INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

Size: px
Start display at page:

Download "INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from"

Transcription

1 INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from IR 26/26: Feature Selection and Exam Overview Paul Ginsparg Cornell University, Ithaca, NY 3 Dec / 32

2 Administrativa Assignment 4 due Fri 4 Dec (extended to Sun 6 Dec). 2/ 32

3 Combiner in Simulator Can be added, but makes less sense to have a combiner in a simulator. Combiners help to speed things by providing local (in-memory) partial reduces. In a simulator we are not really concerned about efficiency. Hadoop Wiki: When the map operation outputs its pairs they are already available in memory. For efficiency reasons, sometimes it makes sense to take advantage of this fact by supplying a combiner class to perform a reduce-type function. If a combiner is used then the map key-value pairs are not immediately written to the output. Instead they will be collected in lists, one list per each key value. When a certain number of key-value pairs have been written, this buffer is flushed by passing all the values of each key to the combiner s reduce method and outputting the key-value pairs of the combine operation as if they were created by the original map operation. 3/ 32

4 Assignment 3 The page rank r j of page j is determined self-consistently by the equation r j = α r i + (1 α), n d i i i j α is a number between 0 and 1 (originally taken to be.15) the sum on i is over pages i pointing to j d i is the outgoing degree of page i. Incidence matrix A ij = 1 if i points to j, otherwise A ij = 0. Transition probability from page i to page j P ij = α n O ij + (1 α) 1 d i A ij where n = total # of pages, d i is the outdegree of node i, and O ij = 1( i,j). The matrix eigenvector relation rp = r or r = P T r is equivalent to the equation above (with r is normalized as a probability, so that i r i O ij = i r i = 1). 4/ 32

5 Overview 1 Recap 2 Feature selection 3 Structured Retrieval 4 Exam Overview 5/ 32

6 Outline 1 Recap 2 Feature selection 3 Structured Retrieval 4 Exam Overview 6/ 32

7 More Data Figure 1. Learning Curves for Confusion Set Disambiguation Scaling to Very Very Large Corpora for Natural Language Disambiguation M. Banko and E. Brill (2001) 7/ 32

8 Statistical Learning Spelling with Statistical Learning Google Sets Statistical Machine Translation Canonical image selection from the web Learning people annotation from the web via consistency learning and others... 8/ 32

9 Outline 1 Recap 2 Feature selection 3 Structured Retrieval 4 Exam Overview 9/ 32

10 Feature selection In text classification, we usually represent documents in a high-dimensional space, with each dimension corresponding to a term. In this lecture: axis = dimension = word = term = feature Many dimensions correspond to rare words. Rare words can mislead the classifier. Rare misleading features are called noise features. Eliminating noise features from the representation increases efficiency and effectiveness of text classification. Eliminating features is called feature selection. 10/ 32

11 Different feature selection methods A feature selection method is mainly defined by the feature utility measures it employs Feature utility measures Frequency select the most frequent terms Mutual information select the terms with the highest mutual information Mutual information is also called information gain in this context. Chi-square 11/ 32

12 Information H[p] = i=1,n p i log 2 p i measures information uncertainty (p.91 in book) has maximum H = log 2 n for all p i = 1/n Consider two probability distributions: p(x) for x X and p(y) for y Y MI: I[X;Y ] = H[p(x)] + H[p(y)] H[p(x,y)] measures how much information p(x) gives about p(y) (and vice versa) MI is zero iff p(x,y) = p(x)p(y), i.e., x and y are independent for all x X and y Y can be as large as H[p(x)] or H[p(y)] I[X;Y ] = x X,y Y p(x,y)log 2 p(x,y) p(x)p(y) 12/ 32

13 Mutual information Compute the feature utility A(t,c) as the expected mutual information (MI) of term t and class c. MI tells us how much information the term contains about the class and vice versa. For example, if a term s occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0. Definition: I(U; C)= e t {1,0} e c {1,0} P(U =e t, C =e c )log 2 P(U =e t, C =e c ) P(U =e t )P(C =e c ) 13/ 32

14 How to compute MI values Based on maximum likelihood estimates, the formula we actually use is: I(U;C) = N 11 N log NN N 01 N 1. N.1 N log 2 + N 10 N log 2 NN 10 N 1. N.0 + N 00 N log 2 NN 01 N 0. N.1 NN 00 N 0. N.0 N 10 : number of documents that contain t (e t = 1) and are not in c (e c = 0); N 11 : number of documents that contain t (e t = 1) and are in c (e c = 1); N 01 : number of documents that do not contain t (e t = 1) and are in c (e c = 1); N 00 : number of documents that do not contain t (e t = 1) and are not in c (e c = 1); N = N 00 + N 01 + N 10 + N / 32

15 MI example for poultry/export in Reuters e c = e poultry = 1 e c = e poultry = 0 e t = e export = 1 N 11 = 49 N 10 = 27,652 e t = e export = 0 N 01 = 141 N 00 = 774,106 Plug these values into formula: 49 I(U;C) = 801,948 log 801, (49+27,652)(49+141) ,948 log 801, ( ,106)(49+141) + 27, ,948 log 801,948 27,652 2 (49+27,652)(27, ,106) + 774, ,948 log 801, ,106 2 ( ,106)(27, ,106) / 32

16 MI feature selection on Reuters coffee coffee bags growers kg colombia brazil export exporters exports crop sports soccer cup match matches played league beat game games team / 32

17 χ 2 Feature selection χ 2 tests independence of two events, p(a,b) = p(a)p(b) (or p(a B) = p(a), p(b A) = p(b)) test occurrence of the term, occurrence of the class, rank w.r.t.: X 2 (D,t,c) = e t {0,1} e c {0,1} (N ete c E ete c ) 2 E ete c where N = observed frequency in D, E = expected frequency (e.g., E 11 is the expected frequency of t and c occurring together in a document, assuming term and class are independent) High value of X 2 indicates independence hypothesis is incorrect, i.e., observed and expected are not similar. Occurrence of term and class dependent events occurrence of term makes class more (or less) likely, hence helpful as feature. 17/ 32

18 χ 2 Feature selection, example e c = e poultry = 1 e c = e poultry = 0 e t = e export = 1 N 11 = 49 N 10 = 27,652 e t = e export = 0 N 01 = 141 N 00 = 774,106 E 11 = N P(t) P(c) = N N11 + N 10 N = N N N N11 + N 01 N 6.6 e c = e poultry = 1 e c = e poultry = 0 e t = e export = 1 E E e t = e export = 0 E E X 2 (D,t,c) = e t {0,1} e c {0,1} (N ete c E ete c ) 2 E ete c / 32

19 Naive Bayes: Effect of feature selection F1 measure bb x b x x x b # o o oo # b# ox # # b x o# # b o x # o b x o # b x o b x x b o # # # o x b x o# x o# x o # b b b multinomial, MI multinomial, chisquare multinomial, frequency binomial, MI number of features selected (multinomial = multinomial Naive Bayes) 19/ 32

20 Feature selection for Naive Bayes In general, feature selection is necessary for Naive Bayes to get decent performance. Also true for most other learning methods in text classification: you need feature selection for optimal performance. 20/ 32

21 Outline 1 Recap 2 Feature selection 3 Structured Retrieval 4 Exam Overview 21/ 32

22 XML markup play author Shakespeare /author title Macbeth /title act number= I scene number= vii title Macbeths castle /title verse Will I with wine and wassail... /verse /scene /act /play 22/ 32

23 XML Doc as DOM object 23/ 32

24 Outline 1 Recap 2 Feature selection 3 Structured Retrieval 4 Exam Overview 24/ 32

25 Definition of information retrieval (from Lecture 1) Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers). Three scales (web, enterprise/inst/domain, personal) 25/ 32

26 Plan (from Lecture 1) Search full text: basic concepts Web search Probabalistic Retrieval Interfaces Metadata / Semantics IR NLP ML Prereqs: Introductory courses in data structures and algorithms, in linear algebra and in probability theory 26/ 32

27 1st Half Searching full text: dictionaries, inverted files, postings, implementation and algorithms, term weighting, Vector Space Model, similarity, ranking Word Statistics MRS: 1 Boolean retrieval MRS: 2 The term vocabulary and postings lists MRS: 3 Dictionaries and tolerant retrieval MRS: 5 Index compression MRS: 6 Scoring, term weighting, and the vector space model MRS: 7 Computing scores in a complete search system 27/ 32

28 1st Half, cont d Evaluation of retrieval effectiveness MRS: 8. Evaluation in information retrieval Latent semantic indexing MRS: 18. Matrix decompositions and latent semantic indexing Discussion 2 SMART Discussion 3 IDF Discussion 4 Latent semantic indexing 28/ 32

29 2nd Half MRS: 3. Tolerant retrieval MRS: 9 Relevance feedback and query expansion MRS: 11 Probabilistic information retrieval Web Search: anchor text and links, Citation and Link Analysis, Web crawling MRS: 19 Web search basics MRS: 21 Link analysis 29/ 32

30 2nd Half, cont d Classification, categorization, clustering MRS: 13 Text classification and Naive Bayes MRS: 14 Vector space classification MRS: 16 Flat clustering MRS: 17 Hierarchical clustering (Structured Retrieval MRS: 10 XML Retrieval) Discussion 5 Google Discussion 6 MapReduce Discussion 7 Statistical Spell Correction 30/ 32

31 Midterm 1) term-document matrix, VSM, tf.idf 2) Recall/Precision 3) LSI 4) Word statistics (Heap, Zipf) 31/ 32

32 Final Exam, 3 or 4 questions from these topics CS4300/INFO4300 Tue 15 Dec 7:00-9:30 PM Olin Hall 255 issues in personal/enterprise/webscale searching, recall/precision, and how related to info/nav/trans needs issues for modern search engines... (e.g., w.r.t. web scale, tf.idf? recall/precision?) MapReduce probabilistic reasoning: naive bayes web indexing and retrieval: link analysis, adversarial IR Vector space classification (rocchio, knn) types of text classification (curated, rule-based, statistical) clustering: flat, hierarchical (k-means, agglomerative): evaluation of clustering, measures of cluster similarity (single link, complete link, average, group average) classification, clustering (make a dendrogram based on similarity) cluster labeling, feature selection 32/ 32

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 14: Vector Space Classification Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-05-28

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 11: Probabilistic Information Retrieval Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 13: Query Expansion and Probabilistic Retrieval Paul Ginsparg Cornell University,

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review INFO 4300 / CS4300 Information Retrieval IR 9: Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 24 Sep 2009 1/ 23 Overview 1 Recap 2 Matrix basics 3 Matrix Decompositions 4 Discussion

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 5: Scoring, Term Weighting, The Vector Space Model II Paul Ginsparg Cornell

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Information Retrieval and Organisation Chapter 13 Text Classification and Naïve Bayes Dell Zhang Birkbeck, University of London Motivation Relevance Feedback revisited The user marks a number of documents

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 9: Collaborative Filtering, SVD, and Linear Algebra Review Paul Ginsparg

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 12: Latent Semantic Indexing and Relevance Feedback Paul Ginsparg Cornell

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 18: Latent Semantic Indexing Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-07-10 1/43

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 23 Sep 2010

More information

Information Retrieval CS Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Information Retrieval CS Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Information Retrieval CS 6900 Lecture 03 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Properties of Text Zipf s Law models the distribution of terms

More information

Lecture 13: More uses of Language Models

Lecture 13: More uses of Language Models Lecture 13: More uses of Language Models William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 13 What we ll learn in this lecture Comparing documents, corpora using LM approaches

More information

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University Generative Models CS4780/5780 Machine Learning Fall 2012 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Bayes decision rule Bayes theorem Generative

More information

Probabilistic Information Retrieval

Probabilistic Information Retrieval Probabilistic Information Retrieval Sumit Bhatia July 16, 2009 Sumit Bhatia Probabilistic Information Retrieval 1/23 Overview 1 Information Retrieval IR Models Probability Basics 2 Document Ranking Problem

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

IR Models: The Probabilistic Model. Lecture 8

IR Models: The Probabilistic Model. Lecture 8 IR Models: The Probabilistic Model Lecture 8 ' * ) ( % $ $ +#! "#! '& & Probability of Relevance? ' ', IR is an uncertain process Information need to query Documents to index terms Query terms and index

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

Boolean and Vector Space Retrieval Models

Boolean and Vector Space Retrieval Models Boolean and Vector Space Retrieval Models Many slides in this section are adapted from Prof. Joydeep Ghosh (UT ECE) who in turn adapted them from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) 1

More information

Ranked Retrieval (2)

Ranked Retrieval (2) Text Technologies for Data Science INFR11145 Ranked Retrieval (2) Instructor: Walid Magdy 31-Oct-2017 Lecture Objectives Learn about Probabilistic models BM25 Learn about LM for IR 2 1 Recall: VSM & TFIDF

More information

Generative Models for Classification

Generative Models for Classification Generative Models for Classification CS4780/5780 Machine Learning Fall 2014 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Generative vs. Discriminative

More information

Information Retrieval. Lecture 6

Information Retrieval. Lecture 6 Information Retrieval Lecture 6 Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces This lecture

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). Boolean and Vector Space Retrieval Models 2013 CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). 1 Table of Content Boolean model Statistical vector space model Retrieval

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: k nearest neighbors Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 28 Introduction Classification = supervised method

More information

16 The Information Retrieval "Data Model"

16 The Information Retrieval Data Model 16 The Information Retrieval "Data Model" 16.1 The general model Not presented in 16.2 Similarity the course! 16.3 Boolean Model Not relevant for exam. 16.4 Vector space Model 16.5 Implementation issues

More information

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 IIR 18: Latent Semantic Indexing Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Department of Computer and Information Science and Engineering. CAP4770/CAP5771 Fall Midterm Exam. Instructor: Prof.

Department of Computer and Information Science and Engineering. CAP4770/CAP5771 Fall Midterm Exam. Instructor: Prof. Department of Computer and Information Science and Engineering UNIVERSITY OF FLORIDA CAP4770/CAP5771 Fall 2016 Midterm Exam Instructor: Prof. Daisy Zhe Wang This is a in-class, closed-book exam. This exam

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Classification & Information Theory Lecture #8

Classification & Information Theory Lecture #8 Classification & Information Theory Lecture #8 Introduction to Natural Language Processing CMPSCI 585, Fall 2007 University of Massachusetts Amherst Andrew McCallum Today s Main Points Automatically categorizing

More information

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query:

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query: Words vs. Terms Words vs. Terms Information Retrieval cares about You search for em, Google indexes em Query: What kind of monkeys live in Costa Rica? 600.465 - Intro to NLP - J. Eisner 1 600.465 - Intro

More information

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Trevor Cohn (Slide credits: William Webber) COMP90042, 2015, Semester 1 What we ll learn in this lecture Probabilistic models for

More information

1 Information retrieval fundamentals

1 Information retrieval fundamentals CS 630 Lecture 1: 01/26/2006 Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko This lecture focuses on the following topics Information retrieval fundamentals Vector Space Model (VSM) Deriving

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Naive Bayes Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Introduction Classification = supervised method for

More information

CSCE 561 Information Retrieval System Models

CSCE 561 Information Retrieval System Models CSCE 561 Information Retrieval System Models Satya Katragadda 26 August 2015 Agenda Introduction to Information Retrieval Inverted Index IR System Models Boolean Retrieval Model 2 Introduction Information

More information

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung Maschinelle Sprachverarbeitung Retrieval Models and Implementation Ulf Leser Content of this Lecture Information Retrieval Models Boolean Model Vector Space Model Inverted Files Ulf Leser: Maschinelle

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2018. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-2018 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 2 1 Boolean Retrieval Thus

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

boolean queries Inverted index query processing Query optimization boolean model January 15, / 35

boolean queries Inverted index query processing Query optimization boolean model January 15, / 35 boolean model January 15, 2017 1 / 35 Outline 1 boolean queries 2 3 4 2 / 35 taxonomy of IR models Set theoretic fuzzy extended boolean set-based IR models Boolean vector probalistic algebraic generalized

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others)

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others) Text Categorization CSE 454 (Based on slides by Dan Weld, Tom Mitchell, and others) 1 Given: Categorization A description of an instance, x X, where X is the instance language or instance space. A fixed

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Information Retrieval Basic IR models. Luca Bondi

Information Retrieval Basic IR models. Luca Bondi Basic IR models Luca Bondi Previously on IR 2 d j q i IRM SC q i, d j IRM D, Q, R q i, d j d j = w 1,j, w 2,j,, w M,j T w i,j = 0 if term t i does not appear in document d j w i,j and w i:1,j assumed to

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Jordan Boyd-Graber University of Colorado Boulder LECTURE 7 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Jordan Boyd-Graber Boulder Support Vector Machines 1 of

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson

MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson MATRIX DECOMPOSITION AND LATENT SEMANTIC INDEXING (LSI) Introduction to Information Retrieval CS 150 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Latent

More information

naive bayes document classification

naive bayes document classification naive bayes document classification October 31, 2018 naive bayes document classification 1 / 50 Overview 1 Text classification 2 Naive Bayes 3 NB theory 4 Evaluation of TC naive bayes document classification

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Topic Models and Applications to Short Documents

Topic Models and Applications to Short Documents Topic Models and Applications to Short Documents Dieu-Thu Le Email: dieuthu.le@unitn.it Trento University April 6, 2011 1 / 43 Outline Introduction Latent Dirichlet Allocation Gibbs Sampling Short Text

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 4: Probabilistic Retrieval Models April 29, 2010 Wolf-Tilo Balke and Joachim Selke Institut für Informationssysteme Technische Universität Braunschweig

More information

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage:

Lecture 2: N-gram. Kai-Wei Chang University of Virginia Couse webpage: Lecture 2: N-gram Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS 6501: Natural Language Processing 1 This lecture Language Models What are

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 8 Text Classification Introduction A Characterization of Text Classification Unsupervised Algorithms Supervised Algorithms Feature Selection or Dimensionality Reduction

More information

Embeddings Learned By Matrix Factorization

Embeddings Learned By Matrix Factorization Embeddings Learned By Matrix Factorization Benjamin Roth; Folien von Hinrich Schütze Center for Information and Language Processing, LMU Munich Overview WordSpace limitations LinAlgebra review Input matrix

More information

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy

Ranked IR. Lecture Objectives. Text Technologies for Data Science INFR Learn about Ranked IR. Implement: 10/10/2017. Instructor: Walid Magdy Text Technologies for Data Science INFR11145 Ranked IR Instructor: Walid Magdy 10-Oct-017 Lecture Objectives Learn about Ranked IR TFIDF VSM SMART notation Implement: TFIDF 1 Boolean Retrieval Thus far,

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

Part 9: Text Classification; The Naïve Bayes algorithm Francesco Ricci

Part 9: Text Classification; The Naïve Bayes algorithm Francesco Ricci Part 9: Text Classification; The Naïve Bayes algorithm Francesco Ricci Most of these slides comes from the course: Information Retrieval and Web Search, Christopher Manning and Prabhakar Raghavan 1 Content

More information

Text mining and natural language analysis. Jefrey Lijffijt

Text mining and natural language analysis. Jefrey Lijffijt Text mining and natural language analysis Jefrey Lijffijt PART I: Introduction to Text Mining Why text mining The amount of text published on paper, on the web, and even within companies is inconceivably

More information

text statistics October 24, 2018 text statistics 1 / 20

text statistics October 24, 2018 text statistics 1 / 20 text statistics October 24, 2018 text statistics 1 / 20 Overview 1 2 text statistics 2 / 20 Outline 1 2 text statistics 3 / 20 Model collection: The Reuters collection symbol statistic value N documents

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

INFO 2950 Intro to Data Science. Lecture 18: Power Laws and Big Data

INFO 2950 Intro to Data Science. Lecture 18: Power Laws and Big Data INFO 2950 Intro to Data Science Lecture 18: Power Laws and Big Data Paul Ginsparg Cornell University, Ithaca, NY 7 Apr 2016 1/25 Power Laws in log-log space y = cx k (k=1/2,1,2) log 10 y = k log 10 x +log

More information

Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson

Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson Vector Space Scoring Introduction to Information Retrieval Informatics 141 / CS 121 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Querying Corpus-wide statistics

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 3: Finding Distinctive Terms (Jan 29, 2019) David Bamman, UC Berkeley https://www.nytimes.com/interactive/ 2017/11/07/upshot/modern-love-what-wewrite-when-we-write-about-love.html

More information

Dealing with Text Databases

Dealing with Text Databases Dealing with Text Databases Unstructured data Boolean queries Sparse matrix representation Inverted index Counts vs. frequencies Term frequency tf x idf term weights Documents as vectors Cosine similarity

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 4: Regression II slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 61 Today s introduction

More information

Behavioral Data Mining. Lecture 2

Behavioral Data Mining. Lecture 2 Behavioral Data Mining Lecture 2 Autonomy Corp Bayes Theorem Bayes Theorem P(A B) = probability of A given that B is true. P(A B) = P(B A)P(A) P(B) In practice we are most interested in dealing with events

More information

University of Illinois at Urbana-Champaign. Midterm Examination

University of Illinois at Urbana-Champaign. Midterm Examination University of Illinois at Urbana-Champaign Midterm Examination CS410 Introduction to Text Information Systems Professor ChengXiang Zhai TA: Azadeh Shakery Time: 2:00 3:15pm, Mar. 14, 2007 Place: Room 1105,

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Inf2b Learning and Data

Inf2b Learning and Data Inf2b Learning and Data Lecture 13: Review (Credit: Hiroshi Shimodaira Iain Murray and Steve Renals) Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/inf2b/

More information

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Naïve Bayes Matt Gormley Lecture 18 Oct. 31, 2018 1 Reminders Homework 6: PAC Learning

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland SUPPORT VECTOR MACHINES Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Machine Learning: Jordan

More information