21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?

Size: px
Start display at page:

Download "21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?"

Transcription

1 Section 12.2 The Ideal Gas Law Solutions for Practice Probles Student Edition page Practice Proble (page 556) What is the volue of 5.65 ol of heliu gas at a pressure of 98 kpa and a teperature of 18.0 C? You need to find the volue, V, of heliu gas, He(g). You know the conditions of teperature and pressure: T = 18.0 C P = 98 kpa You know the aount in oles of the heliu gas: n = 5.65 ol Convert the teperature fro the Celsius scale to the Kelvin scale. kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable V. Substitute the given data into the equation and solve for V. Act on Your Strategy Teperature conversion: T 18.0C K Isolation of the variable V: P P V P Chapter 12ExploringtheGasLaws MHR 69

2 Substitution to solve for V: V P kpa 5.65 ol ol 98 kpa L L L K K The volue of the heliu gas is L. Estiate the aount in oles using rounded values: volue 140 L olar volue 6 ol 22 L /ol This estiate of the aount in oles is close to the given aount. The calculated answer sees reasonable and correctly shows two significant digits. 22. Practice Proble (page 556) Propane, C 3 H 8, is a coon gas used to supply energy for barbecue cookers as well as energy requiring appliances in cabins and cottages, and heavy equipent such as the forklift shown in the photograph below. If a tank contains kg of propane, what volue of propane gas could be supplied at 22 C and kpa? Chapter 12ExploringtheGasLaws MHR 70 You need to find the volue, V, of the propane, C 3 H 8 (g). You know the conditions of teperature and pressure: T = 22 C P = kpa You know the ass of the propane gas: = kg

3 Isolation of the variable V: P P V P Substitution to solve for V: V P kpa ol ol kpa L L L K K The volue of the propane gas that could be supplied at 22 C and kpa is L. The correct units have been used and the units of ass and teperature have been converted correctly. The large volue is consistent with the application described in the question and the ass of propane that was used. Two significant digits in the answer are consistent with the data given. 23. Practice Proble (page 556) Find the Celsius teperature of nitrogen gas if a 5.60 g saple occupies L at 3.00 at of pressure. You need to find the Celsius teperature of a saple of nitrogen gas, N 2 (g). You know the ass, volue, and pressure of the saple of nitrogen gas: = 5.60 g V = L P = 3.00 at Convert the volue of the gas fro illilitres to litres. Convert the pressure of the gas fro at to kilopascals Chapter 12ExploringtheGasLaws MHR 72

4 Deterine the olar ass of the saple of N 2 (g). Calculate the aount in oles of N 2 (g) using the relationship n. M kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable T. Substitute the given data into the equation and solve for T. Convert the teperature fro the Kelvin scale to the Celsius scale. Act on Your Strategy Volue conversion: 3 3 V L 1 10 L/ L 2.40 L Pressure conversion: kpa P 3.00 at 1.00 at kpa Molar ass, M, of N 2 (g): M 2( M ) N2 N 2(14.07 g/ol) g/ol Aount in oles, n, of N 2 (g): nn 2 M 5. 6 g g /ol ol Isolation of the variable T: nr nr T nr Chapter 12ExploringtheGasLaws MHR 73

5 Substitution to solve for T: T nr kpa 2.40 L kpa L ol ol K K Teperature conversion: T K C 166 C The teperature of the nitrogen gas is 166 C. The high pressure of 3.00 at would decrease the volue. The teperature is high and would increase the volue. The answer sees reasonable and correctly shows three significant digits. 24. Practice Proble (page 556) What is the pressure of 3.25 ol of hydrogen gas that occupies a volue of 67.5 L at a teperature of 295 K? You need to find the pressure of a saple of hydrogen gas, H 2 (g). You know the aount, volue, and teperature of the saple of hydrogen gas: n = 3.25 ol V = 67.5 L T = 295 K kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable P. Substitute the given data into the equation and solve for P Chapter 12ExploringtheGasLaws MHR 74

6 Act on Your Strategy Isolation of the variable P: V V P V Substitution to solve for P: P V kpa 3.25 ol ol 67.5 L kpa 118 kpa L K 295 K Chapter 12ExploringtheGasLaws MHR 75 The pressure of the hydrogen gas is 118 kpa. The ideal gas equation has been rearranged correctly and the variables have been substituted into the equation using the correct units. The answer sees reasonable and correctly shows three significant digits. 25. Practice Proble (page 556) A weather balloon filled with heliu gas has a volue of 960 L at 101 kpa and 25 C. What ass of heliu was required to fill the balloon? You need to find the ass of a saple of heliu gas, He(g). You know the volue, pressure, and teperature of the saple of heliu gas: V = 960 L P = 101 kpa T = 25 C Convert the teperature fro the Celsius scale to the Kelvin scale. kpa L Use the universal gas constant: R ol K

7 Use the ideal gas law: Rearrange the equation to isolate the variable n. Substitute the given data into the equation and solve for n. Deterine the olar ass of the He(g) using the atoic ass fro the periodic table. Calculate the ass of the He(g) using the relationship n M. Act on Your Strategy Teperature conversion: T 25C K Isolation of the variable n: n Substitution to solve for n: n 101 kpa 960 L kpa L K ol K ol Molar ass, M, of He(g): 4.00 g/ol (fro the periodic table) Mass,, of He(g): n M He ol g 160 g 4.00 g/ ol The ass of the heliu gas required to fill the balloon is 160 g Chapter 12ExploringtheGasLaws MHR 76

8 The ideal gas equation has been correctly rearranged to solve for the aount of oles. The variables are substituted correctly into the equation and the units are correct. The answer sees reasonable and correctly shows two significant digits. 26. Practice Proble (page 556) Find the olar ass of 6.24 g of an unknown gas that occupies 2.5 L at 18.3 C and kpa. You need to find the olar ass of a saple of gas. You know the volue, pressure, teperature, and ass of the saple of the gas: V = 2.5 L P = kpa T = 18.3 C = 6.24 g Convert the teperature fro the Celsius scale to the Kelvin scale. kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable n. Substitute the given data into the equation and solve for n. Calculate the olar ass of the gas using the relationship M. n Chapter 12ExploringtheGasLaws MHR 77 Act on Your Strategy Teperature conversion: T 18.3C K Isolation of the variable n: n

9 Substitution to solve for n: n kpa 2.5 L kpa L K ol K ol Molar ass, M, of the gas: M n 6.24 g ol g/ol g/ol The olar ass of the gas is g/ol. The ideal gas equation has been correctly rearranged to solve for the aount of oles. The variables are substituted into the equation correctly and the units are correct. The answer sees reasonable and correctly shows two significant digits. 27. Practice Proble (page 556) A scientist isolates g of a gas. The saple occupies a volue of L at 78.0 C and 103 kpa. Calculate the olar ass of the gas. Is the gas ost likely to be broine, krypton, neon, or fluorine? You need to find the olar ass of a saple of gas and deterine its possible identity. You know the volue, pressure, teperature, and ass of the saple of gas: V = L P = 103 kpa T = 78.0 C = g Chapter 12ExploringtheGasLaws MHR 78

10 Convert the teperature fro the Celsius scale to the Kelvin scale. Convert the volue to litres. kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable n. Substitute the given data into the equation and solve for n. Calculate the olar ass of the gas using the relationship M. n Act on Your Strategy Teperature conversion: T 78.0C K Volue conversion: 2 V L L L/ L Isolation of the variable n: n Substitution to solve for n: n 103 kpa L kpa L K ol K ol Chapter 12ExploringtheGasLaws MHR 79

11 Molar ass, M, of the gas: M n g ol g/ol 83.8 g/ol The olar ass of the gas is 83.8 g/ol. The gas is likely krypton. The ideal gas equation has been correctly rearranged to solve for the aount of oles. The variables are substituted correctly into the equation and the units are correct. The answer sees reasonable and correctly shows three significant digits. 28. Practice Proble (page 556) What is the density of carbon dioxide gas, in gras per litre, at SATP? You need to find the density of carbon dioxide gas, CO 2 (g), at SATP. You know the volue, pressure, and teperature of the carbon dioxide gas: V = L P = kpa T = K You know that density is the ass per unit volue. Calculate the olar ass of the CO 2 (g) using the atoic asses fro the periodic table. kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable n. Substitute the given data into the equation and solve for n. Calculate the ass of the CO 2 (g) using the relationship n M. Calculate the density of the CO 2 (g) using the relationship D. V Chapter 12ExploringtheGasLaws MHR 80

12 The ideal gas equation has been correctly rearranged to solve for the aount of oles. The variables are substituted into the equation correctly and the units are correct. The answer sees reasonable and correctly shows four significant digits. 29. Practice Proble (page 556) A hydrocarbon gas used for fuel contains the eleents carbon and hydrogen in percentages of percent and percent. Soe of the gas, 1.77 g, was trapped in a 750 L round-botto flask. The gas was collected at a teperature of 22.1 C and a pressure of 99.7 kpa. a. Deterine the epirical forula for this gas. b. Calculate the olar ass of the gas. c. Deterine the olecular forula for this gas. You need to find a. the epirical forula for the gas. b. the olar ass of the gas. c. the olecular forula for the gas. You know the teperature, pressure, volue, and ass of the gas: T = 22.1 C P = 99.7 kpa V = 750 L = 1.77 g You know that the percentage coposition of the gas is 82.66% carbon and 17.34% hydrogen. a. epirical forula for the gas Find the epirical forula using the olar asses of carbon and hydrogen and the percentage copositions. b. olar ass of the gas Convert the teperature fro the Celsius scale to the Kelvin scale. Convert the volue to litres. kpa L Use the universal gas constant: R ol K Use the ideal gas law: Rearrange the equation to isolate the variable n. Substitute the given data into the equation and solve for n Chapter 12ExploringtheGasLaws MHR 82

13 Calculate the olar ass of the gas using the relationship M. n c. olecular forula for the gas Copare the olar ass of the unknown gas with the olar ass of the epirical forula. Multiply the epirical forula by the ratio of the two olar asses to obtain the olecular forula. Act on Your Strategy a. epirical forula for the gas For a 100 g saple: Mass of 82.66% carbon: g = g Mass of 17.34% hydrogen: g = g Aount in oles of each eleent using the relationship For carbon (M = g/ol): nc M g g /ol ol n : M For hydrogen (M = 1.01 g/ol): nh M g 1.01 g /ol ol The siplest ole ratio between the two eleents provides the epirical forula ol of C : ol of H 1 ol of C : ol H 2 ol of C : 5 ol H The ole ratio between the carbon and the hydrogen is 2:5. The epirical forula for the gas is C 2 H Chapter 12ExploringtheGasLaws MHR 83

14 b. olar ass of the gas Teperature conversion: T 22.1C K Volue conversion: 3 V 750 L 1 10 L/ L L 0.75 L Isolation of the variable n: n Substitution to solve for n: n 99.7 kpa 0.75 L kpa L K ol K ol Molar ass, M, of the gas: M n 1.77 g ol g/ol 58 g/ol The olar ass of the unknown gas is 58 g/ol Chapter 12ExploringtheGasLaws MHR 84

15 c. olecular forula for the gas Molar ass of the unknown gas: M = 58 g/ol Molar ass, M, of the epirical forula C 2 H 5 : M 2M 5M C2H5 C H 2(12.01 g/ol) 5(1.01 g/ol) g/ol Ratio of olar asses: 58 g/ol g/ol 1 Since the ratio of the olar asses is 2:1, the olecular forula is C 2 H 5 2 = C 4 H 10. The olecular forula for the unknown gas is C 4 H 10. The siple integer ratio of the two olar asses akes the olecular forula a reasonable answer. The variables are substituted correctly into the ideal gas law equation and the units are correct. The olar ass is correctly expressed to two significant digits. 30. Practice Proble (page 556) A 10.0 g saple of an unknown liquid is vaporized at C and 5.0 at. The volue of the vapour is found to be L. The liquid is deterined to be ade up of 84.2% carbon and 15.8% hydrogen. What is the olecular forula for the liquid? You need to find the olecular forula for an unknown liquid. You know the teperature, pressure, volue, and ass of the vaporized liquid: T = C P = 5.0 at V = L = 10.0 g You also know that the percentage coposition of the liquid is 84.2% carbon and 15.8% hydrogen Chapter 12ExploringtheGasLaws MHR 85

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol olar ass,, of the unknown gas: n 10.00 g 0.088037 ol 113.16057 g/ ol olar ass,, of the epirical forula C 4 H 9 : 4 9 C4H9 C H 4 12.01 g/ol 9 1.01 g/ol 57.13 g/ol Ratio of olar asses: 113.16057 g/ol 1.9807

More information

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms SECTION 12.2 The Ideal Gas Law You have related the combined gas law to Avogadro s volume-mole gas relationship using two sets of conditions. This enabled you to make calculations of pressure, temperature,

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME. PHYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) PYSICAL SCIENCE Grade 11 SESSION 11 (LEARNER NOTES) MOLE CONCEPT, STOICIOMETRIC CALCULATIONS Learner Note: The ole concept is carried forward to calculations in the acid and base section, as well as in

More information

Expansion of Gases. It is decided to verify oyle's law over a wide range of teperature and pressures. he ost suitable gas to be selected for this purpose is ) Carbon dioxide ) Heliu 3) Oxygen 4) Hydrogen.

More information

12.1. The Combined Gas Law. The Combined Gas Law SECTION. Key Terms

12.1. The Combined Gas Law. The Combined Gas Law SECTION. Key Terms SECTION 12.1 The Combined Gas Law Key Terms combined gas law law of combining volumes Avogadro s law (hypothesis) molar volume standard temperature and pressure (STP) standard ambient temperature and pressure

More information

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H

90.14 g/mol x g/mol. Molecular formula: molecular formula 2 empirical formula 2 C OH C O H Whole-number multiple: M x M actual compound C2OH5 90.14 g/mol x 45.07 g/mol 90.14 g/mol x 45.07 g/mol 2 Molecular formula: molecular formula 2 empirical formula 2 C OH 2 5 C O H 4 2 10 Check Your Solution

More information

Problem Set 2. Chapter 1 Numerical:

Problem Set 2. Chapter 1 Numerical: Chapter 1 Nuerical: roble Set 16. The atoic radius of xenon is 18 p. Is that consistent with its b paraeter of 5.15 1 - L/ol? Hint: what is the volue of a ole of xenon atos and how does that copare to

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438)

Chemistry Department Al-kharj, October Prince Sattam Bin Abdulaziz University First semester (1437/1438) Exercise 1 Exercises- chapter-1- Properties of gases (Part-2- Real gases Express the van der Waals paraeters a = 1.32 at d 6 ol 2 and b = 0.0436 d 3 ol 1 in SI base units? * The SI unit of pressure is

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

CHEM 305 Solutions for assignment #2

CHEM 305 Solutions for assignment #2 CHEM 05 Solutions for assignent #. (a) Starting fro C C show that C C Substitute the result into the original expression for C C : C C (b) Using the result fro (a), evaluate C C for an ideal gas. a. Both

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Developed Correlations for Prediction of The Enthalpies of Saturated Vapor Liquid Coexisting Phases

Developed Correlations for Prediction of The Enthalpies of Saturated Vapor Liquid Coexisting Phases Nahrain University, College of Engineering Journal (NUCEJ) Vol.13 No.2, 2010 pp.116-128 Developed Correlations for Prediction of he Enthalpies of Saturated Vapor Liquid Coexisting Phases Mahoud Oar bdullah

More information

1 The properties of gases The perfect gas

1 The properties of gases The perfect gas 1 The properties of gases 1A The perfect gas Answers to discussion questions 1A. The partial pressure of a gas in a ixture of gases is the pressure the gas would exert if it occupied alone the sae container

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32 Departent of Mechanical Engineering ME 322 Mechanical Engineering Therodnaics Ideal Gas Mixtures II Lecture 32 The Gibbs Phase Rule The nuber of independent, intensive properties required to fix the state

More information

CHAPTER ONE. Physics and the Life Sciences

CHAPTER ONE. Physics and the Life Sciences Solution anual for Physics for the Life Sciences 2nd Edition by Allang Link download full: http://testbankair.co/download/solution-anual-forphysics-for-the-life-sciences-2nd-edition-by-allang/ CHAPTER

More information

This relationship is known as the ideal gas law and is mathematically described with the formula below:

This relationship is known as the ideal gas law and is mathematically described with the formula below: Chemistry 20 Ideal as law If we combine all the information contained in Boyle s, Charles and Avoadro s laws, we can derive an expression that describes the temperature, pressure and volume of a as. This

More information

Chapter 12. Answers to Questions. 1. (a) nitrogen dioxide (b) hydrogen sulfide (c) hydrogen chloride

Chapter 12. Answers to Questions. 1. (a) nitrogen dioxide (b) hydrogen sulfide (c) hydrogen chloride Chapter 12 Answers to Questions 1. (a) nitrogen dioxide (b) hydrogen sulfide (c) hydrogen chloride 2. (a) hydrogen cyanide (b) dinitrogen oxide (c) ammonia 3. X = sulfur, Y = oxygen, Z = sulfur dioxide

More information

Measuring Temperature with a Silicon Diode

Measuring Temperature with a Silicon Diode Measuring Teperature with a Silicon Diode Due to the high sensitivity, nearly linear response, and easy availability, we will use a 1N4148 diode for the teperature transducer in our easureents 10 Analysis

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

CHEMISTRY MOLES PACKET 2017 NAME: PER:

CHEMISTRY MOLES PACKET 2017 NAME: PER: CHEMISTRY MOLES PACKET 2017 NAME: PER: We have learned that a mole can be a certain mass of a substance and a certain number of particles. A mole can also be a measure of volume when we are talking about

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

AP Chapter 5: Gases Name

AP Chapter 5: Gases Name AP Chapter 5: Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 5: Gases 2 Warm-Ups (Show your work for credit) Date 1. Date 2.

More information

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street Distillation The Continuous Colun Gavin Duffy School of Electrical Engineering DIT Kevin Street Learning Outcoes After this lecture you should be able to.. Describe how continuous distillation works List

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundaental Question: What is atter, and how do we identify it? 1. What is the definition of atter? 2. What do you think the ter ass per unit volue eans? 3. Do you think that a

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

ln P 1 saturation = T ln P 2 saturation = T

ln P 1 saturation = T ln P 2 saturation = T More Tutorial at www.littledubdoctor.co Physical Cheistry Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your

More information

Chapter 11 REVIEW. Part 1

Chapter 11 REVIEW. Part 1 produces soe hydroelectricity. This involves energy conversions fro potential energy of water (above the da) to kinetic energy (falling water and spinning turbine) to electrical energy. Coal accounts for

More information

ENJOY CHEMISTRY 1.SOME BASIC CONCEPTS OF CHEMISTRY. Some Important Points and Terms of the Chapter

ENJOY CHEMISTRY 1.SOME BASIC CONCEPTS OF CHEMISTRY. Some Important Points and Terms of the Chapter ENJOY CHEISTRY 1.SOE ASIC CONCEPTS OF CHEISTRY Some Important Points and Terms of the Chapter 1. Anything which has mass and occupies space is called matter. 2. atters exist in three physical states viz.

More information

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the

Kinetic Molecular Theory of. IGL is a purely empirical law - solely the Lecture -3. Kinetic Molecular Theory of Ideal Gases Last Lecture. IGL is a purely epirical law - solely the consequence of experiental obserations Explains the behaior of gases oer a liited range of conditions.

More information

Measures of average are called measures of central tendency and include the mean, median, mode, and midrange.

Measures of average are called measures of central tendency and include the mean, median, mode, and midrange. CHAPTER 3 Data Description Objectives Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance,

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Molecular interactions in beams

Molecular interactions in beams Molecular interactions in beas notable advanceent in the experiental study of interolecular forces has coe fro the developent of olecular beas, which consist of a narrow bea of particles, all having the

More information

--Lord Kelvin, May 3rd, 1883

--Lord Kelvin, May 3rd, 1883 When you can measure what you are speaking about and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, you knowledge is of a meager

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law SECTION 11.3 Gas Volumes and the Ideal Gas Law Section 2 presented laws that describe the relationship between the pressure, temperature, and volume of a gas. The volume of a gas is also related to the

More information

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking 1. Introduction 1.1 Heat and Mass transfer in daily life and process/echanical engineering Heat transfer in daily life: Heating Cooling Cooking ransfer of heat along a teperature difference fro one syste

More information

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m. ME 300 Therodynaics II Exa 2 Noveber 3, 202 8:00 p.. 9:00 p.. Nae: Solution Section (Circle One): Sojka Naik :30 a.. :30 p.. Instructions: This is a closed book/notes exa. You ay use a calculator. You

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017

THERMODYNAMICS (SPA5219) Detailed Solutions to Coursework 1 ISSUE: September 26 th 2017 HAND-IN: October 3 rd 2017 HERMODYNAMICS (SPA519) Detailed s to Coursework 1 ISSUE: Septeber 6 th 017 HAND-IN: October rd 017 QUESION 1: (5 arks) he siple kinetic theory arguent sketched in the lectures and in Feynan's lecture notes

More information

Chapter 3 Molecules, Compounds, and Chemical Equations

Chapter 3 Molecules, Compounds, and Chemical Equations Chapter 3 Molecules, Compounds, and Chemical Equations 3.7 Formula Mass versus Molar mass Formula mass The average mass of a molecule or formula unit in amu also known as molecular mass or molecular weight

More information

S O RPTOME TE R BET A

S O RPTOME TE R BET A Pharaceuticals Cheicals A u t o o t iv e Ceraics Not just products... Solutions! Papers Filters S O RPTOME TE R BET- 201- A Sorptoeters PMI s BET-Sorptoeter is fully autoated, voluetric gas sorption analyzer

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Homework 02 - Ideal Gases

Homework 02 - Ideal Gases HW02 - Ideal Gases This is a preview of the draft version of the quiz Started: Aug 8 at 4:48pm Quiz Instructions Homework 02 - Ideal Gases Question 1 A gas is enclosed in a 10.0 L tank at 1200 mmhg pressure.

More information

14.3 Ideal Gases > Chapter 14 The Behavior of Gases Ideal Gases Properties of Gases The Gas Laws Gases: Mixtures and Movements

14.3 Ideal Gases > Chapter 14 The Behavior of Gases Ideal Gases Properties of Gases The Gas Laws Gases: Mixtures and Movements Chapter 14 The Behavior of Gases 14.1 Properties of Gases 14.2 The Gas Laws 14.3 Ideal Gases 14.4 Gases: Mixtures and Movements 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance Cheistry 45 Physial Cheistry I Exa I Given Info: R 8.35 J ol - K - Van Der Waals Constants k b.38 x 0-3 J K - Substane a b P T (J. 3 /ole ) ( 3 /ole) (MPa) (K) Air 0.358 3.64x0-5 3.77 33 K Carbon Dioxide

More information

STP : standard temperature and pressure 0 o C = 273 K kpa

STP : standard temperature and pressure 0 o C = 273 K kpa GAS LAWS Pressure can be measured in different units. For our calculations, we need Pressure to be expressed in kpa. 1 atm = 760. mmhg = 101.3 kpa R is the Universal Gas Constant. Take note of the units:

More information

Combined Gas Law (1) Answer Key

Combined Gas Law (1) Answer Key CHAER 4 Cobined Gas Law (1) Answer Key BL 4.1.1A 1. 1 1 1 1 1 1 100.8 ka 4. L 48.15 K 71.15 K10.0 ka.8l. he balloons will decrease in volue. 1 1 1 1 6.0L80% 4.8L 7.8 º C (body teperature) 10.95 K 1 1 1

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law Section 3, 9B s Gases react in whole-number ratios. Equal volumes of gases under the same conditions contain equal numbers of molecules. All gases have a volume of 22.4 L under standard conditions. In

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Tables of data and equations are on the last pages of the exam.

Tables of data and equations are on the last pages of the exam. Nae 4 August 2005 CHM 112 Final Exa (150 pts total) Tables of data and equations are on the last pages of the exa. (1.) Methanol (CH 3 OH) is anufactured by the reaction of carbon onoxide with hydrogen

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas The Gas Laws Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases Boyle s Law P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant

More information

Problem 1: Proton antiproton atom We can use the expression for hydrogen-like atoms to calculate the energy levels.

Problem 1: Proton antiproton atom We can use the expression for hydrogen-like atoms to calculate the energy levels. Proble 1: Proton antiproton ato We can use the expression or hydrogen-like atos to calculate the energy levels. πz e µ E n = where Z is the total nuber o charges in the nucleus (= 1), e is ( πε ) h n the

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

Regn. No. South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : ,

Regn. No. South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : , 1. Section-A contains 3 Multiple Choice Questions (MCQ). Each question has 4 choices,, and, for its answer, out of which ONLY ONE is correct. Fro Q.1 to Q.1 carries 1 Marks and Q.11 to Q.3 carries Marks

More information

Ideal Gas & Gas Stoichiometry

Ideal Gas & Gas Stoichiometry Ideal Gas & Gas Stoichiometry Avogadro s Law V a number of moles (n) V = constant x n Constant temperature Constant pressure V 1 /n 1 = V 2 /n 2 Ammonia burns in oxygen to form nitric oxide (NO) and water

More information

Unit 3 Energy Changes and Rates of Reaction

Unit 3 Energy Changes and Rates of Reaction Unit 3 Energy Changes and Rates of Reaction Solutions to Practice Problems in Chapter 5 Energy Changes Calculating the Absorption of Heat (Student textbook page 281) 1. How much heat must be added to a

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

AP Physics Thermodynamics Wrap-up

AP Physics Thermodynamics Wrap-up AP Physics herodynaics Wrap-up Here are your basic equations for therodynaics. here s a bunch of the. 3 his equation converts teperature fro Fahrenheit to Celsius. his is the rate of heat transfer for

More information

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a FIRS MAJOR -041 1 Figure 1 shows the snap shot of part of a transverse wave 17 traveling along a string. Which stateent about the otion 7 of eleents of the string is correct? For the eleent at A1 S, the

More information

Pressure measurements

Pressure measurements Next Previous 8/6/01 Chapter six + seven Pressure and Flow easureents Laith Batarseh Hoe End Basic concepts Pressure is represented as a force per unit area Absolute pressure refers to the absolute value

More information

Daniel López Gaxiola 1 Student View Jason M. Keith

Daniel López Gaxiola 1 Student View Jason M. Keith Suppleental Material for Transport Process and Separation Process Principles Chapter Principles of Moentu Transfer and Overall Balances In fuel cells, the fuel is usually in gas or liquid phase. Thus,

More information

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1 to: Units and Calculations Hoework Proble Set Cheistry 145, Chapter 1 Give the nae and abbreviation of the SI Unit for: a Length eter b Mass kilogra kg c Tie second s d Electric Current ap A e Teperature

More information

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways:

6.02 x 1023 CHAPTER 10. Mole. Avogadro s Number. Chemical Quantities The Mole: A Measurement of Matter Matter is measured in one of three ways: Chapter 10 Notes CHAPTER 10 10.1 The Mole: A Measurement of Matter Matter is measured in one of three ways: Chemical Quantities Mole SI unit that measures the amount of a substance A mole of a substance

More information

Stoichiometry SUPPLEMENTAL PROBLEMS CHAPTER 12. 3Si(s) 2N 2 N 4. (g) 0 Si 3. (s) PO 4. the reaction. Cr(s) H 3. (aq) 0.

Stoichiometry SUPPLEMENTAL PROBLEMS CHAPTER 12. 3Si(s) 2N 2 N 4. (g) 0 Si 3. (s) PO 4. the reaction. Cr(s) H 3. (aq) 0. CHAPTER 12 Stoichiometry 1. Silicon nitride is used in the manufacturing of high-temperature thermal insulation for heat engines and turbines. It is produced by the following 3Si(s) 2N 2 (g) 0 Si 3 N 4

More information

KINETIC THEORY. Contents

KINETIC THEORY. Contents KINETIC THEORY This brief paper on inetic theory deals with three topics: the hypotheses on which the theory is founded, the calculation of pressure and absolute teperature of an ideal gas and the principal

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Units conversion is often necessary in calculations

Units conversion is often necessary in calculations Easy Units Conversion Methodology Igathinathane Cannayen, Departent of Agricultural and Biosystes Engineering, NDSU, Fargo, ND Units conversion is often necessary in culations as any types of units were

More information

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia Unit 9: The Mole- Funsheets Part A: Molar Mass Write the formula AND determine the molar mass for each of the following. Be sure to include units and round you answer to 2 decimal places. 1) calcium carbonate

More information

3. When the external pressure is kpa torr, water will boil at what temperature? a C b C c. 100 C d. 18 C

3. When the external pressure is kpa torr, water will boil at what temperature? a C b C c. 100 C d. 18 C Chemistry EOC Review 5: Physical Behavior of Matter 1. Which gas is monatomic at STP? a. chlorine b. fluorine c. neon d. nitrogen 2. What Kelvin temperature is equal to 25 C? a. 248 K b. 298 K c. 100 K

More information

Chapter 7 Electrochemistry 7.2 Conductivity and its application

Chapter 7 Electrochemistry 7.2 Conductivity and its application Chapter 7 Electrocheistry 7.2 Conductivity and its application Out-class extensive reading: Levine: pp. 506-515, 16.5 electric conductivity 16.6 Electrical conductivity of electrolyte solutions Key proble:

More information

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6.

Phys463.nb. Many electrons in 1D at T = 0. For a large system (L ), ΕF =? (6.7) The solutions of this equation are plane waves (6. â â x Ψn Hx Ε Ψn Hx 35 (6.7) he solutions of this equation are plane waves Ψn Hx A exphä n x (6.8) he eigen-energy Εn is n (6.9) Εn For a D syste with length and periodic boundary conditions, Ψn Hx Ψn

More information

of conduction electrons

of conduction electrons Dr. Fritz Wilhel, Physics 3 E:\Excel files\3 lecture\ch7 current.ocx Last save: /3/8 :53:; Last printe:/3/8 :53: of 9 Hoework: See website. Table of Contents: Ch. 7 Electric Current an esistance, 7. Electric

More information

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas

Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas Notes: Molar Mass, Percent Composition, Mole Calculations, and Empirical/Molecular Formulas In Chemistry, a Mole is: the unit that measures the amount of a substance - equals 6.022 x 10 23 particles of

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation

Humidity parameters. Saturation (equilibrium) vapor pressure Condensation balances evaporation uidity paraeters Saturation (equilibriu) vapor pressure Condensation balances evaporation Miing ratio & specific huidity Mass ratio of water vapor and air and water content and wet air. Dew point & frost

More information

1. Making the invisible, visible. 2. Enabling the students to witness experiments that they cannot conduct themselves.

1. Making the invisible, visible. 2. Enabling the students to witness experiments that they cannot conduct themselves. Lesson Plan Lesson: Gas Calculations Aim: To investigate the molar and reacting volumes of gases. Learning Outcomes : At the end of the lesson, students will be able to : 1. state the molar volumes of

More information

2. The accepted density for copper is 8.96 g/ml. Calculate the percent error for a measurement of 8.86 g/ml.

2. The accepted density for copper is 8.96 g/ml. Calculate the percent error for a measurement of 8.86 g/ml. Chem 250 2 nd Semester Exam Review Worksheet (answers and units are at the end of this worksheet, cross them off as you write down the answers to each question.) 1. Round to the correct number of significant

More information

( ) 1.5. Solution: r = mv qb ( 3.2!10 "19 C ) 2.4

( ) 1.5. Solution: r = mv qb ( 3.2!10 19 C ) 2.4 Section 8.4: Motion of Charged Particles in Magnetic Fields Tutorial 1 Practice, page 401 1. Given: q 3.2 10 19 C; 6.7 10 27 kg; B 2.4 T; v 1.5 10 7 /s Analysis: r v Solution: r v 6.7!10 "27 # kg ) 1.5!10

More information

FTF Day 9. April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like?

FTF Day 9. April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like? Gas Laws Ch 13 FTF Day 9 April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like? Describe motion of particles, compressibility,

More information

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas.

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas. 1 1. Interpreting Chemical Equations Stoichiometry Calculations using balanced equations are called stoichiometric calculations. The starting point for any problem involving quantities of chemicals in

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1 PHYS 0 Practice roble set, Chater 8: 4, 9,,, 7,, 40, 4,, 6, 9 8.4. Sole: (a he ean free ath of a olecule in a gas at teerature, olue V, and ressure is λ 00 n. We also know that λ λ V 4 π ( N V r Although,

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

2nd Semester Chemistry-575 Final Exam Review

2nd Semester Chemistry-575 Final Exam Review Class: Date: 2nd Semester Chemistry-575 Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How many moles of tungsten atoms are in 4.8 10

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

6.1. Expressing and Measuring Reaction Rates. Expressing Reaction Rates

6.1. Expressing and Measuring Reaction Rates. Expressing Reaction Rates Expressing and Measuring Reaction Rates 6.1 As you learned in the Unit 3 opener, nitroglycerin is an explosive that was used to clear the way for railroads across North America. It decomposes instantly.

More information

A LEVEL CHEMISTRY PRE-COURSE MATERIALS AND NOTES

A LEVEL CHEMISTRY PRE-COURSE MATERIALS AND NOTES A LEVEL CHEMISTRY PRE-COURSE MATERIALS AND NOTES Name: Submission Deadline: Friday 8 th September 2017 Dear Student Welcome to A level Chemistry. A level Chemistry involves the study of substances and

More information

Solutions to the problems in Chapter 6 and 7

Solutions to the problems in Chapter 6 and 7 Solutions to the probles in Chapter 6 and 7 6.3 Pressure of a Feri gas at zero teperature The nuber of electrons N and the internal energy U, inthevoluev,are N = V D(ε)f(ε)dε, U = V εd(ε)f(ε)dε, () The

More information

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx 6 Hydraulic Properties The soil hydraulic properties are of utost iportance for a large variety of soil processes and in particular for soil water flow. The two ost coon hydraulic properties are the soil

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information