INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

Size: px
Start display at page:

Download "INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from"

Transcription

1 INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from IR 9: Collaborative Filtering, SVD, and Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 22 Sep / 50

2 Administrativa No office hour tomorrow, Fri 23 Sep 2011 Ass t 2 to be posted 24 Sep, due Sat 8 Oct, 1pm (late submission permitted until Sun 9 Oct at 11 p.m.) No class Tue 11 Oct (midterm break) The Midterm Examination is on Thu Oct 13 from 11:40 to 12:55, in Kimball B11. It will be open book. Topics examined include assignments, lectures and discussion class readings before the midterm break. 2/ 50

3 Overview 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 3/ 50

4 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 4/ 50

5 Discussion 2 K. Sparck Jones, A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28, 11-21, Letter by Stephen Robertson and reply by Karen Sparck Jones, Journal of Documentation 28, , / 50

6 Exhaustivity and specificity What are the semantic and statistical interpretations of specificity? Semantic: tea, coffee, cocoa (more specific, smaller # docs) beverage (less specific, larger # docs) Statistical: specificity a function of term usage, frequently used implies non-specific (even if has specific meaning). Exhaustivity of a document description is determined by the number of controlled vocabulary terms assigned. Reject frequently occurring terms? via conjunction (but according to item C table I, average number of matched terms smaller than request, so would reduce recall) remove them entirely (again hurts recall, needed for many relevant documents) What is graphed in figure 1 and what does it illustrate? (Why aren t axes labelled?) 6/ 50

7 idf weight Spärck Jones defines f (n) = m such that 2 m 1 < n <= 2 m (In other words f (n) = log 2 (n), where x denotes the smallest integer not less than x, equivalent to one plus the greatest integer less than x) and suggests weight = f (N) f (n) + 1 e.g. for N = 200 documents, f (N) = 8 (2 8 = 256) n = 90, f (n) = 7 (2 7 = 128), hence weight = = 2 n = 3, f (n) = 2 (2 2 = 4), hence weight = = 7 overall weight for query is then = 9 +1 so that terms occurring in more than roughly half the documents in the corpus not given zero weight (for N = 200, anything in more than 128 documents) 7/ 50

8 idf weight, modified Robertson: Spärck Jones weight f (N) f (n) + 1 log 2 (N/n) + 1 Note that n/n is the probability an item chosen (at random) will contain the term. Suppose an item contains a,b,c in common with query, and probabilities are p a, p b, p c. Then weight assigned to the document is log(1/p a ) + log(1/p b ) + log(1/p c ) = log(1/p a p b p c ) (probability that doc will randomly contain all three terms a,b,c under what assumption?) quantifies statement: less likely that given combination of terms occurs, more likely relevant to query (theoretical justification for logarithmic idf weights) 8/ 50

9 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 9/ 50

10 Precision and recall Precision (P) is the fraction of retrieved documents that are relevant Precision = #(relevant items retrieved) #(retrieved items) = P(relevant retrieved) Recall (R) is the fraction of relevant documents that are retrieved Recall = #(relevant items retrieved) #(relevant items) = P(retrieved relevant) 10/ 50

11 A precision-recall curve Precision Recall Each point corresponds to a result for the top k ranked hits (k = 1,2,3,4,...). Interpolation (in red): Take maximum of all future points Rationale for interpolation: The user is willing to look at more stuff if both precision and recall get better. Questions? 11/ 50

12 Averaged 11-point precision/recall graph Precision Recall Compute interpolated precision at recall levels 0.0, 0.1, 0.2,... Do this for each of the queries in the evaluation benchmark Average over queries This measure measures performance at all recall levels. The curve is typical of performance levels at TREC. Note that performance is not very good! 12/ 50

13 Precision/recall tradeoff You can increase recall by returning more docs. Recall is a non-decreasing function of the number of docs retrieved. A system that returns all docs has 100% recall! The converse is also true (usually): It s easy to get high precision for very low recall. Suppose the document with the largest score is relevant. How can we maximize precision? 13/ 50

14 A combined measure: balanced F Frequently used: balanced F, the harmonic mean of P and R: 1 F = 1 ( 1 2 P + 1 ) or F = 2PR R P + R Extremes: If P R, then F 2P. If R P, then F 2R. So F is automatically sensitive to the one that is much smaller. If P R, then F P R. 14/ 50

15 F more generally F allows us to trade off precision against recall. 1 F = α 1 P + (1 α) 1 R = (β2 + 1)PR β 2 P + R where β 2 = 1 α α α [0,1] and thus β 2 [0, ] Most frequently used: balanced F with β = 1 or α = 0.5 This is the harmonic mean of P and R: 1 F = 1 2 ( 1 P + 1 R ) What value range of β weights recall higher than precision? 15/ 50

16 F: Example relevant not relevant retrieved not retrieved 60 1,000,000 1,000, ,000,040 1,000,120 P = 20/( ) = 1/3 R = 20/( ) = 1/4 F 1 = = 2/ / 50

17 Accuracy Why do we use complex measures like precision, recall, and F? Why not something simple like accuracy? Accuracy is the fraction of decisions (relevant/nonrelevant) that are correct. In terms of the contingency table above, accuracy = (TP + TN)/(TP + FP + FN + TN). Why is accuracy not a useful measure for web information retrieval? 17/ 50

18 Exercise Compute precision, recall and F 1 for this result set: relevant not relevant retrieved 18 2 not retrieved 82 1,000,000,000 The snoogle search engine below always returns 0 results ( 0 matching results found ), regardless of the query. 18/ 50

19 Why accuracy is not a useful measure in IR Simple trick to maximize accuracy in IR: always say no and return nothing You then get 99.99% accuracy on most queries. Searchers on the web (and in IR in general) want to find something and have a certain tolerance for junk. It s better to return some bad hits as long as you return something. We use precision, recall, and F for evaluation, not accuracy. 19/ 50

20 F: Why harmonic mean? Why don t we use a different mean of P and R as a measure? e.g., the arithmetic mean The simple (arithmetic) mean is 50% for return-everything search engine, which is too high. Desideratum: Punish really bad performance on either precision or recall. Taking the minimum achieves this. But minimum is not smooth and hard to weight. F (harmonic mean) is a kind of smooth minimum. 20/ 50

21 Difficulties in using precision, recall and F We need relevance judgments for information-need-document pairs but they are expensive to produce. There are some alternatives to using precision/recall and having to produce relevance judgments 21/ 50

22 Variance of measures like precision/recall For a test collection, it is usual that a system does badly on some information needs (e.g., P = 0.2 at R = 0.1) and really well on others (e.g., P = 0.95 at R = 0.8). Indeed, it is usually the case that the variance of the same system across queries is much greater than the variance of different systems on the same query. That is, there are easy information needs and hard ones. 22/ 50

23 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 23/ 50

24 What we need for a benchmark A collection of documents Documents must be representative of the documents we expect to see in reality. A collection of information needs... incorrectly but necessarily called queries Information needs must be representative of the information needs we expect to see in reality. Human relevance assessments We need to hire/pay judges or assessors to do this. Expensive, time-consuming Judges must be representative of the users we expect to see in reality. 24/ 50

25 Standard relevance benchmark: Cranfield Pioneering: first testbed allowing precise quantitative measures of information retrieval effectiveness Late 1950s, UK 1398 abstracts of aerodynamics journal articles, a set of 225 queries, exhaustive relevance judgments of all query-document-pairs Too small, too untypical for serious IR evaluation today 25/ 50

26 Standard relevance benchmark: TREC TREC = Text Retrieval Conference (TREC) Organized by the U.S. National Institute of Standards and Technology (NIST) TREC is actually a set of several different relevance benchmarks. Best known: TREC Ad Hoc, used for first 8 TREC evaluations between 1992 and million documents, mainly newswire articles, 450 information needs No exhaustive relevance judgments too expensive Rather, NIST assessors relevance judgments are available only for the documents that were among the top k returned for some system which was entered in the TREC evaluation for which the information need was developed. 26/ 50

27 Standard relevance benchmarks: Others GOV2 Another TREC/NIST collection 25 million web pages Used to be largest collection that is easily available But still 3 orders of magnitude smaller than what Google/Yahoo/MSN index NTCIR East Asian language and cross-language information retrieval Cross Language Evaluation Forum (CLEF) This evaluation series has concentrated on European languages and cross-language information retrieval. Many others 27/ 50

28 Validity of relevance assessments Relevance assessments are only usable if they are consistent. If they are not consistent, then there is no truth and experiments are not repeatable. How can we measure this consistency or agreement among judges? Kappa measure 28/ 50

29 Kappa measure Kappa is measure of how much judges agree or disagree. Designed for categorical judgments Corrects for chance agreement P(A) = proportion of time judges agree P(E) = what agreement would we get by chance κ = P(A) P(E) 1 P(E) κ =? for (i) chance agreement (ii) total agreement 29/ 50

30 Kappa measure (2) Values of κ in the interval [2/3,1.0] are seen as acceptable. With smaller values: need to redesign relevance assessment methodology used etc. 30/ 50

31 Calculating the kappa statistic Judge 2 Relevance Yes No Total Judge 1 Yes Relevance No Total Observed proportion of the times the judges agreed P(A) = ( )/400 = 370/400 = Pooled marginals: P(non-rel) = ( )/( ) = 170/800 = P(relevant) = ( )/( ) = 630/800 = Probability that the two judges agreed by chance: P(E) = P(non-rel) 2 + P(relevant) 2 = = Kappa statistic: κ = (P(A) P(E))/(1 P(E)) = ( )/( ) = (still in acceptable range) 31/ 50

32 Interjudge agreement at TREC information number of disagreements need docs judged fair range (.67.8 ) 32/ 50

33 Impact of interjudge disagreement Judges disagree a lot. Does that mean that the results of information retrieval experiments are meaningless? No. Large impact on absolute performance numbers Virtually no impact on ranking of systems Supposes we want to know if algorithm A is better than algorithm B An information retrieval experiment will give us a reliable answer to this question......even if there is a lot of disagreement between judges. 33/ 50

34 Evaluation at large search engines Recall is difficult to measure on the web Search engines often use precision at top k, e.g., k = or use measures that reward you more for getting rank 1 right than for getting rank 10 right. Search engines also use non-relevance-based measures. Example 1: clickthrough on first result Not very reliable if you look at a single clickthrough (you may realize after clicking that the summary was misleading and the document is nonrelevant) but pretty reliable in the aggregate. Example 2: Ongoing studies of user behavior in the lab recall last lecture Example 3: A/B testing 34/ 50

35 A/B testing Purpose: Test a single innovation Prerequisite: You have a large search engine up and running. Have most users use old system Divert a small proportion of traffic (e.g., 1%) to the new system that includes the innovation Evaluate with an automatic measure like clickthrough on first result Now we can directly see if the innovation does improve user happiness. Probably the evaluation methodology that large search engines trust most 35/ 50

36 Critique of pure relevance We ve defined relevance for an isolated query-document pair. Alternative definition: marginal relevance The marginal relevance of a document at position k in the result list is the additional information it contributes over and above the information that was contained in documents d 1...d k 1. Exercise Why is marginal relevance a more realistic measure of user happiness? Give an example where a non-marginal measure like precision or recall is a misleading measure of user happiness, but marginal relevance is a good measure. In a practical application, what is the difficulty of using marginal measures instead of non-marginal measures? 36/ 50

37 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 37/ 50

38 Definitions C = M N matrix with real-valued entries. rank of C is number of linearly independent rows (or columns), rank(c) min{m, N} A square r r matrix with off-diagonal entries equal to zero is called a diagonal matrix (rank = # of non-zero diagonal entries) If all diagonal entries are equal to one, then called the identity I r = / 50

39 Eigenvalues and eigenvectors For square M M matrix C and (non-vanishing) vector x, λ satisfying C x = λ x are called the eigenvalues of C. x is the right eigenvector eigenvector corresponding to eigenvalue of largest magnitude called the principal eigenvector. also left eigenvectors: M-vectors y with y T C = λ y T 39/ 50

40 Characteristic equation eigenvalues determined by characteristic equation. Write above as (C λi M ) x = 0, and take determinant: C λi M = 0 Gives an M th order polynomial equation in λ, at most M roots which are eigenvalues of C (in general complex, even if all entries of C are real). 40/ 50

41 Example S = has rank 3, eigenvalues λ 1 = 30, λ 2 = 20, λ 3 = 1, with eigenvectors x 1 = 0, x 2 = 1 x 3 = Consider arbitrary v = 4 = 2 x x x 3 6 Then S v = S(2 x x x 3 ) = 2S x 1 + 4S x 2 + 6S x 3 = 2λ 1 x 1 + 4λ 2 x 2 + 6λ 3 x 3 = 60 x x x 3 41/ 50

42 Example, cont d multiplication by S determined by eigenvalues and eigenvectors S v relatively unaffected by terms from small eigenvalues ignore λ 3 = 1: then S v = 80 instead of low-rank approximations 42/ 50

43 Symmetric matrices For symmetric S, eigenvectors corresponding to distinct eigenvalues are orthogonal. If S is real and symmetric, then eigenvalues are real ( ) 2 1 Example: S = = S λi ( = (2 ) λ) ( 2 1 ) λ = 3, eigenvectors and are orthogonal / 50

44 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 44/ 50

45 Matrix diagonalization theorem Let S be square real-valued M M with M linearly independent eigenvectors then there exists a decomposition S = UΛU 1 where columns of U are the eigenvectors of S and λ 1 Λ = λ 2..., λ i λ i+1 λ M If eigenvalues are distinct, then decomposition is unique 45/ 50

46 Matrix diagonalization theorem, cont d U = ( u 1 u 2 u M ) Then SU = S( u 1 u 2 u M ) = (λ 1 u 1 λ 2 u 2 λ M u M ) λ 1 = ( u 1 u 2 u M ) λ 2 Thus SU = UΛ or S = UΛU 1... λ M 46/ 50

47 Symmetric diagonalization theorem S a square, symmetric, real-valued M M matrix with M linearly independent eigenvectors then there exists a symmetric diagonal decomposition S = QΛQ 1 where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix with entries the eigenvalues of S all entries of Q are real and Q 1 = Q T We will use this to build low-rank approximations to term document matrices, using CC T 47/ 50

48 Outline 1 Recap Discussion 2 2 More on Unranked evaluation 3 Evaluation benchmarks 4 Matrix basics 5 Matrix Decompositions 6 Singular value decomposition 48/ 50

49 SVD C an M N matrix of rank r, C T its N M transpose. CC T and C T C have the same r eigenvalues λ 1,...,λ r U = M M matrix whose columns are the orthogonal eigenvectors of CC T V = N N matrix whose columns are the orthogonal eigenvectors of C T C Then there s a singular value decomposition (SVD) C = UΣV T where the M N matrix Σ has Σ ii = σ i for 1 i r, and zero otherwise. σ i are called the singular values of C 49/ 50

50 Compare to S = QΛQ T C = UΣV T CC T = UΣV T V ΣU T = UΣ 2 U T (C T C = V ΣU T UΣV T = V Σ 2 V T ) l.h.s. is square symmetric real-valued, and r.h.s. is symmetric diagonal decomposition CC T (C T C) is a square matrix with rows, columns corresponding to each of the M terms (documents) i,j entry measures overlap between i th and j th terms (documents), based on document (term) co-occurrence Depends on term weighting: simplest case (1,0): i,j entry counts number of documents in which both terms i and j occur (number of terms which occur in both documents i, j) 50/ 50

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review INFO 4300 / CS4300 Information Retrieval IR 9: Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 24 Sep 2009 1/ 23 Overview 1 Recap 2 Matrix basics 3 Matrix Decompositions 4 Discussion

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 23 Sep 2010

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

Information Retrieval Tutorial 6: Evaluation

Information Retrieval Tutorial 6: Evaluation Information Retrieval Tutorial 6: Evaluation Professor: Michel Schellekens TA: Ang Gao University College Cork 2012-11-30 IR Evaluation 1 / 19 Overview IR Evaluation 2 / 19 Precision and recall Precision

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 12: Latent Semantic Indexing and Relevance Feedback Paul Ginsparg Cornell

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Linear Algebra Background

Linear Algebra Background CS76A Text Retrieval and Mining Lecture 5 Recap: Clustering Hierarchical clustering Agglomerative clustering techniques Evaluation Term vs. document space clustering Multi-lingual docs Feature selection

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 26/26: Feature Selection and Exam Overview Paul Ginsparg Cornell University,

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 5: Scoring, Term Weighting, The Vector Space Model II Paul Ginsparg Cornell

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 18: Latent Semantic Indexing Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-07-10 1/43

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 13: Query Expansion and Probabilistic Retrieval Paul Ginsparg Cornell University,

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Latent Semantic Models Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Vector Space Model: Pros Automatic selection of index terms Partial matching of queries

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 IIR 18: Latent Semantic Indexing Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

Evaluation Metrics. Jaime Arguello INLS 509: Information Retrieval March 25, Monday, March 25, 13

Evaluation Metrics. Jaime Arguello INLS 509: Information Retrieval March 25, Monday, March 25, 13 Evaluation Metrics Jaime Arguello INLS 509: Information Retrieval jarguell@email.unc.edu March 25, 2013 1 Batch Evaluation evaluation metrics At this point, we have a set of queries, with identified relevant

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 11: Probabilistic Information Retrieval Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

1 Information retrieval fundamentals

1 Information retrieval fundamentals CS 630 Lecture 1: 01/26/2006 Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko This lecture focuses on the following topics Information retrieval fundamentals Vector Space Model (VSM) Deriving

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

How Latent Semantic Indexing Solves the Pachyderm Problem

How Latent Semantic Indexing Solves the Pachyderm Problem How Latent Semantic Indexing Solves the Pachyderm Problem Michael A. Covington Institute for Artificial Intelligence The University of Georgia 2011 1 Introduction Here I present a brief mathematical demonstration

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 6 Singular Value Decomposition In Chapter 5, we derived a number of algorithms for computing the eigenvalues and eigenvectors of matrices A R n n. Having developed this machinery, we complete our

More information

Midterm Examination Practice

Midterm Examination Practice University of Illinois at Urbana-Champaign Midterm Examination Practice CS598CXZ Advanced Topics in Information Retrieval (Fall 2013) Professor ChengXiang Zhai 1. Basic IR evaluation measures: The following

More information

Matrix decompositions and latent semantic indexing

Matrix decompositions and latent semantic indexing 18 Matrix decompositions and latent semantic indexing On page 113, we introduced the notion of a term-document matrix: an M N matrix C, each of whose rows represents a term and each of whose columns represents

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

Embeddings Learned By Matrix Factorization

Embeddings Learned By Matrix Factorization Embeddings Learned By Matrix Factorization Benjamin Roth; Folien von Hinrich Schütze Center for Information and Language Processing, LMU Munich Overview WordSpace limitations LinAlgebra review Input matrix

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

Let A an n n real nonsymmetric matrix. The eigenvalue problem: λ 1 = 1 with eigenvector u 1 = ( ) λ 2 = 2 with eigenvector u 2 = ( 1

Let A an n n real nonsymmetric matrix. The eigenvalue problem: λ 1 = 1 with eigenvector u 1 = ( ) λ 2 = 2 with eigenvector u 2 = ( 1 Eigenvalue Problems. Introduction Let A an n n real nonsymmetric matrix. The eigenvalue problem: EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] Au = λu Example: ( ) 2 0 A = 2 1 λ 1 = 1 with eigenvector

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4]

EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] Eigenvalue Problems. Introduction Let A an n n real nonsymmetric matrix. The eigenvalue problem: Au = λu λ C : eigenvalue u C n : eigenvector Example:

More information

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa Introduction to Search Engine Technology Introduction to Link Structure Analysis Ronny Lempel Yahoo Labs, Haifa Outline Anchor-text indexing Mathematical Background Motivation for link structure analysis

More information

Problems. Looks for literal term matches. Problems:

Problems. Looks for literal term matches. Problems: Problems Looks for literal term matches erms in queries (esp short ones) don t always capture user s information need well Problems: Synonymy: other words with the same meaning Car and automobile 电脑 vs.

More information

University of Illinois at Urbana-Champaign. Midterm Examination

University of Illinois at Urbana-Champaign. Midterm Examination University of Illinois at Urbana-Champaign Midterm Examination CS410 Introduction to Text Information Systems Professor ChengXiang Zhai TA: Azadeh Shakery Time: 2:00 3:15pm, Mar. 14, 2007 Place: Room 1105,

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Ranked Retrieval (2)

Ranked Retrieval (2) Text Technologies for Data Science INFR11145 Ranked Retrieval (2) Instructor: Walid Magdy 31-Oct-2017 Lecture Objectives Learn about Probabilistic models BM25 Learn about LM for IR 2 1 Recall: VSM & TFIDF

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Singular Value Decomposition 1 / 35 Understanding

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Manning & Schuetze, FSNLP, (c)

Manning & Schuetze, FSNLP, (c) page 554 554 15 Topics in Information Retrieval co-occurrence Latent Semantic Indexing Term 1 Term 2 Term 3 Term 4 Query user interface Document 1 user interface HCI interaction Document 2 HCI interaction

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

Dimensionality Reduction

Dimensionality Reduction 394 Chapter 11 Dimensionality Reduction There are many sources of data that can be viewed as a large matrix. We saw in Chapter 5 how the Web can be represented as a transition matrix. In Chapter 9, the

More information

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 3 Modeling Introduction to IR Models Basic Concepts The Boolean Model Term Weighting The Vector Model Probabilistic Model Retrieval Evaluation, Modern Information Retrieval,

More information

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING Crista Lopes Outline Precision and Recall The problem with indexing so far Intuition for solving it Overview of the solution The Math How to measure

More information

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya CS 375 Advanced Machine Learning Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya Outline SVD and LSI Kleinberg s Algorithm PageRank Algorithm Vector Space Model Vector space model represents

More information

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query:

Words vs. Terms. Words vs. Terms. Words vs. Terms. Information Retrieval cares about terms You search for em, Google indexes em Query: Words vs. Terms Words vs. Terms Information Retrieval cares about You search for em, Google indexes em Query: What kind of monkeys live in Costa Rica? 600.465 - Intro to NLP - J. Eisner 1 600.465 - Intro

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

Generic Text Summarization

Generic Text Summarization June 27, 2012 Outline Introduction 1 Introduction Notation and Terminology 2 3 4 5 6 Text Summarization Introduction Notation and Terminology Two Types of Text Summarization Query-Relevant Summarization:

More information

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions

CS246: Mining Massive Data Sets Winter Only one late period is allowed for this homework (11:59pm 2/14). General Instructions CS246: Mining Massive Data Sets Winter 2017 Problem Set 2 Due 11:59pm February 9, 2017 Only one late period is allowed for this homework (11:59pm 2/14). General Instructions Submission instructions: These

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

Markov chains and the number of occurrences of a word in a sequence ( , 11.1,2,4,6)

Markov chains and the number of occurrences of a word in a sequence ( , 11.1,2,4,6) Markov chains and the number of occurrences of a word in a sequence (4.5 4.9,.,2,4,6) Prof. Tesler Math 283 Fall 208 Prof. Tesler Markov Chains Math 283 / Fall 208 / 44 Locating overlapping occurrences

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

IR: Information Retrieval

IR: Information Retrieval / 44 IR: Information Retrieval FIB, Master in Innovation and Research in Informatics Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Naive Bayes Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Introduction Classification = supervised method for

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Math Camp Notes: Linear Algebra II

Math Camp Notes: Linear Algebra II Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Manning & Schuetze, FSNLP (c) 1999,2000

Manning & Schuetze, FSNLP (c) 1999,2000 558 15 Topics in Information Retrieval (15.10) y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the best least-squares fit for the four points (1,1),

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Performance evaluation of binary classifiers

Performance evaluation of binary classifiers Performance evaluation of binary classifiers Kevin P. Murphy Last updated October 10, 2007 1 ROC curves We frequently design systems to detect events of interest, such as diseases in patients, faces in

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Sample Examination Questions Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 22 Exercise Suppose we have a utility

More information