Information Retrieval and Web Search

Size: px
Start display at page:

Download "Information Retrieval and Web Search"

Transcription

1 Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic Structured Models Non-Overlapping Lists Proximal Nodes Algebraic Generalized Vector Lat. Semantic Index Neural Netorks Probabilistic Inference Netork Belief Netork Brosing Flat Structure Guided Hypertext Slide 1

2 Vector-Space Model t distinct terms remain after preprocessing Unique terms that form the VOCABULARY These orthogonal terms form a vector space. Dimension = t = vocabulary 2 terms bi-dimensional; ; n-terms n-dimensional Each term, i, in a document or query j, is given a realvalued eight, ij. Both documents and queries are expressed as t- dimensional vectors: d j = ( 1j, 2j,, tj ) Slide 2 Vector-Space Model Query as vector: We regard query as short document We return the documents ranked by the closeness of their vectors to the query, also represented as a vector. Vectorial model as developed in the SMART system (Salton, c. 1970) and standardly used by TREC participants and eb IR systems Slide 3

3 Graphic Representation Example: D 1 = 2T 1 + 3T 2 + 5T 3 D 2 = 3T 1 + 7T 2 + T 3 5 T 3 Q = 0T 1 + 0T 2 + 2T 3 D 1 = 2T 1 + 3T 2 + 5T 3 Q = 0T 1 + 0T 2 + 2T T 1 D 2 = 3T 1 + 7T 2 + T 3 T 2 7 Is D 1 or D 2 more similar to Q? Ho to measure the degree of similarity? Distance? Angle? Projection? Slide 4 Document Collection Representation A collection of n documents can be represented in the vector space model by a term-document matrix. An entry in the matrix corresponds to the eight of a term in the document; zero means the term has no significance in the document or it simply doesn t exist in the document. T 1 T 2. T t D t1 D t2 : : : : : : : : D n 1n 2n tn Slide 5

4 Term Weights: Term Frequency More frequent terms in a document are more important, i.e. more indicative of the topic. f ij = frequency of term i in document j May ant to normalize term frequency (tf) across the entire corpus: tf ij = f ij / max{f ij } Slide 6 Term Weights: Inverse Document Frequency Terms that appear in many different documents are less indicative of overall topic. df i = document frequency of term i = number of documents containing term i idf i = inverse document frequency of term i, = log 2 (N/ df i ) (N: total number of documents) An indication of a term s discrimination poer. Log used to dampen the effect relative to tf. Make the difference: Document frequency VS. corpus frequency Slide 7

5 TF-IDF Weighting A typical eighting is tf-idf eighting: ij = tf ij idf i = tf ij log 2 (N/ df i ) A term occurring frequently in the document but rarely in the rest of the collection is given high eight. Experimentally, tf-idf has been found to ork ell. It as also theoretically proved to ork ell (Papineni, NAACL 2001) Slide 8 Computing TF-IDF: An Example Given a document containing terms ith given frequencies: A(3), B(2), C(1) Assume collection contains 10,000 documents and document frequencies of these terms are: A(50), B(1300), C(250) Then: A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3 B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3 C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2 Slide 9

6 Query Vector Query vector is typically treated as a document and also tf-idf eighted. Alternative is for the user to supply eights for the given query terms. Slide 10 Similarity Measure We no have vectors for all documents in the collection, a vector for the query, ho to compute similarity? A similarity measure is a function that computes the degree of similarity beteen to vectors. Using a similarity measure beteen the query and each document: It is possible to rank the retrieved documents in the order of presumed relevance. It is possible to enforce a certain threshold so that the size of the retrieved set can be controlled. Slide 11

7 Desiderata for proximity If d 1 is near d 2, then d 2 is near d 1. If d 1 near d 2, and d 2 near d 3, then d 1 is not far from d 3. No document is closer to d than d itself. Sometimes it is a good idea to determine the maximum possible similarity as the distance beteen a document d and itself Slide 12 First cut: Euclidean distance Distance beteen vectors d 1 and d 2 is the length of the vector d 1 d 2. Euclidean distance Exercise: Determine the Euclidean distance beteen the vectors (0, 3, 2, 1, 10) and (2, 7, 1, 0, 0) Why is this not a great idea? We still haven t dealt ith the issue of length normalization Long documents ould be more similar to each other by virtue of length, not topic Hoever, e can implicitly normalize by looking at angles instead Slide 13

8 Second cut: Manhattan Distance Or city block measure Based on the idea that generally in American cities you cannot follo a direct line beteen to points. y x Uses the formula: ManhDist( X, Y ) n i1 x i y i Exercise: Determine the Manhattan distance beteen the vectors (0, 3, 2, 1, 10) and (2, 7, 1, 0, 0) Slide 14 Third cut: Inner Product Similarity beteen vectors for the document d i and query q can be computed as the vector inner product: sim(d j,q) = d j q = t i1 ij iq here ij is the eight of term i in document j and iq is the eight of term i in the query For binary vectors, the inner product is the number of matched query terms in the document (size of intersection). For eighted term vectors, it is the sum of the products of the eights of the matched terms. Slide 15

9 Properties of Inner Product Favors long documents ith a large number of unique terms. Again, the issue of normalization Measures ho many terms matched but not ho many terms are not matched. Slide 16 Inner Product: Example 1 k1 d2 d6 d7 k2 d4 d1 d5 d3 k1 k2 k3 q dj d d d d d d d k3 q Slide 17

10 Inner Product: Exercise k1 d2 d6 d7 k2 d4 d1 d5 d3 k1 k2 k3 q dj d ? d ? d ? d ? d ? d ? d ? k3 q Slide 18 Cosine similarity Distance beteen vectors d 1 and d 2 captured by the cosine of the angle x beteen them. Note this is similarity, not distance t 3 d 2 θ d 1 t 1 t 2 Slide 19

11 Cosine similarity d j dk sim( d j, dk ) d d n i1 Cosine of angle beteen to vectors j k i1 i, j i, k i1 The denominator involves the lengths of the vectors So the cosine measure is also knon as the normalized inner product n 2 i, j n 2 i, k n i 1 Length d j i 2, j Slide 20 Cosine similarity exercise Exercise: Rank the folloing by decreasing cosine similarity: To documents that have only frequent ords (the, a, an, of) in common. To documents that have no ords in common. To documents that have many rare ords in common (ingspan, tailfin). Slide 21

12 Example Documents: Austen's Sense and Sensibility, Pride and Prejudice; Bronte's Wuthering Heights SaS PaP WH affection jealous gossip SaS PaP WH affection jealous gossip cos(sas, PAP) =.996 x x x 0.0 = cos(sas, WH) =.996 x x x.254 = Slide 22 Cosine Similarity vs. Inner Product Cosine similarity measures the cosine of the angle beteen to vectors. Inner product normalized by the vector lengths. CosSim(d j, q) = d j d j InnerProduct(d j, q) = d j q q q i 1 t t D 1 = 2T 1 + 3T 2 + 5T 3 CosSim(D 1, Q) = 10 / (4+9+25)(0+0+4) = 0.81 D 2 = 3T 1 + 7T 2 + 1T 3 CosSim(D 2, Q) = 2 / (9+49+1)(0+0+4) = 0.13 Q = 0T 1 + 0T 2 + 2T 3 D 1 is 6 times better than D 2 using cosine similarity but only 5 times better using inner product. ( ij ij i 1 i 1 2 t iq ) iq 2 t 2 D 1 D 2 t 3 Q t 1 Slide 23

13 Comments on Vector Space Models Simple, mathematically based approach. Considers both local (tf) and global (idf) ord occurrence frequencies. Provides partial matching and ranked results. Tends to ork quite ell in practice despite obvious eaknesses. Allos efficient implementation for large document collections. Slide 24 Problems ith Vector Space Model Missing semantic information (e.g. ord sense). Missing syntactic information (e.g. phrase structure, ord order, proximity information). Assumption of term independence Lacks the control of a Boolean model (e.g., requiring a term to appear in a document). Given a to-term query A B, may prefer a document containing A frequently but not B, over a document that contains both A and B, but both less frequently. Slide 25

14 Naïve Implementation Convert all documents in collection D to tf-idf eighted vectors, d j, for keyord vocabulary V. Convert query to a tf-idf-eighted vector q. For each d j in D do Compute score s j = cossim(d j, q) Sort documents by decreasing score. Present top ranked documents to the user. Time complexity: O( V D ) Bad for large V & D! V = 10,000; D = 100,000; V D = 1,000,000,000 Slide 26 Practical Implementation Based on the observation that documents containing none of the query keyords do not affect the final ranking Try to identify only those documents that contain at least one query keyord Actual implementation of an inverted index Slide 27

15 Step 1: Preprocessing Implement the preprocessing functions: For tokenization For stop ord removal For stemming Input: Documents that are read one by one from the collection Output: Tokens to be added to the index No punctuation, no stop-ords, stemmed Slide 28 Step 2: Indexing Build an inverted index, ith an entry for each ord in the vocabulary Input: Tokens obtained from the preprocessing module Output: An inverted index for fast access Slide 29

16 Step 2 (cont d) Many data structures are appropriate for fast access B-trees, hashtables We need: One entry for each ord in the vocabulary For each such entry: Keep a list of all the documents here it appears together ith the corresponding frequency TF For each such entry, keep the total number of occurrences in all documents: IDF Slide 30 Step 2 (cont d) Index terms df D j, tf j computer database 3 2 D 7, 4 D 1, 3 science 4 D 2, 4 system 1 D 5, 2 Index file lists Slide 31

17 Step 2 (cont d) TF and IDF for each token can be computed in one pass Cosine similarity also required document lengths Need a second pass to compute document vector lengths Remember that the length of a document vector is the squareroot of sum of the squares of the eights of its tokens. Remember the eight of a token is: TF * IDF Therefore, must ait until IDF s are knon (and therefore until all documents are indexed) before document lengths can be determined. Do a second pass over all documents: keep a list or hashtable ith all document id-s, and for each document determine its length. Slide 32 Time Complexity of Indexing Complexity of creating vector and indexing a document of n tokens is O(n). So indexing m such documents is O(m n). Computing token IDFs can be done during the same first pass Computing vector lengths is also O(m n). Complete process is O(m n), hich is also the complexity of just reading in the corpus. Slide 33

18 Step 3: Retrieval Use inverted index (from step 2) to find the limited set of documents that contain at least one of the query ords. Incrementally compute cosine similarity of each indexed document as query ords are processed one by one. To accumulate a total score for each retrieved document, store retrieved documents in a hashtable, here the document id is the key, and the partial accumulated score is the value. Input: Query and Inverted Index (from Step 2) Output: Similarity values beteen query and documents Slide 34 Step 4: Ranking Sort the hashtable including the retrieved documents based on the value of cosine similarity Return the documents in descending order of their relevance Input: Similarity values beteen query and documents Output: Ranked list of documented in reversed order of their relevance Slide 35

19 Standard Evaluation Measures Starts ith a CONTINGENCY table retrieved not retrieved relevant x n 1 = + x not relevant y z n 2 = + y N Slide 36 Precision and Recall From all the documents that are relevant out there, ho many did the IR system retrieve? Recall: Precision: +x From all the documents that are retrieved by the IR system, ho many are relevant? +y Slide 37

20 Slide 38 What eighting methods? Weights applied to both document terms and query terms Direct impact on the final ranking Direct impact on the results Direct impact on the quality of IR system Slide 39

Boolean and Vector Space Retrieval Models

Boolean and Vector Space Retrieval Models Boolean and Vector Space Retrieval Models Many slides in this section are adapted from Prof. Joydeep Ghosh (UT ECE) who in turn adapted them from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) 1

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture;

More information

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). Boolean and Vector Space Retrieval Models 2013 CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). 1 Table of Content Boolean model Statistical vector space model Retrieval

More information

Information Retrieval. Lecture 6

Information Retrieval. Lecture 6 Information Retrieval Lecture 6 Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces This lecture

More information

Dealing with Text Databases

Dealing with Text Databases Dealing with Text Databases Unstructured data Boolean queries Sparse matrix representation Inverted index Counts vs. frequencies Term frequency tf x idf term weights Documents as vectors Cosine similarity

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Recap of the last lecture. CS276A Information Retrieval. This lecture. Documents as vectors. Intuition. Why turn docs into vectors?

Recap of the last lecture. CS276A Information Retrieval. This lecture. Documents as vectors. Intuition. Why turn docs into vectors? CS276A Information Retrieval Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces Lecture 7 This

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Term Weighting and Vector Space Model. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Term Weighting and Vector Space Model. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Term Weighting and Vector Space Model Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan Term Weighting and the Vector Space Model borrowing from: Pandu Nayak and Prabhakar Raghavan IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes

More information

TDDD43. Information Retrieval. Fang Wei-Kleiner. ADIT/IDA Linköping University. Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1

TDDD43. Information Retrieval. Fang Wei-Kleiner. ADIT/IDA Linköping University. Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1 TDDD43 Information Retrieval Fang Wei-Kleiner ADIT/IDA Linköping University Fang Wei-Kleiner ADIT/IDA LiU TDDD43 Information Retrieval 1 Outline 1. Introduction 2. Inverted index 3. Ranked Retrieval tf-idf

More information

Scoring, Term Weighting and the Vector Space

Scoring, Term Weighting and the Vector Space Scoring, Term Weighting and the Vector Space Model Francesco Ricci Most of these slides comes from the course: Information Retrieval and Web Search, Christopher Manning and Prabhakar Raghavan Content [J

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Retrieval Models and Implementation Ulf Leser Content of this Lecture Information Retrieval Models Boolean Model Vector Space Model Inverted Files Ulf Leser: Maschinelle

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 6: Scoring, term weighting, the vector space model Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics,

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 5: Term Weighting and Ranking Acknowledgment: Some slides in this lecture are adapted from Chris Manning (Stanford) and Doug Oard (Maryland) Lecture Plan Skip for

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 21 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model 1 Boolean and Vecor Space Rerieval Models Many slides in his secion are adaped from Prof. Joydeep Ghosh (UT ECE) who in urn adaped hem from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) Rerieval

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Lecture 6-2: The Vector Space Model Outline The vector space model 2 Binary incidence matrix Anthony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth...

More information

1 Information retrieval fundamentals

1 Information retrieval fundamentals CS 630 Lecture 1: 01/26/2006 Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko This lecture focuses on the following topics Information retrieval fundamentals Vector Space Model (VSM) Deriving

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Lecture 6-2: The Vector Space Model Binary incidence matrix Anthony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth... ANTHONY BRUTUS CAESAR CALPURNIA

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-017 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 1 Boolean Retrieval Thus far,

More information

Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson

Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Querying Corpus-wide statistics

More information

Vector Space Scoring Introduction to Information Retrieval INF 141 Donald J. Patterson

Vector Space Scoring Introduction to Information Retrieval INF 141 Donald J. Patterson Vector Space Scoring Introduction to Information Retrieval INF 141 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Querying Corpus-wide statistics Querying

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-2018 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 2 1 Boolean Retrieval Thus

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Information Retrieval Basic IR models. Luca Bondi

Information Retrieval Basic IR models. Luca Bondi Basic IR models Luca Bondi Previously on IR 2 d j q i IRM SC q i, d j IRM D, Q, R q i, d j d j = w 1,j, w 2,j,, w M,j T w i,j = 0 if term t i does not appear in document d j w i,j and w i:1,j assumed to

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

IR Models: The Probabilistic Model. Lecture 8

IR Models: The Probabilistic Model. Lecture 8 IR Models: The Probabilistic Model Lecture 8 ' * ) ( % $ $ +#! "#! '& & Probability of Relevance? ' ', IR is an uncertain process Information need to query Documents to index terms Query terms and index

More information

Lecture 4 Ranking Search Results. Many thanks to Prabhakar Raghavan for sharing most content from the following slides

Lecture 4 Ranking Search Results. Many thanks to Prabhakar Raghavan for sharing most content from the following slides Lecture 4 Ranking Search Results Many thanks to Prabhakar Raghavan for sharing most content from the following slides Recap of the previous lecture Index construction Doing sorting with limited main memory

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 3 Modeling Introduction to IR Models Basic Concepts The Boolean Model Term Weighting The Vector Model Probabilistic Model Retrieval Evaluation, Modern Information Retrieval,

More information

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model Vector Space Model Yufei Tao KAIST March 5, 2013 In this lecture, we will study a problem that is (very) fundamental in information retrieval, and must be tackled by all search engines. Let S be a set

More information

16 The Information Retrieval "Data Model"

16 The Information Retrieval Data Model 16 The Information Retrieval "Data Model" 16.1 The general model Not presented in 16.2 Similarity the course! 16.3 Boolean Model Not relevant for exam. 16.4 Vector space Model 16.5 Implementation issues

More information

Querying. 1 o Semestre 2008/2009

Querying. 1 o Semestre 2008/2009 Querying Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2008/2009 Outline 1 2 3 4 5 Outline 1 2 3 4 5 function sim(d j, q) = 1 W d W q W d is the document norm W q is the

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 5: Scoring, Term Weighting, The Vector Space Model II Paul Ginsparg Cornell

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 2: The term vocabulary and postings lists Hinrich Schütze Center for Information and Language Processing, University of Munich

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Dimensionality reduction

Dimensionality reduction Dimensionality reduction ML for NLP Lecturer: Kevin Koidl Assist. Lecturer Alfredo Maldonado https://www.cs.tcd.ie/kevin.koidl/cs4062/ kevin.koidl@scss.tcd.ie, maldonaa@tcd.ie 2017 Recapitulating: Evaluating

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories

Neural Networks. Associative memory 12/30/2015. Associative memories. Associative memories //5 Neural Netors Associative memory Lecture Associative memories Associative memories The massively parallel models of associative or content associative memory have been developed. Some of these models

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 12: Language Models for IR Outline Language models Language Models for IR Discussion What is a language model? We can view a finite state automaton as a deterministic

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen January 20, 2004 Page 1 UserTask Retrieval Classic Model Boolean

More information

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models 3. Retrieval Models Motivation Information Need User Retrieval Model Result: Query 1. 2. 3. Document Collection 2 Agenda 3.1 Boolean Retrieval 3.2 Vector Space Model 3.3 Probabilistic IR 3.4 Statistical

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

Part I: Web Structure Mining Chapter 1: Information Retrieval and Web Search

Part I: Web Structure Mining Chapter 1: Information Retrieval and Web Search Part I: Web Structure Mining Chapter : Information Retrieval an Web Search The Web Challenges Crawling the Web Inexing an Keywor Search Evaluating Search Quality Similarity Search The Web Challenges Tim

More information

Web Information Retrieval Dipl.-Inf. Christoph Carl Kling

Web Information Retrieval Dipl.-Inf. Christoph Carl Kling Institute for Web Science & Technologies University of Koblenz-Landau, Germany Web Information Retrieval Dipl.-Inf. Christoph Carl Kling Exercises WebIR ask questions! WebIR@c-kling.de 2 of 40 Probabilities

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

Generic Text Summarization

Generic Text Summarization June 27, 2012 Outline Introduction 1 Introduction Notation and Terminology 2 3 4 5 6 Text Summarization Introduction Notation and Terminology Two Types of Text Summarization Query-Relevant Summarization:

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 11: Probabilistic Information Retrieval Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk

More information

Manning & Schuetze, FSNLP (c) 1999,2000

Manning & Schuetze, FSNLP (c) 1999,2000 558 15 Topics in Information Retrieval (15.10) y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the best least-squares fit for the four points (1,1),

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

Document Similarity in Information Retrieval

Document Similarity in Information Retrieval Document Similarity in Information Retrieval Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of

More information

MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson

MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Latent

More information

Ranking-II. Temporal Representation and Retrieval Models. Temporal Information Retrieval

Ranking-II. Temporal Representation and Retrieval Models. Temporal Information Retrieval Ranking-II Temporal Representation and Retrieval Models Temporal Information Retrieval Ranking in Information Retrieval Ranking documents important for information overload, quickly finding documents which

More information

The Boolean Model ~1955

The Boolean Model ~1955 The Boolean Model ~1955 The boolean model is the first, most criticized, and (until a few years ago) commercially more widespread, model of IR. Its functionalities can often be found in the Advanced Search

More information

Ranked Retrieval (2)

Ranked Retrieval (2) Text Technologies for Data Science INFR11145 Ranked Retrieval (2) Instructor: Walid Magdy 31-Oct-2017 Lecture Objectives Learn about Probabilistic models BM25 Learn about LM for IR 2 1 Recall: VSM & TFIDF

More information

CS630 Representing and Accessing Digital Information Lecture 6: Feb 14, 2006

CS630 Representing and Accessing Digital Information Lecture 6: Feb 14, 2006 Scribes: Gilly Leshed, N. Sadat Shami Outline. Review. Mixture of Poissons ( Poisson) model 3. BM5/Okapi method 4. Relevance feedback. Review In discussing probabilistic models for information retrieval

More information

Towards Collaborative Information Retrieval

Towards Collaborative Information Retrieval Towards Collaborative Information Retrieval Markus Junker, Armin Hust, and Stefan Klink German Research Center for Artificial Intelligence (DFKI GmbH), P.O. Box 28, 6768 Kaiserslautern, Germany {markus.junker,

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

3. Basics of Information Retrieval

3. Basics of Information Retrieval Text Analysis and Retrieval 3. Basics of Information Retrieval Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder With contributions from dr. sc. Goran Glavaš Mladen Karan, mag. ing. University of Zagreb

More information

Manning & Schuetze, FSNLP, (c)

Manning & Schuetze, FSNLP, (c) page 554 554 15 Topics in Information Retrieval co-occurrence Latent Semantic Indexing Term 1 Term 2 Term 3 Term 4 Query user interface Document 1 user interface HCI interaction Document 2 HCI interaction

More information

Pivoted Length Normalization I. Summary idf II. Review

Pivoted Length Normalization I. Summary idf II. Review 2 Feb 2006 1/11 COM S/INFO 630: Representing and Accessing [Textual] Digital Information Lecturer: Lillian Lee Lecture 3: 2 February 2006 Scribes: Siavash Dejgosha (sd82) and Ricardo Hu (rh238) Pivoted

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 26/26: Feature Selection and Exam Overview Paul Ginsparg Cornell University,

More information

Linear Algebra Background

Linear Algebra Background CS76A Text Retrieval and Mining Lecture 5 Recap: Clustering Hierarchical clustering Agglomerative clustering techniques Evaluation Term vs. document space clustering Multi-lingual docs Feature selection

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Lecture 2 August 31, 2007

Lecture 2 August 31, 2007 CS 674: Advanced Language Technologies Fall 2007 Lecture 2 August 31, 2007 Prof. Lillian Lee Scribes: Cristian Danescu Niculescu-Mizil Vasumathi Raman 1 Overview We have already introduced the classic

More information

Lecture 2: IR Models. Johan Bollen Old Dominion University Department of Computer Science

Lecture 2: IR Models. Johan Bollen Old Dominion University Department of Computer Science Lecture 2: IR Models. Johan Bollen Old Dominion University Department of Computer Science http://www.cs.odu.edu/ jbollen January 30, 2003 Page 1 Structure 1. IR formal characterization (a) Mathematical

More information

What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured.

What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured. What is Text mining? To discover the useful patterns/contents from the large amount of data that can be structured or unstructured. Text mining What can be used for text mining?? Classification/categorization

More information

boolean queries Inverted index query processing Query optimization boolean model January 15, / 35

boolean queries Inverted index query processing Query optimization boolean model January 15, / 35 boolean model January 15, 2017 1 / 35 Outline 1 boolean queries 2 3 4 2 / 35 taxonomy of IR models Set theoretic fuzzy extended boolean set-based IR models Boolean vector probalistic algebraic generalized

More information

Chapter 10: Information Retrieval. See corresponding chapter in Manning&Schütze

Chapter 10: Information Retrieval. See corresponding chapter in Manning&Schütze Chapter 10: Information Retrieval See corresponding chapter in Manning&Schütze Evaluation Metrics in IR 2 Goal In IR there is a much larger variety of possible metrics For different tasks, different metrics

More information

Non-Boolean models of retrieval: Agenda

Non-Boolean models of retrieval: Agenda Non-Boolean models of retrieval: Agenda Review of Boolean model and TF/IDF Simple extensions thereof Vector model Language Model-based retrieval Matrix decomposition methods Non-Boolean models of retrieval:

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

N-bit Parity Neural Networks with minimum number of threshold neurons

N-bit Parity Neural Networks with minimum number of threshold neurons Open Eng. 2016; 6:309 313 Research Article Open Access Marat Z. Arslanov*, Zhazira E. Amirgalieva, and Chingiz A. Kenshimov N-bit Parity Neural Netorks ith minimum number of threshold neurons DOI 10.1515/eng-2016-0037

More information

Query. Information Retrieval (IR) Term-document incidence. Incidence vectors. Bigger corpora. Answers to query

Query. Information Retrieval (IR) Term-document incidence. Incidence vectors. Bigger corpora. Answers to query Information Retrieval (IR) Based on slides by Prabhaar Raghavan, Hinrich Schütze, Ray Larson Query Which plays of Shaespeare contain the words Brutus AND Caesar but NOT Calpurnia? Could grep all of Shaespeare

More information

5 10 12 32 48 5 10 12 32 48 4 8 16 32 64 128 4 8 16 32 64 128 2 3 5 16 2 3 5 16 5 10 12 32 48 4 8 16 32 64 128 2 3 5 16 docid score 5 10 12 32 48 O'Neal averaged 15.2 points 9.2 rebounds and 1.0 assists

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

Query Propagation in Possibilistic Information Retrieval Networks

Query Propagation in Possibilistic Information Retrieval Networks Query Propagation in Possibilistic Information Retrieval Networks Asma H. Brini Université Paul Sabatier brini@irit.fr Luis M. de Campos Universidad de Granada lci@decsai.ugr.es Didier Dubois Université

More information

Integrating Logical Operators in Query Expansion in Vector Space Model

Integrating Logical Operators in Query Expansion in Vector Space Model Integrating Logical Operators in Query Expansion in Vector Space Model Jian-Yun Nie, Fuman Jin DIRO, Université de Montréal C.P. 6128, succursale Centre-ville, Montreal Quebec, H3C 3J7 Canada {nie, jinf}@iro.umontreal.ca

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 4: Probabilistic Retrieval Models April 29, 2010 Wolf-Tilo Balke and Joachim Selke Institut für Informationssysteme Technische Universität Braunschweig

More information

CMPS 561 Boolean Retrieval. Ryan Benton Sept. 7, 2011

CMPS 561 Boolean Retrieval. Ryan Benton Sept. 7, 2011 CMPS 561 Boolean Retrieval Ryan Benton Sept. 7, 2011 Agenda Indices IR System Models Processing Boolean Query Algorithms for Intersection Indices Indices Question: How do we store documents and terms such

More information

Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval

Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval Lecture 5: Introduction to (Robertson/Spärck Jones) Probabilistic Retrieval Scribes: Ellis Weng, Andrew Owens February 11, 2010 1 Introduction In this lecture, we will introduce our second paradigm for

More information

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 )

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 ) Part A 1. A Markov chain is a discrete-time stochastic process, defined by a set of states, a set of transition probabilities (between states), and a set of initial state probabilities; the process proceeds

More information

Vector, Matrix, and Tensor Derivatives

Vector, Matrix, and Tensor Derivatives Vector, Matrix, and Tensor Derivatives Erik Learned-Miller The purpose of this document is to help you learn to take derivatives of vectors, matrices, and higher order tensors (arrays with three dimensions

More information

CSCE 561 Information Retrieval System Models

CSCE 561 Information Retrieval System Models CSCE 561 Information Retrieval System Models Satya Katragadda 26 August 2015 Agenda Introduction to Information Retrieval Inverted Index IR System Models Boolean Retrieval Model 2 Introduction Information

More information