana State University Physics 2102, Exam 3, November 11, 2010.

Louisiana State University Physics 2102, Exam 3, November 11, 2010. Name: Instructor: Louisiana State University Physics 2102, Exam 3, November 11, 2010. Please be sure to write your name and class instructor above. The test consists of 3 questions (multiple choice), and

More information

Magnets attract some metals but not others

Magnets attract some metals but not others Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

Part 1 of 1. (useful for homework)

Part 1 of 1. (useful for homework) Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to

More information

Rotation review packet. Name:

Rotation review packet. Name: Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

More information

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction.

Forces. Net force is the combination all of the forces acting on an object. All forces have both size and direction. Objectives Forces Describe forces, and explain how forces act on objects. Determine the net force when more than one force is acting on an object. Compare balanced and unbalanced forces. Describe ways

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Laboratory Exercise M-2 Power measurements

Laboratory Exercise M-2 Power measurements SILESIAN UNIVERSITY OF TECHNOLOGY FACULTY OF ENERGY AND ENVIRONMENTAL ENGINEERING INSTITUTE OF POWER ENGINEERING AND TURBOMACHINERY INSTRUCTIONS to Measurements of energetic quantities (Pomiary wielkości

More information

Classic Electrical Measurements 1

Classic Electrical Measurements 1 DR. GYURCSEK ISTVÁN Classic Electrical Measurements 1 Indicating Measurement Instruments Sources and additional materials (recommended) S. Tumanski:Principles of electrical measurement, CRC Press 2006.

More information

Servo Motor Selection Flow Chart

Servo Motor Selection Flow Chart Servo otor Selection Flow Chart START Selection Has the machine Been Selected? YES NO Explanation etermine the size, mass, coefficient of References friction, and external forces of all the moving part

More information

39th International Physics Olympiad - Hanoi - Vietnam Experimental Problem

39th International Physics Olympiad - Hanoi - Vietnam Experimental Problem DIFFERENTIAL THERMOMETRIC METHOD In this problem, we use the differential thermometric method to fulfill the two following tasks: 1. Finding the temperature of solidification of a crystalline solid substance.

More information

Reduction of Mechanical Loss of Flywheel Energy Storage System with Spherical Spiral Groove Bearing

Reduction of Mechanical Loss of Flywheel Energy Storage System with Spherical Spiral Groove Bearing Reduction of Mechanical Loss of Flywheel Energy Storage System with Spherical Spiral Groove Bearing Takeo Suuki, Takumi Masuda, Jun-ichi Itoh, Noboru Yamada Nagaoka University of Technology Nagaoka, Niigata,

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

General Physics (PHYC 252) Exam 4

General Physics (PHYC 252) Exam 4 General Physics (PHYC 5) Exam 4 Multiple Choice (6 points). Circle the one best answer for each question. For Questions 1-3, consider a car battery with 1. V emf and internal resistance r of. Ω that is

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK 3 Energy Mechanical work, energy and power: work - energy relationship,

More information

Module 3: Electromagnetism

Module 3: Electromagnetism Module 3: Electromagnetism Lecture - Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an electromagnetic

More information

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12 Inductance 1 Definition of Inductance When electric potentials are placed on a system of conductors, charges move to cancel the electric field parallel to the conducting surfaces of the conductors. We

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

Connection between angular and linear speed

Connection between angular and linear speed Connection between angular and linear speed If a point-like object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A

More information

Figure 1: Alternator front view.

Figure 1: Alternator front view. Robson 1 Hand Turned Electric Generator Ethan Robson & Professor Leon Cole Abstract The purpose of this project was to design and build a hand turned alternator to demonstrate electromagnetic induction

More information

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS SECTION A: SHORT QUESTIONS 1(i) 2 210 4 206 84Po! 2He + 82Pb Initial mass m i = 209.983 amu Final mass m f = 209.977 amu Candidates do not successfully

More information

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium

PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium These are selected problems that you are to solve independently or in a team of 2-3

More information

THE RUNNING SIMULATION OF A HYBRID CAR

THE RUNNING SIMULATION OF A HYBRID CAR UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN FACULTY OF MECHANICS AND TECHNOLOGY AUTOMOTIVE series, year XVII, no. ( ) THE RUNNING SIMULATION OF A HYBRID CAR Dinel POPA *, University of Piteşti, Romania e-mail:

More information

Angular Displacement (θ)

Angular Displacement (θ) Rotational Motion Angular Displacement, Velocity, Acceleration Rotation w/constant angular acceleration Linear vs. Angular Kinematics Rotational Energy Parallel Axis Thm. Angular Displacement (θ) Angular

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

Rotation Work and Power of Rotation Rolling Motion Examples and Review

Rotation Work and Power of Rotation Rolling Motion Examples and Review Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic

More information

A 954 C HD. Technical Description Hydraulic Excavator. Machine for Industrial Applications

A 954 C HD. Technical Description Hydraulic Excavator. Machine for Industrial Applications Technical Description Hydraulic Excavator A 95 C HD litronic` Machine for Industrial Applications Operating Weight 165,800 170,0 lb Engine Output 36 hp (0 kw) Technical Data Engine Rating per ISO 99 0

More information

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning? 1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

More information

Electromagnetic Induction

Electromagnetic Induction Faraday s Discovery Faraday found that there is a current in a coil of wire if and only if the magnetic field passing through the coil is changing. This is an informal statement of Faraday s law. Electromagnetic

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

More information

Teacher s notes 35 Conservation of angular momentum (1)

Teacher s notes 35 Conservation of angular momentum (1) Sensors: Loggers: Rotary Motion Any EASYSENSE Physics Logging time: 10 seconds Teacher s notes 35 Conservation of angular momentum (1) Introduction The use of the disc accessories allows the Rotary Motion

More information

Physics 180A Test Points

Physics 180A Test Points Physics 180A Test 3-10 Points Name You must complete six of the nine 10-point problems. You must completely cross off three 10-problems, thanks. Place your answers in the answer box. Watch your units and

More information

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I

More information

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

More information

EC 60 TM 200W 48V. with brushless drive. brushless small & compact maintenance-free Protection IP65. Ordering Data

EC 60 TM 200W 48V. with brushless drive. brushless small & compact maintenance-free Protection IP65. Ordering Data EC-Servo motors with brushless drive EC 0 TM 200W 48V brushless small & compact maintenance-free Protection IP Ordering Data characteristics permanently energized -phase synchronous motor incremental position

More information

First Name: Last Name: Section: 1. March 26, 2008 Physics 207 EXAM 2

First Name: Last Name: Section: 1. March 26, 2008 Physics 207 EXAM 2 First Name: Last Name: Section: 1 March 26, 2008 Physics 207 EXAM 2 Please print your name and section number (or TA s name) clearly on all pages. Show all your work in the space immediately below each

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information