4. How a psychrometer works

Size: px
Start display at page:

Download "4. How a psychrometer works"

Transcription

1 1 4. How a sychroeter works Identical theroeters Dry bulb (war Gauze around the wet bulb ool water Wet bulb (cool Saturated air Huidity to be easured T dry at Water being condensated, waring the gauze Water being evaorated, cooling the gauze T wet at OUT (cool IN (war vaor Water being evaorated, cooling the air vaor DRY-AIR ixture air-vaor vaor DRY-AIR Fan ulling the air fro the device Volue V IN Volue V OUT HOW A PSYHROETER WORKS On each second, a ass of water evaorates, cooling a ass DRY-AIR of air Figure 1: How a sychroeter works Figure 5 shows in details how a sychroeter works. Each second, a net ass of water vaor is evaorated, cooling a ass of air air. In atheatical ters, according to the first rincile of therodynaics (conservation of energy: Heat to vaorize the water Heat fro the cooling air T DRY AIR P (1 where: T T DRY - T ("Wet Bulb Deression" ean latent heat of vaorization of water fro o to 50º 584 cal / gra of water ass of liquid water being vaorized to be deterined DRY-AIR ass of air being cooled to be deterined DRY-AIR-P sensible heat caacity of air at ct. ressure cal / gra / º

2 2 T absolute teerature of ixture air-vaor (dry bulb teerature t º T absolute teerature of wet bulb t º All that follows is a consequence of this sile equation (1. changes with teerature (see Fig. 6, but since in the range 0-50º the change is relatively sall, to silify the calculations the average value is used. In the sae range, DRY-AIR-P is ractically constant. Figure 2: Latent Heat of Vaorization of Water Equation (1 ay also be written as: AIR P T (2 AIR In the volue V IN (Fig. 5, there is a ixture of DRY-AIR gras of dry air and gras of water vaor. According to the Ideal Gas Law (Annex A: V R T IN DRY R T V DRY IN (3 Using the Dalton Law (Annex B in volue V IN DRY-AIR + and defining the Huidity Ratio HR (or Absolute Huidity: HR / DRY-AIR (4

3 3 equation (3 becoes where HR (5 olecular ass of water vaor 18 gras/ol DRY-AIR olecular ass of dry air (weighted average 29 gras/ol local atosheric ressure (Hg artial ressure of vaor at T DRY (to be deterined The olecular ass of dry air is calculated as follows: olecule % Vol ol Product Nitrogen (N Oxygen (O Argon (A arbon Dioxide (O Su ol of Dry Air Using the sae reasoning in volue V OUT (Fig. 5, a siilar relationshi is found: + HR + (6 DRY AIR where is the saturation ressure of water vaor at T (Annex. Subtracting Eq. (6 fro Eq. (5 and equating it to Eq. (2 results: DRY AIR P T VAP (7 Defining the "Huidity onstant" k as: k 0.24(cal / gra /º 29(gras / ol 584 (cal / gra 18(gras / ol DRY AIR P Note: cal / gra / º cal / ( gra º equation (7 becoes: º k T (8 In Eq. (8 the only unknown is which is equal to:

4 4 ( 1 k T k T ( 1 k T k T (8 where (Annex : (tº ( * e S * t t + Hg Eq. (8 ay be silified, considering the nuerical values of soe of the ters: (9 1. T ºK t º by the definition of the Kelvin scale. 2. If Then 0 < T < 20º and k / º k T < << 1 So, 1 - k T ~ If t < 50º and (50º 100 Hg and ( Hg < < 760 Hg Then k T (t < 1.3 Hg << 127 Hg < So, k T (t ~ 0. Silifying eq. (8, the Psychroetric Equation becoes: (t k t (10 a well known relationshi. Finally, the Relative Huidity (RH (see Annex ay be calculated as: RH % 100 (11 (t DRY OBS: It ay be noted that the so called "Psychroetric onstant"

5 5 Exale: AIR P γ ε VAP was not used here because it is not a constant (deends on ; (k was used instead. When the local atosheric ressure is 760 Hg (sea level, the teerature of the dry bulb is 20º and the wet bulb is at 15º, the relative huidity is 58.6%: * S (20º ( * 7.5 e Hg S (15º Hg k T (1/º * 5º * 760 Hg 2.52 Hg Hg RH% 100 * (10.22 Hg / (17.44 Hg 58.6 % Note: 1 kpascal Hg Precision of the easureent when using exression (10: To reduce the easureent error, three recautions ust be taken: 1. The sychroeter ust be insulated fro the radiant heat of the environent (infrared rays. This ay be accolished by surrounding the wet bulb with a reflective surface (e.g. aluinu foil, but leaving a sace for ventilation between the foil and the gauze. 2. Although ideally distilled water should be used to oisten the gauze, in ractice, using filtered drinking water ay be sufficient. 3. The wet bulb ust be ventilated, to avoid the foration of a saturated-vaor layer around the wet bulb, which reduces the evaoration, thus increasing its teerature. Ventilation ay be set around one eter er second. As a reference, a sall fan (38 x 38 x 10 for a 486-PU, oerates at an air-seed of 1.6 eters er second (this fan costs around US$ 12. Here is a real exale using lab data on given date X: Site altitude: 637 eters (fro htt:// Dew oint teerature (easured: 8º Dry bulb teerature: 18.5º (abient teerature Wet bulb teerature: 15.0º (Augustus Psychroeter, no ventilation Wet bulb teerature: 12.5º (Augustus Psychroeter, ventilated 1 eter/second oercial electronic huidity eter (caacitive: 51% alculated relative huidity (using "Quick_Start.xls": Using sychroeter, no ventilation: 69.9% (error Using sychroeter, with ventilation: 50.5% (no error Using Dew Point and abient teeratures: 50.5% (reference

6 6 Here is another real exale using lab data on given date Y: Site altitude: 637 eters (fro htt:// Dew Point teerature (easured: 9.9º Dry bulb teerature: 25.3º (abient teerature Wet bulb teerature: 17.5º (Augustus Psychroeter, no ventilation Wet bulb teerature: 16.0º (Augustus Psychroeter, ventilated 1 eter/second oercial electronic huidity eter (caacitive: 36% alculated relative huidity (using "Quick_Start.xls": Using sychroeter, no ventilation: 47.0% (error Using sychroeter, with ventilation: 38.4% (sall error Using Dew Point and abient teeratures: 38.0% (reference NOTE: All the equations and the calculations used in this article were develoed and tested with atheatica 5.0 (Wolfra Research, a highly recoended software.

CHAPTER 2 THERMODYNAMICS

CHAPTER 2 THERMODYNAMICS CHAPER 2 HERMODYNAMICS 2.1 INRODUCION herodynaics is the study of the behavior of systes of atter under the action of external fields such as teerature and ressure. It is used in articular to describe

More information

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation uidity paraeters Saturation (equilibriu) vapor pressure Condensation balances evaporation Miing ratio & specific huidity Mass ratio of water vapor and air and water content and wet air. Dew point & frost

More information

3 Thermodynamics and Statistical mechanics

3 Thermodynamics and Statistical mechanics Therodynaics and Statistical echanics. Syste and environent The syste is soe ortion of atter that we searate using real walls or only in our ine, fro the other art of the universe. Everything outside the

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

(b) The heat transfer can be determined from an energy balance on the system

(b) The heat transfer can be determined from an energy balance on the system 8-5 Heat is transferred to a iston-cylinder device wit a set of stos. e work done, te eat transfer, te exergy destroyed, and te second-law efficiency are to be deterined. Assutions e device is stationary

More information

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2)

1. (2.5.1) So, the number of moles, n, contained in a sample of any substance is equal N n, (2.5.2) Lecture.5. Ideal gas law We have already discussed general rinciles of classical therodynaics. Classical therodynaics is a acroscoic science which describes hysical systes by eans of acroscoic variables,

More information

5. Dimensional Analysis. 5.1 Dimensions and units

5. Dimensional Analysis. 5.1 Dimensions and units 5. Diensional Analysis In engineering the alication of fluid echanics in designs ake uch of the use of eirical results fro a lot of exerients. This data is often difficult to resent in a readable for.

More information

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol olar ass,, of the unknown gas: n 10.00 g 0.088037 ol 113.16057 g/ ol olar ass,, of the epirical forula C 4 H 9 : 4 9 C4H9 C H 4 12.01 g/ol 9 1.01 g/ol 57.13 g/ol Ratio of olar asses: 113.16057 g/ol 1.9807

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Cheistry I Lecture 12 Aleksey Kocherzhenko Aril 2, 2015" Last tie " Gibbs free energy" In order to analyze the sontaneity of cheical reactions, we need to calculate the entroy changes

More information

Business. Professional application due Nov 17

Business. Professional application due Nov 17 Business Professional application due Nov 17 Need to estiate what elective courses you will take Mark how you fulfilled Math & Cheistry Major and Total GPA Fill out fors and spreadsheet Then eet with your

More information

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m. ME 300 Therodynaics II Exa 2 Noveber 3, 202 8:00 p.. 9:00 p.. Nae: Solution Section (Circle One): Sojka Naik :30 a.. :30 p.. Instructions: This is a closed book/notes exa. You ay use a calculator. You

More information

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1 PHYS 0 Practice roble set, Chater 8: 4, 9,,, 7,, 40, 4,, 6, 9 8.4. Sole: (a he ean free ath of a olecule in a gas at teerature, olue V, and ressure is λ 00 n. We also know that λ λ V 4 π ( N V r Although,

More information

Phase transitions. Lectures in Physical Chemistry 4. Tamás Turányi Institute of Chemistry, ELTE. Phases

Phase transitions. Lectures in Physical Chemistry 4. Tamás Turányi Institute of Chemistry, ELTE. Phases Phase transitions Lectures in Physical Cheistry 4 Taás Turányi Institute of Cheistry, ELTE Phases DEF a syste is hoogeneous, if () it does not contain arts searated by acroscoic surfaces, and () all intensive

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

[95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER. Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow

[95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER. Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow [95/95] APPROACH FOR DESIGN LIMITS ANALYSIS IN VVER Shishkov L., Tsyganov S. Russian Research Centre Kurchatov Institute Russian Federation, Moscow ABSTRACT The aer discusses a well-known condition [95%/95%],

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017 HERMODYNAMICS (SPA519) Detailed s to Coursework 1 ISSUE: Septeber 6 th 017 HAND-IN: October rd 017 QUESION 1: (5 arks) he siple kinetic theory arguent sketched in the lectures and in Feynan's lecture notes

More information

Final Exam Classical Mechanics

Final Exam Classical Mechanics Final Ea Classical Mechanics. Consider the otion in one diension of a article subjected to otential V= (where =constant). Use action-angle variables to find the eriod of the otion as a function of energ.

More information

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Strss. Temperature and Thermal Equilibrium

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Strss. Temperature and Thermal Equilibrium herodynaics Fro the Greek theros eaning heat and dynais eaning power is a branch of physics that studies the effects of changes in teperature, pressure, and volue on physical systes at the acroscopic scale

More information

Thermal conductivity, diffusivity and heat capacity of plasticized polyvinyl chloride

Thermal conductivity, diffusivity and heat capacity of plasticized polyvinyl chloride Indian Journal of Pure & Alied Physics Vol. 43, February 25,. 132-136 heral conductivity, diffusivity and heat caacity of lasticized olyvinyl chloride P Dashora 1, G Guta 2 & J Dashora 1 1 Deartent of

More information

Expansion of Gases. It is decided to verify oyle's law over a wide range of teperature and pressures. he ost suitable gas to be selected for this purpose is ) Carbon dioxide ) Heliu 3) Oxygen 4) Hydrogen.

More information

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Stress. Temperature and Thermal Equilibrium

Thermodynamics. Temperature Scales Fahrenheit: t F. Thermal Expansion and Stress. Temperature and Thermal Equilibrium herodynaics Fro the Greek theros eaning heat and dynais eaning power is a branch of physics that studies the effects of changes in teperature, pressure, and volue on physical systes at the acroscopic scale

More information

Chapter 14. Gas-Vapor Mixtures and Air-Conditioning. Study Guide in PowerPoint

Chapter 14. Gas-Vapor Mixtures and Air-Conditioning. Study Guide in PowerPoint Chpter 14 Gs-Vpor Mixtures nd Air-Conditioning Study Guide in PowerPoint to ccopny Therodynics: An Engineering Approch, 5th edition by Yunus A. Çengel nd Michel A. Boles We will be concerned with the ixture

More information

Mesoscale Meteorology: Lake-Effect Precipitation 4, 6 April 2017 Introduction As relatively cold air passes over a relatively warm body of water,

Mesoscale Meteorology: Lake-Effect Precipitation 4, 6 April 2017 Introduction As relatively cold air passes over a relatively warm body of water, Mesoscale Meteorology: Lake-Effect Precipitation 4, 6 April 017 Introduction As relatively cold air passes over a relatively war body of water, taken generally here as a lake, sensible and latent heat

More information

Combined Gas Law (1) Answer Key

Combined Gas Law (1) Answer Key CHAER 4 Cobined Gas Law (1) Answer Key BL 4.1.1A 1. 1 1 1 1 1 1 100.8 ka 4. L 48.15 K 71.15 K10.0 ka.8l. he balloons will decrease in volue. 1 1 1 1 6.0L80% 4.8L 7.8 º C (body teperature) 10.95 K 1 1 1

More information

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes.

The Role of Water Vapor. atmosphere (we will ignore the solid phase here) Refer to the phase diagram in the web notes. The Role of Water Vaor Water can exist as either a vaor or liquid in the atmoshere (we will ignore the solid hase here) under a variety of Temerature and ressure conditions. Refer to the hase diagram in

More information

Chapter 4: Temperature

Chapter 4: Temperature Chapter 4: Teperature Objectives: 1. Define what teperature is. 2. Explain the difference between absolute and relative teperature. 3. Know the reference points for the teperature scales. 4. Convert a

More information

MATHEMATICAL MODELS AND OPTICAL INVESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS

MATHEMATICAL MODELS AND OPTICAL INVESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS MATHEMATICAL MODELS AND OPTICAL INESTIGATION OF TWO PHASE FLOWS IN WIND TUNNELS *Central Aerohydrodynaic institute Keywords: wind tunnels, icing in suercooled drolets and non-sherical crystals, otical

More information

UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC STANDARDS

UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC STANDARDS Paper Published on the16th International Syposiu on High Voltage Engineering, Cape Town, South Africa, 2009 UNCERTAINTIES IN THE APPLICATION OF ATMOSPHERIC AND ALTITUDE CORRECTIONS AS RECOMMENDED IN IEC

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

CHEM 305 Solutions for assignment #2

CHEM 305 Solutions for assignment #2 CHEM 05 Solutions for assignent #. (a) Starting fro C C show that C C Substitute the result into the original expression for C C : C C (b) Using the result fro (a), evaluate C C for an ideal gas. a. Both

More information

4. A Brief Review of Thermodynamics, Part 2

4. A Brief Review of Thermodynamics, Part 2 ATMOSPHERE OCEAN INTERACTIONS :: LECTURE NOTES 4. A Brief Review of Thermodynamics, Part 2 J. S. Wright jswright@tsinghua.edu.cn 4.1 OVERVIEW This chater continues our review of the key thermodynamics

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

Temperature and Thermodynamics, Part II. Topics to be Covered

Temperature and Thermodynamics, Part II. Topics to be Covered Teperature and Therodynaics, Part II Topics to be Covered Profiles of Teperature in the Boundary Layer Potential teperature Adiabatic Lapse Rate Theral Stratification 1/8/17 Why are We Interested in Theral

More information

MODULE 2: DIFFUSION LECTURE NO DIFFUSION COEFFICIENT: MEASUREMENT AND PREDICTION

MODULE 2: DIFFUSION LECTURE NO DIFFUSION COEFFICIENT: MEASUREMENT AND PREDICTION NPTEL Chemical ass Transfer Oeration OULE : IFFUSION LECTURE NO. 4.4 IFFUSION COEFFICIENT: ESUREENT N PREICTION The roortionality factor of Fick s law is called diffusivity or diffusion coefficient which

More information

Developed Correlations for Prediction of The Enthalpies of Saturated Vapor Liquid Coexisting Phases

Developed Correlations for Prediction of The Enthalpies of Saturated Vapor Liquid Coexisting Phases Nahrain University, College of Engineering Journal (NUCEJ) Vol.13 No.2, 2010 pp.116-128 Developed Correlations for Prediction of he Enthalpies of Saturated Vapor Liquid Coexisting Phases Mahoud Oar bdullah

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32 Departent of Mechanical Engineering ME 322 Mechanical Engineering Therodnaics Ideal Gas Mixtures II Lecture 32 The Gibbs Phase Rule The nuber of independent, intensive properties required to fix the state

More information

Basic Thermodynamic Relations

Basic Thermodynamic Relations Basic herodynaic Relations Isolated syste: this is a syste that does not exchange energy with the surrounding edia. First Postulate (equilibriu theore) : Isolated syste always reaches the equilibriu state

More information

DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON

DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON DETERMINATION OF ADSORTION LAYERS ON SILICON SORPTION ARTIFACTS USING MASS COMPARISON Unurbileg Daraa 2 1, Jin Wan Chung 1 and Sungjun Lee 1, Seung Na Park 1* 1 Korea Research Institute of Standards and

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.it.edu 5.60 Therodynaics & Kinetics Spring 2008 For inforation about citing these aterials or our Ters of Use, visit: http://ocw.it.edu/ters. 1 Enzye Catalysis Readings: SAB,

More information

Isothermal Elastohydrodynamic Lubrication. E. Feyzullahoglu

Isothermal Elastohydrodynamic Lubrication. E. Feyzullahoglu Journal of the Balkan Tribological Association Vol. 15, No 3, 438 446 (009) 438 Elastohydrodynaic lubrication Isotheral Elastohydrodynaic Lubrication of Ellitic Contacts E. Feyzullahoglu Faculty of Engineering,

More information

The Realm of Hydrogeology

The Realm of Hydrogeology The Real of Hydrogeology In class exercise Stagnant Flow Plot hydraulic head and ressure vs. deth for (also indicate the hydrostatic line) Stagnant flow (no flow) Steady downward flow Steady uward flow

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Liquid water static energy page 1/8

Liquid water static energy page 1/8 Liquid water static energy age 1/8 1) Thermodynamics It s a good idea to work with thermodynamic variables that are conserved under a known set of conditions, since they can act as assive tracers and rovide

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1 to: Units and Calculations Hoework Proble Set Cheistry 145, Chapter 1 Give the nae and abbreviation of the SI Unit for: a Length eter b Mass kilogra kg c Tie second s d Electric Current ap A e Teperature

More information

Phase transition. Asaf Pe er Background

Phase transition. Asaf Pe er Background Phase transition Asaf Pe er 1 November 18, 2013 1. Background A hase is a region of sace, throughout which all hysical roerties (density, magnetization, etc.) of a material (or thermodynamic system) are

More information

ASSESSMENT OF THE VOLUME CHANGE BEHAVIOUR

ASSESSMENT OF THE VOLUME CHANGE BEHAVIOUR ASSESSMENT OF THE VOLUME CHANGE BEHAVIOUR OF CLAY AGGREGATES BY ESEM OBSERVATIONS E. Roero*, A. Ferrari Departent of Geotechnical Engineering and Geosciences Universitat Politècnica de Catalunya (UPC)

More information

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438)

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438) Exercise 1 Exercises- chapter-1- Properties of gases (Part-2- Real gases Express the van der Waals paraeters a = 1.32 at d 6 ol 2 and b = 0.0436 d 3 ol 1 in SI base units? * The SI unit of pressure is

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics Lecture 4 When nondiensionalizing an equation, nondiensional araeters often aear. Exale Consider an object falling due to gravity in a vacuu d z ays: (1) the conventional diensional aroach, and () diensionless

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

1 The properties of gases The perfect gas

1 The properties of gases The perfect gas 1 The properties of gases 1A The perfect gas Answers to discussion questions 1A. The partial pressure of a gas in a ixture of gases is the pressure the gas would exert if it occupied alone the sae container

More information

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ME 5 Tutoril, Week# Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5 C enters cooling toer ith ss flo rte of 5000 kg/s. A stre of cooled ter is returned

More information

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C? Section 12.2 The Ideal Gas Law Solutions for Practice Probles Student Edition page 556 21. Practice Proble (page 556) What is the volue of 5.65 ol of heliu gas at a pressure of 98 kpa and a teperature

More information

ONE. The Earth-atmosphere system CHAPTER

ONE. The Earth-atmosphere system CHAPTER CHAPTER ONE The Earth-atmoshere system 1.1 INTRODUCTION The Earth s atmoshere is the gaseous enveloe surrounding the lanet. Like other lanetary atmosheres, it figures centrally in transfers of energy between

More information

SF Chemical Kinetics.

SF Chemical Kinetics. SF Cheical Kinetics. Lecture 5. Microscopic theory of cheical reaction inetics. Microscopic theories of cheical reaction inetics. basic ai is to calculate the rate constant for a cheical reaction fro first

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

VACUUM chambers have wide applications for a variety of

VACUUM chambers have wide applications for a variety of JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 2, No., January March 27 Free Molecular Flows Between Two Plates Equied with Pus Chunei Cai ZONA Technology, Inc., Scottsdale, Arizona 85258 Iain D. Boyd

More information

PNEUMATIC ENTHALPY COMPARATOR

PNEUMATIC ENTHALPY COMPARATOR PNEUATIC ENTHALPY COPARATOR APS ANALYSTS OF PNEUATIC SYSTES LIITED analystsofpneumatic@bellnet.ca http://www.apscontrols.ca PHONE: (9) 6-2333 FAX: (9) 6-2444 CONTENTS PAGE - Preface ------------------------------------------

More information

OPTIMIZING A SPACE MISSION USING ION PROPULSION

OPTIMIZING A SPACE MISSION USING ION PROPULSION Review of the Air Force Acadey No 3 (30) 015 OPTIMIZING A SPACE MISSION USING ION PROPULSION Grigore CICAN National Research and Develoent Institute for Gas Turbines COMOTI, Bucharest, Roania DOI: 10.1906/184-938.015.13.3.15

More information

I. Concepts and Definitions. I. Concepts and Definitions

I. Concepts and Definitions. I. Concepts and Definitions F. Properties of a syste (we use the to calculate changes in energy) 1. A property is a characteristic of a syste that can be given a nuerical value without considering the history of the syste. Exaples

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

SUPPORTING INFORMATION FOR. Mass Spectrometrically-Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au 25 L 18 Nanoparticles

SUPPORTING INFORMATION FOR. Mass Spectrometrically-Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au 25 L 18 Nanoparticles SUPPORTIG IFORMATIO FOR Mass Sectroetrically-Detected Statistical Asects of Lig Poulations in Mixed Monolayer Au 25 L 8 anoarticles Aala Dass,,a Kennedy Holt, Joseh F. Parer, Stehen W. Feldberg, Royce

More information

Anomalous heat capacity for nematic MBBA near clearing point

Anomalous heat capacity for nematic MBBA near clearing point Journal of Physics: Conference Series Anoalous heat caacity for neatic MA near clearing oint To cite this article: D A Lukashenko and M Khasanov J. Phys.: Conf. Ser. 394 View the article online for udates

More information

Daniel López Gaxiola 1 Student View Jason M. Keith

Daniel López Gaxiola 1 Student View Jason M. Keith Suppleental Material for Transport Process and Separation Process Principles Chapter Principles of Moentu Transfer and Overall Balances In fuel cells, the fuel is usually in gas or liquid phase. Thus,

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Dispersion. February 12, 2014

Dispersion. February 12, 2014 Dispersion February 1, 014 In aterials, the dielectric constant and pereability are actually frequency dependent. This does not affect our results for single frequency odes, but when we have a superposition

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Lecture 3: October 2, 2017

Lecture 3: October 2, 2017 Inforation and Coding Theory Autun 2017 Lecturer: Madhur Tulsiani Lecture 3: October 2, 2017 1 Shearer s lea and alications In the revious lecture, we saw the following stateent of Shearer s lea. Lea 1.1

More information

Ballistic Pendulum. Introduction

Ballistic Pendulum. Introduction Ballistic Pendulu Introduction The revious two activities in this odule have shown us the iortance of conservation laws. These laws rovide extra tools that allow us to analyze certain asects of hysical

More information

Ozone (O 3 ) in upper atmosphere blocks ultraviolet (UV) light from Sun. UV causes skin cancer and cataracts.

Ozone (O 3 ) in upper atmosphere blocks ultraviolet (UV) light from Sun. UV causes skin cancer and cataracts. Unit 9: The Gas Laws The Atosphere an ocean of gases ixed together Coposition nitrogen (N ) ~78% oxygen (O ).~% argon (Ar).~0.93% carbon dioxide (CO )..~0.03% water apor (H O) ~0.% Trace aounts of: He,

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) PYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) MOLE CONCEPT, STOICIOMETRIC CALCULATIONS Learner Note: The ole concept is carried forward to calculations in the acid and base section, as well as in

More information

Crystallization of Supercooled Liquid Elements Induced by Superclusters Containing Magic Atom Numbers Abstract: Keywords: 1.

Crystallization of Supercooled Liquid Elements Induced by Superclusters Containing Magic Atom Numbers Abstract: Keywords: 1. Crystallization of Supercooled Liquid Eleents Induced by Superclusters Containing Magic Ato Nubers Robert F. Tournier, CRETA /CNRS, Université Joseph Fourier, B.P. 166, 804 Grenoble cedex 09, France. E-ail:

More information

ISO/TC 131/SC 5 N 797

ISO/TC 131/SC 5 N 797 ISO 7 All rights reserved ISO/TC 3/SC 5 N 797 Date: 8 3 3 ISO/CD 6358 5 ISO/TC 3/SC 5 Secretariat: AFNOR Pneuatic fluid ower Deterination of flow rate characteristics of coonents using coressible fluids

More information

Frequency Domain Analysis of Rattle in Gear Pairs and Clutches. Abstract. 1. Introduction

Frequency Domain Analysis of Rattle in Gear Pairs and Clutches. Abstract. 1. Introduction The 00 International Congress and Exosition on Noise Control Engineering Dearborn, MI, USA. August 9-, 00 Frequency Doain Analysis of Rattle in Gear Pairs and Clutches T. C. Ki and R. Singh Acoustics and

More information

INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS

INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS XXXX IB08 19th International Syosiu of Ballistics, 7 11 May 001, Interlaken, Switzerland INTERIOR BALLISTIC PRINCIPLE OF HIGH/LOW PRESSURE CHAMBERS IN AUTOMATIC GRENADE LAUNCHERS S. Jaraaz1, D. Micković1,

More information

Ideal Gas Law. September 2, 2014

Ideal Gas Law. September 2, 2014 Ideal Gas Law Setember 2, 2014 Thermodynamics deals with internal transformations of the energy of a system and exchanges of energy between that system and its environment. A thermodynamic system refers

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

M E 405 Professor John M. Cimbala Lecture 22

M E 405 Professor John M. Cimbala Lecture 22 M E 405 Professor John M. Cibala Lecture 22 Today, we will: Do a clean roo exaple Do another review exaple Discuss Mean Age and Ventilation Effectiveness [Section 5.12] Do Candy Questions for Candy Friday

More information

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street Distillation The Continuous Colun Gavin Duffy School of Electrical Engineering DIT Kevin Street Learning Outcoes After this lecture you should be able to.. Describe how continuous distillation works List

More information

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking 1. Introduction 1.1 Heat and Mass transfer in daily life and process/echanical engineering Heat transfer in daily life: Heating Cooling Cooking ransfer of heat along a teperature difference fro one syste

More information

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5 G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Total possible points: 40 number of pages: 5 Part A: Short Answer & Problems (12), Fill in the Blanks (6).

More information

Study on the dynamic compressor characteristics transformation at the aspiration parameters and rotation modification

Study on the dynamic compressor characteristics transformation at the aspiration parameters and rotation modification MPRA Munich Personal RePEc Archive Study on the dynaic coressor characteristics transforation at the asiration araeters and rotation odification Dan Codrut Petrilean University of Petrosani January 6 Online

More information

Chapter 10 Atmospheric Forces & Winds

Chapter 10 Atmospheric Forces & Winds Chapter 10 Atospheric Forces & Winds Chapter overview: Atospheric Pressure o Horizontal pressure variations o Station vs sea level pressure Winds and weather aps Newton s 2 nd Law Horizontal Forces o Pressure

More information

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ENSC 61 Tutoril, Week#9 Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5C enters cooling toer ith ss flo rte of 15000 kg/s. A stre of cooled ter is

More information

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Chemistry 531 Spring 2009 Problem Set 6 Solutions Chemistry 531 Sring 2009 Problem Set 6 Solutions 1. In a thermochemical study of N 2, the following heat caacity data were found: t 0 C,m d 27.2Jmol 1 K 1 f t b f C,m d 23.4Jmol 1 K 1 C,m d 11.4Jmol 1

More information

CALCULATION of CORONA INCEPTION VOLTAGES in N 2 +SF 6 MIXTURES via GENETIC ALGORITHM

CALCULATION of CORONA INCEPTION VOLTAGES in N 2 +SF 6 MIXTURES via GENETIC ALGORITHM CALCULATION of COONA INCPTION VOLTAGS in N +SF 6 MIXTUS via GNTIC ALGOITHM. Onal G. Kourgoz e-ail: onal@elk.itu.edu.tr e-ail: guven@itu.edu..edu.tr Istanbul Technical University, Faculty of lectric and

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

) = slugs/ft 3. ) = lb ft/s. ) = ft/s

) = slugs/ft 3. ) = lb ft/s. ) = ft/s 1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.

More information

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self

f self = 1/T self (b) With revolution, rotaton period T rot in second and the frequency Ω rot are T yr T yr + T day T rot = T self > f self Problem : Units : Q-a Mathematically exress the relationshi between the different units of the hysical variables: i) Temerature: ) Fahrenheit and Celsius; 2) Fahrenheit and Kelvin ii) Length: ) foot and

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Che340 hysical Cheistry for Biocheists Exa 3 Apr 5, 0 Your Nae _ I affir that I have never given nor received aid on this exaination. I understand that cheating in the exa will result in a grade F for

More information

MODULE 2: DIFFUSION LECTURE NO. 2

MODULE 2: DIFFUSION LECTURE NO. 2 PTEL Chemical Mass Transfer Oeration MODULE : DIFFUSIO LECTURE O.. STEDY STTE MOLECULR DIFFUSIO I FLUIDS UDER STGT D LMIR FLOW CODITIOS.. Steady state diffusion through a constant area Steady state diffusion

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information