Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories

Size: px
Start display at page:

Download "Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories"

Transcription

1 //5 Neural Netors Associative memory Lecture Associative memories Associative memories The massively parallel models of associative or content associative memory have been developed. Some of these models are: Kohonen, Grossberg, Hamming and idely non Hopfield model. The most interesting aspect of the most of these models is that they specify a learning rule hich can be used to train netor to associate input and output patterns. The associative netor is a computational model emphasizing local and synchronous or asynchronous control, high parallelism, and redundancy. Such a netor is a connectionist architecture and shares some common features ith the Rosenblatt's Perceptron. Hoever, that is much more poerful and flexible than the Perceptron. 4 The model has its origin both in the Hamming and Grossberg models. The netor model is composed of layers or slabs: and input layer, an intermediate layer, and an output layer. The intermediate layer is a modified totally interconnected memoryless Grossberg slab ith recurrent shunting oncenter off-surround subnets, hose purpose is to achieve a maority vote so that only one neuron from this level, the one ith the highest input value, ill send its output to the next layer. The similarities to Grossbergs model: interconnections beteen input layer and intermediate layer The similarities to Hammings model interconnections (feedbac) in the intermediate layer. The connections beteen the input layer and intermediate layer contain all the information about one stored vector. The netor is implementing the nearest-neighbor algorithm. 5 6

2 //5 The number of elements in the intermediate layer defines the number of stored patterns.. All feedbac connections ithin the intermediate layer are based on the rule of lateral inhibition. The netor is performing a inner-taes-all operation. The elements of input signals (and stored vectors) are the binary values and. X [x, x, x,, x n ] x i {,} The input and output elements (neurons) are only nodes hose purpose is to connect the inputs and outputs respectively to the intermediate slab. The netor can be programmed to function as an autoassociative content-addressable memory or as symbolic substitution system hich yields an arbitrary defined output for any input it depends from the connections beteen the intermediate slab and the output layer Input layer Intermediate layer eights + negative eights threshold. Output layer 9 Programming the netor The interconnections (eights) beteen the input elements and each intermediate neuron are independent to each other. Each intermediate element has its eights programmed to one input signal and these connections are left unchanged hile the other neurons are programmed. Adding or removing a ne pattern does not influence to the existing netor structure and eights. The connection eights beteen the elements of the input layer and th element of intermediate slab are: if the i th element of the input vector is equal to zero i if the i th element of the input vector is equal to one i b here b is the number of non-zero elements in the th input vector to be stored. This procedure normalizes the total input to each element of the intermediate slab to the interval <;>, and taes not account the relative number of stored elements equal to the input elements, instead of the absolute number. It allos to distinguish beteen signals if one is included in another one.

3 //5 Example: pattern pattern eights of intermediate slab element here the pattern is recorded i i 8. In the input signal is, the output from both elements is equal to one.. If the input signal is, the output signal from element is equal to.8 hence from element is equal to. The ambiguous output signal in the first case can be solved by the proper netor structure. 4 This learning procedure is repeated for each input vector, each time ith a ne intermediate neuron. The total number of different vectors that can be stored ith this prescription in the net ith n elements in the input layer is n n n 5 Each neuron in the intermediate slab is connected to all other neurons of this slab. The eight on the self feedbac loop is equal to one, and all the other values depend on the correlation beteen stored vectors. The eight beteen the output of th neuron and input of the th neuron is given by + cor(, (, ( M ) here cor(, is correlation (inner product) beteen th and th stored vectors. is one of the identical positive eight from the input slab to the th neuron, M is equal to the number of neurons in the intermediate slab ith non-zero inputs. 6 The denominator ensures that the total lateral inhibition for the element ith the greatest value is smaller that its input. This procedure realizes the rule inner-taes-all. The intermediate slab selects the maximum input, and drives all the other intermediate neurons to zero. If more then one intermediate neuron has the same maximum value, the slab ill select the one that is less correlated to the remaining stored vectors. The structure of connections in the intermediate slab is not symmetrical (, ) (, ), hence If to or more neurons ill have the same input signal, and the outputs may not be discriminated by the criterion, then the slab ill be unable to distinguish beteen them and the outputs ill be driven to zero or ill be a superposition of the tp or more outputs. 7 8

4 //5 Retrieval of stored vectors At the input layer the unnon signal is applied and the netor has to recognize it. Of the stored vectors are orthogonal, any full of or partial input corresponding to one stored vector ould cause only one neuron in the intermediate slab to have a non-zero output in the first iteration. hen the stored vectors are not orthogonal, a certain number of neurons ill be excited. Let f is the unnon input signal The elements of the vector X define the total input to the elements of the intermediate layer X f * is the matrix of connections beteen the input layer and intermediate layer (the columns are equal to the input eights of each stored vector. 9 The output to of the first iteration is equal to G * X here is square matrix of connections beteen elements of the intermediate slab T the iterative formula G( t + ) * G( t) ( ) t ( f * ) T the output values are calculated by formula (,) ( n,) (,) ( n,) (,) (,) ( n,) (, n) (, n) Y * G matrix of connections beteen the intermediate slab and the output layer; for the associative memory V [ ] V [ ] for i,4,5 i.5 for i, for i,5 i / for i,,4 4 4

5 //5 V [ ] for i, i / for i,4,5 / / / / / / / / 5 6 (,) (,) (,) (,) (,) (,) (,) (,) (, / / (,) / 4 / / / + cor(, (, ( n ) > 7 8 D patterns stored in the netor (9x6) Input signal after iterations Output signal after 4 iterations 9 5

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield 3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield (1982, 1984). - The net is a fully interconnected neural

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Multilayer Feedforward Networks. Berlin Chen, 2002

Multilayer Feedforward Networks. Berlin Chen, 2002 Multilayer Feedforard Netors Berlin Chen, 00 Introduction The single-layer perceptron classifiers discussed previously can only deal ith linearly separable sets of patterns The multilayer netors to be

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment Enhancing Generalization Capability of SVM Classifiers ith Feature Weight Adjustment Xizhao Wang and Qiang He College of Mathematics and Computer Science, Hebei University, Baoding 07002, Hebei, China

More information

Linear models and the perceptron algorithm

Linear models and the perceptron algorithm 8/5/6 Preliminaries Linear models and the perceptron algorithm Chapters, 3 Definition: The Euclidean dot product beteen to vectors is the expression dx T x = i x i The dot product is also referred to as

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

CSC Neural Networks. Perceptron Learning Rule

CSC Neural Networks. Perceptron Learning Rule CSC 302 1.5 Neural Networks Perceptron Learning Rule 1 Objectives Determining the weight matrix and bias for perceptron networks with many inputs. Explaining what a learning rule is. Developing the perceptron

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Computational Intelligence Lecture 6: Associative Memory

Computational Intelligence Lecture 6: Associative Memory Computational Intelligence Lecture 6: Associative Memory Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational Intelligence

More information

Networks of McCulloch-Pitts Neurons

Networks of McCulloch-Pitts Neurons s Lecture 4 Netorks of McCulloch-Pitts Neurons The McCulloch and Pitts (M_P) Neuron x x sgn x n Netorks of M-P Neurons One neuron can t do much on its on, but a net of these neurons x i x i i sgn i ij

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

Multilayer Neural Networks

Multilayer Neural Networks Pattern Recognition Lecture 4 Multilayer Neural Netors Prof. Daniel Yeung School of Computer Science and Engineering South China University of Technology Lec4: Multilayer Neural Netors Outline Introduction

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Motivation for the topic of the seminar

Motivation for the topic of the seminar Bogdan M. Wilamoski Motivation for the topic of the seminar Constrains: Not to talk about AMNSTC (nano-micro) Bring a ne perspective to students Keep it to the state-of-the-art Folloing topics ere considered:

More information

Iterative Autoassociative Net: Bidirectional Associative Memory

Iterative Autoassociative Net: Bidirectional Associative Memory POLYTECHNIC UNIVERSITY Department of Computer and Information Science Iterative Autoassociative Net: Bidirectional Associative Memory K. Ming Leung Abstract: Iterative associative neural networks are introduced.

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Historical Perspective A first wave of interest

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Eung Je Woo Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea ejwoo@khu.ac.kr Neuron and Neuron Model McCulloch and Pitts

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Linear Discriminant Functions

Linear Discriminant Functions Linear Discriminant Functions Linear discriminant functions and decision surfaces Definition It is a function that is a linear combination of the components of g() = t + 0 () here is the eight vector and

More information

Fixed Weight Competitive Nets: Hamming Net

Fixed Weight Competitive Nets: Hamming Net POLYTECHNIC UNIVERSITY Department of Computer and Information Science Fixed Weight Competitive Nets: Hamming Net K. Ming Leung Abstract: A fixed weight competitive net known as the Hamming net is discussed.

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units Connectionist Models Consider humans: Neuron switching time ~ :001 second Number of neurons ~ 10 10 Connections per neuron ~ 10 4 5 Scene recognition time ~ :1 second 100 inference steps doesn't seem like

More information

Week 4: Hopfield Network

Week 4: Hopfield Network Week 4: Hopfield Network Phong Le, Willem Zuidema November 20, 2013 Last week we studied multi-layer perceptron, a neural network in which information is only allowed to transmit in one direction (from

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

Lecture 3a: The Origin of Variational Bayes

Lecture 3a: The Origin of Variational Bayes CSC535: 013 Advanced Machine Learning Lecture 3a: The Origin of Variational Bayes Geoffrey Hinton The origin of variational Bayes In variational Bayes, e approximate the true posterior across parameters

More information

Neural Networks Lecture 6: Associative Memory II

Neural Networks Lecture 6: Associative Memory II Neural Networks Lecture 6: Associative Memory II H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi Neural

More information

Neural Networks Based on Competition

Neural Networks Based on Competition Neural Networks Based on Competition In some examples of pattern classification we encountered a situation in which the net was trained to classify the input signal into one of the output categories, while

More information

Neural Networks. Solving of Optimization Problems 12/30/2015

Neural Networks. Solving of Optimization Problems 12/30/2015 /30/05 Neural Networks Solving of Optimization Problems Lecture 5 The ability for parallel computation yields to the possibility to work with big amount of data. It allows neural networks to solve complex

More information

The Application of Liquid State Machines in Robot Path Planning

The Application of Liquid State Machines in Robot Path Planning 82 JOURNAL OF COMPUTERS, VOL. 4, NO., NOVEMBER 2009 The Application of Liquid State Machines in Robot Path Planning Zhang Yanduo School of Computer Science and Engineering, Wuhan Institute of Technology,

More information

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5 Hopfield Neural Network and Associative Memory Typical Myelinated Vertebrate Motoneuron (Wikipedia) PHY 411-506 Computational Physics 2 1 Wednesday, March 5 1906 Nobel Prize in Physiology or Medicine.

More information

Synchronous vs asynchronous behavior of Hopfield's CAM neural net

Synchronous vs asynchronous behavior of Hopfield's CAM neural net K.F. Cheung, L.E. Atlas and R.J. Marks II, "Synchronous versus asynchronous behavior of Hopfield's content addressable memory", Applied Optics, vol. 26, pp.4808-4813 (1987). Synchronous vs asynchronous

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology SE lecture revision 2013 Outline 1. Bayesian classification

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Vincent Barra LIMOS, UMR CNRS 6158, Blaise Pascal University, Clermont-Ferrand, FRANCE January 4, 2011 1 / 46 1 INTRODUCTION Introduction History Brain vs. ANN Biological

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Linear discriminant functions

Linear discriminant functions Andrea Passerini passerini@disi.unitn.it Machine Learning Discriminative learning Discriminative vs generative Generative learning assumes knowledge of the distribution governing the data Discriminative

More information

Christian Mohr

Christian Mohr Christian Mohr 20.12.2011 Recurrent Networks Networks in which units may have connections to units in the same or preceding layers Also connections to the unit itself possible Already covered: Hopfield

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory

CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory Part VII 1 The basic task Store a set of fundamental memories {ξξ 1, ξξ 2,, ξξ MM } so that, when presented a new pattern

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE v=1 v= 1 v= 1 v= 1 v= 1 v=1 optima 2) 3) 5) 6) 7) 8) 9) 12) 11) 13) INTRDUCTIN T ARTIFICIAL INTELLIGENCE DATA15001 EPISDE 8: NEURAL NETWRKS TDAY S MENU 1. NEURAL CMPUTATIN 2. FEEDFRWARD NETWRKS (PERCEPTRN)

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Neural Networks (Part 1) Goals for the lecture

Neural Networks (Part 1) Goals for the lecture Neural Networks (Part ) Mark Craven and David Page Computer Sciences 760 Spring 208 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation Neural Networks Plan Perceptron Linear discriminant Associative memories Hopfield networks Chaotic networks Multilayer perceptron Backpropagation Perceptron Historically, the first neural net Inspired

More information

Associative Memory : Soft Computing Course Lecture 21 24, notes, slides RC Chakraborty, Aug.

Associative Memory : Soft Computing Course Lecture 21 24, notes, slides   RC Chakraborty,  Aug. Associative Memory : Soft Computing Course Lecture 21 24, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html www.myreaders.info

More information

Minimize Cost of Materials

Minimize Cost of Materials Question 1: Ho do you find the optimal dimensions of a product? The size and shape of a product influences its functionality as ell as the cost to construct the product. If the dimensions of a product

More information

Convolutional Associative Memory: FIR Filter Model of Synapse

Convolutional Associative Memory: FIR Filter Model of Synapse Convolutional Associative Memory: FIR Filter Model of Synapse Rama Murthy Garimella 1, Sai Dileep Munugoti 2, Anil Rayala 1 1 International Institute of Information technology, Hyderabad, India. rammurthy@iiit.ac.in,

More information

An artificial neural networks (ANNs) model is a functional abstraction of the

An artificial neural networks (ANNs) model is a functional abstraction of the CHAPER 3 3. Introduction An artificial neural networs (ANNs) model is a functional abstraction of the biological neural structures of the central nervous system. hey are composed of many simple and highly

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

Artificial Neural Networks Lecture Notes Part 3

Artificial Neural Networks Lecture Notes Part 3 Artificial Neural Networks Lecture Notes Part 3 About this file: This is the printerfriendly version of the file "lecture03.htm". If you have trouble reading the contents of this file, or in case of transcription

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Threshold units Gradient descent Multilayer networks Backpropagation Hidden layer representations Example: Face Recognition Advanced topics 1 Connectionist Models Consider humans:

More information

Neural Networks for Machine Learning. Lecture 2a An overview of the main types of neural network architecture

Neural Networks for Machine Learning. Lecture 2a An overview of the main types of neural network architecture Neural Networks for Machine Learning Lecture 2a An overview of the main types of neural network architecture Geoffrey Hinton with Nitish Srivastava Kevin Swersky Feed-forward neural networks These are

More information

COMP-4360 Machine Learning Neural Networks

COMP-4360 Machine Learning Neural Networks COMP-4360 Machine Learning Neural Networks Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Winter 2019 7 Recurrent etworks of Threshold (Binary) eurons: Basis for Associative Memory 7.1 The network The basic challenge in associative networks, also referred

More information

Pattern Association or Associative Networks. Jugal Kalita University of Colorado at Colorado Springs

Pattern Association or Associative Networks. Jugal Kalita University of Colorado at Colorado Springs Pattern Association or Associative Networks Jugal Kalita University of Colorado at Colorado Springs To an extent, learning is forming associations. Human memory associates similar items, contrary/opposite

More information

On the Hopfield algorithm. Foundations and examples

On the Hopfield algorithm. Foundations and examples General Mathematics Vol. 13, No. 2 (2005), 35 50 On the Hopfield algorithm. Foundations and examples Nicolae Popoviciu and Mioara Boncuţ Dedicated to Professor Dumitru Acu on his 60th birthday Abstract

More information

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach P.A. (Rama) Ramamoorthy Electrical & Computer Engineering and Comp. Science Dept., M.L. 30, University

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

15. NEURAL NETWORKS Introduction to The Chapter Neural Networks: A Primer Basic Terminology and Functions

15. NEURAL NETWORKS Introduction to The Chapter Neural Networks: A Primer Basic Terminology and Functions 5. NEURAL NETWORKS 5. Introduction to The Chapter In this chapter, we provide a new perspective into neural networks, both feedforward and feedback networks. In section 5.2, we provide a small primer on

More information

Criteria for the determination of a basic Clark s flow time distribution function in network planning

Criteria for the determination of a basic Clark s flow time distribution function in network planning International Journal of Engineering & Technology IJET-IJENS Vol:4 No:0 60 Criteria for the determination of a basic Clark s flo time distribution function in netork planning Dusko Letić, Branko Davidović,

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve)

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Neural Turing Machine Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Introduction Neural Turning Machine: Couple a Neural Network with external memory resources The combined

More information

Associative Memories (I) Hopfield Networks

Associative Memories (I) Hopfield Networks Associative Memories (I) Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Applied Brain Science - Computational Neuroscience (CNS) A Pun Associative Memories Introduction

More information

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche April Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche BIOLOGICAL NEURAL NETWORKS The brain can be seen as a highly

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler STATC141 Spring 2005 The materials are from Pairise Sequence Alignment by Robert Giegerich and David Wheeler Lecture 6, 02/08/05 The analysis of multiple DNA or protein sequences (I) Sequence similarity

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Machine Learning: Logistic Regression. Lecture 04

Machine Learning: Logistic Regression. Lecture 04 Machine Learning: Logistic Regression Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Supervised Learning Task = learn an (unkon function t : X T that maps input

More information

Application of hopfield network in improvement of fingerprint recognition process Mahmoud Alborzi 1, Abbas Toloie- Eshlaghy 1 and Dena Bazazian 2

Application of hopfield network in improvement of fingerprint recognition process Mahmoud Alborzi 1, Abbas Toloie- Eshlaghy 1 and Dena Bazazian 2 5797 Available online at www.elixirjournal.org Computer Science and Engineering Elixir Comp. Sci. & Engg. 41 (211) 5797-582 Application hopfield network in improvement recognition process Mahmoud Alborzi

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Minimizing and maximizing compressor and turbine work respectively

Minimizing and maximizing compressor and turbine work respectively Minimizing and maximizing compressor and turbine ork respectively Reversible steady-flo ork In Chapter 3, Work Done during a rocess as found to be W b dv Work Done during a rocess It depends on the path

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

Lecture 8 January 30, 2014

Lecture 8 January 30, 2014 MTH 995-3: Intro to CS and Big Data Spring 14 Inst. Mark Ien Lecture 8 January 3, 14 Scribe: Kishavan Bhola 1 Overvie In this lecture, e begin a probablistic method for approximating the Nearest Neighbor

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information