INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

Size: px
Start display at page:

Download "INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from"

Transcription

1 INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from IR 13: Query Expansion and Probabilistic Retrieval Paul Ginsparg Cornell University, Ithaca, NY 8 Oct / 34

2 Administrativa No office hours tomorrow, Fri 9 Oct questions, doubts, concerns, problems to cs4300-l@lists.cs.cornell.edu Remember mid-term is one week from today, Thu 15 Oct. For more info, see 2/ 34

3 Overview 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 3/ 34

4 Outline 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 4/ 34

5 Selection of singular values t d t m m m m d Σ k V T k C k U k t d t k k k k d m is the original rank of C. k is the number of singular values chosen to represent the concepts in the set of documents. Usually, k m. Σ 1 k defined only on k-dimensional subspace. 5/ 34

6 Now approximate C C k In the LSI approximation, use C k (the rank k approximation to C), so similarity measure between query and document becomes q d (j) q d (j) = q C e (j) q C e (j) = q C k e (j) q C k e (j) = q d (j) q d (j), (2) where d (j) = C k e (j) = U k Σ k V T e (j) is the LSI representation of the j th document vector in the original term document space. Finding the closest documents to a query in the LSI approximation thus amounts to computing (2) for each of the j = 1,...,N documents, and returning the best matches. 6/ 34

7 Compare documents in concept space Recall the i,j entry of C T C is dot product between i,j columns of C (term vectors for documents i and j). In the truncated space, C T k C k = (U k Σ k V T k )T (U k Σ k V T k ) = V kσ k U T k U kσ k V T k = (V kσ k )(V k Σ k ) T Thus i,j entry the dot product between the i, j columns of (V k Σ k ) T = Σ k V T k. In concept space, comparison between pseudo-document ˆq and document ˆd (j) thus given by the cosine between Σ k ˆq and Σk ˆd (j) : (Σ k ˆq) Σk ˆd(j) Σ k ˆq Σk ˆd(j) = ( qt U k Σ 1 k Σ k)(σ k Σ 1 k UT k d (j) ) U T k q UT k d (j) = q d (j) U T k q d (j), (3) in agreement with (2), up to an overall q-dependent normalization which doesn t affect similarity rankings. 7/ 34

8 8/ 34

9 Rocchio illustrated qopt µ R µnr µ R µ NR x x x x x x µ R : centroid of relevant documents µ NR : centroid of nonrelevant documents µ R µ NR : difference vector Add difference vector to µ R to get q opt q opt separates relevant/nonrelevant perfectly. 9/ 34

10 Outline 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 10/ 34

11 Relevance feedback: Problems Relevance feedback is expensive. Relevance feedback creates long modified queries. Long queries are expensive to process. Users are reluctant to provide explicit feedback. It s often hard to understand why a particular document was retrieved after applying relevance feedback. Excite had full relevance feedback at one point, but abandoned it later. 11/ 34

12 Pseudo-relevance feedback Pseudo-relevance feedback automates the manual part of true relevance feedback. Pseudo-relevance algorithm: Retrieve a ranked list of hits for the user s query Assume that the top k documents are relevant. Do relevance feedback (e.g., Rocchio) Works very well on average But can go horribly wrong for some queries. Several iterations can cause query drift. 12/ 34

13 Pseudo-relevance feedback at TREC4 Cornell SMART system Results show number of relevant documents out of top 100 for 50 queries (so total number of documents is 5000): method number of relevant documents lnc.ltc 3210 lnc.ltc-psrf 3634 Lnu.ltu 3709 Lnu.ltu-PsRF 4350 Results contrast two length normalization schemes (L vs. l) and pseudo-relevance feedback (PsRF). The pseudo-relevance feedback method used added only 20 terms to the query. (Rocchio will add many more.) This demonstrates that pseudo-relevance feedback is effective on average. 13/ 34

14 Outline 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 14/ 34

15 Query expansion Query expansion is another method for increasing recall. We use global query expansion to refer to global methods for query reformulation. In global query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent. Main information we use: (near-)synonymy A publication or database that collects (near-)synonyms is called a thesaurus. We will look at two types of thesauri: manually created and automatically created. 15/ 34

16 Query expansion: Example 16/ 34

17 Types of user feedback User gives feedback on documents. More common in relevance feedback User gives feedback on words or phrases. More common in query expansion 17/ 34

18 Types of query expansion Manual thesaurus (maintained by editors, e.g., PubMed) Automatically derived thesaurus (e.g., based on co-occurrence statistics) Query-equivalence based on query log mining (common on the web as in the palm example) 18/ 34

19 Thesaurus-based query expansion For each term t in the query, expand the query with words the thesaurus lists as semantically related with t. Example from earlier: hospital medical Generally increases recall May significantly decrease precision, particularly with ambiguous terms interest rate interest rate fascinate Widely used in specialized search engines for science and engineering It s very expensive to create a manual thesaurus and to maintain it over time. A manual thesaurus is roughly equivalent to annotation with a controlled vocabulary. 19/ 34

20 Example for manual thesaurus: PubMed 20/ 34

21 Automatic thesaurus generation Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents Fundamental notion: similarity between two words Definition 1: Two words are similar if they co-occur with similar words. car and motorcycle cooccur with road, gas and license, so they must be similar. Definition 2: Two words are similar if they occur in a given grammatical relation with the same words. You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar. Co-occurrence is more robust, grammatical relations are more accurate. 21/ 34

22 Co-occurence-based thesaurus: Examples Word absolutely bottomed captivating doghouse makeup mediating keeping lithographs pathogens senses Nearest neighbors absurd, whatsoever, totally, exactly, nothing dip, copper, drops, topped, slide, trimmed shimmer, stunningly, superbly, plucky, witty dog, porch, crawling, beside, downstairs repellent, lotion, glossy, sunscreen, skin, gel reconciliation, negotiate, case, conciliation hoping, bring, wiping, could, some, would drawings, Picasso, Dali, sculptures, Gauguin toxins, bacteria, organisms, bacterial, parasite grasp, psyche, truly, clumsy, naive, innate 22/ 34

23 Summary Relevance feedback and query expansion increase recall. In many cases, precision is decreased, often significantly. Log-based query modification (which is more complex than simple query expansion) is more common on the web than relevance feedback. 23/ 34

24 Outline 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 24/ 34

25 Basics of probability theory A = event 0 p(a) 1 joint probability p(a, B) = p(a B) conditional probability p(a B) = p(a, B)/p(B) Note p(a, B) = p(a B)p(B) = p(b A)p(A), gives posterior probability of A after seeing the evidence B Bayes Thm : p(a B) = p(b A)p(A) p(b) In denominator, use p(b) = p(b,a) + p(b,a) = p(b A)p(A) + p(b A)p(A) Odds: O(A) = p(a) p(a) = p(a) 1 p(a) 25/ 34

26 Probability Ranking Principle (PRP) For query q and document d, let R d,q be binary indicator whether d relevant to q: R = 1 if relevant, else R = 0 Order documents according to estimated probability of relevance with respect to information need p(r = 1 d,q) (Bayes optimal decision rule) d is relevant iff p(r = 1 d,q) > p(r = 0 d,q) 26/ 34

27 Binary independence model (BIM) Represent documents and queries as binary term incidence vectors: x = (x 1,...,x M ), q = (q 1,...,q n ) (x t = 1 if term t present in document d, else x t = 0) Assume independence: no association between terms in binary bag of words (not true of course, but works ok to first approximation). Want to determine p(r = 1 x, q) = p( x R = 1, q)p(r = 1 q) p( x q) p(r = 0 x, q) = p( x R = 0, q)p(r = 0 q) p( x q) (on r.h.s. probabilites that if document is retrieved, then representation is x, and prior probabilities of retrieving relevant or non-relevant document. also p(r = 1 x, q) + p(r = 0 x, q) = 1) 27/ 34

28 Ranking function Order by descending p(r = 1 d,q), using BIM p(r = 1 x, q). Use odds of relevance O(R x, q) = p( x R=1, q)p(r=1 q) p( x q) p( x R=0, q)p(r=0 q) p( x q) How to estimate last term? = p(r = 1 q) p( x R = 1, q) p(r = 0 q) p( x R = 0, q) 28/ 34

29 Naive Bayes conditional independence assumption so p( x R = 1, q) M p( x R = 0, q) = p(x t R = 1, q) p(x t R = 0, q) t=1 O(R x, q) = O(R q) M t=1 p(x t R = 1, q) p(x t R = 0, q) Let probability of terms appearing in relevant/nonrelevant documents w.r.t. query be p t = p(x t = 1 R = 1, q) and u t = p(x t = 1 R = 0, q): document relevant (R = 1) nonrelevant (R = 0) term present x t = 1 p t u t term absent x t = 0 1 p t 1 u t 29/ 34

30 One more approximation Also assume that terms not occuring in the query are equally likely to occur in relevant and nonrelevant documents: p t = u t if q t = 0. Then only need to retain query terms (q t = 1): O(R x, q) = O(R q) = O(R q) M t=1 t:x t=1,q t=1 p(x t R = 1, q) p(x t R = 0, q) p t u t t:x t=0,q t=1 1 p t 1 u t 30/ 34

31 Estimate df t is number of documents that contain term t term documents relevant nonrelevant total present x t = 1 s df t s df t absent x t = 0 S s (N df t ) (S s) N df t total S N S N Hence p t = s/s and u t = (df t s)/(n S). In practice if relevant documents a small percentage, then u t df t /N and log[(1 u t )/u t ] = log[(n df t /df t ] log N/df t reproducing idf weight 31/ 34

32 Outline 1 Recap 2 Pseudo Relevance Feedback 3 Query expansion 4 Probabalistic Retrieval 5 Discussion 32/ 34

33 Discussion 4 Original LSA article: Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Richard Harshman, Indexing by latent semantic analysis. Journal of the American Society for Information Science, Volume 41, Issue 6, Some questions: Explain the name latent semantic analysis What problems is LSA attempting to solve? does it succeed? What criteria were used in selecting SVD of the term doc matrix? Explain the meaning of the matrices in the SVD C = UΣV T What does the rank reduction C k C = U k Σ k Vk T (keeping only first k elements of Σ) have to do with latent semantics? Fig. 1: what aspect of LSA does this illustrate? (which docs are closer to the query vector in concept space despite not containing words in common with the query?) 33/ 34

34 Fig. 4: a) LSI-100 does better at the right of this graph than the left What does this have to do with synonomy and polysemy? Describe methodology of the MED experiment. Why were authors surprised that TERM and SMART gave similar results? The results of CISI were not as strong, possible explanations? Fig. 5: what data does the graph plot? what conclusions can you draw? The article states the only way documents can be retrieved is by an exhaustive comparison of a query vector against all stored document vectors. Explain the statement. Is it a serious problem? 34/ 34

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 12: Latent Semantic Indexing and Relevance Feedback Paul Ginsparg Cornell

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 11: Probabilistic Information Retrieval Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

Probabilistic Information Retrieval

Probabilistic Information Retrieval Probabilistic Information Retrieval Sumit Bhatia July 16, 2009 Sumit Bhatia Probabilistic Information Retrieval 1/23 Overview 1 Information Retrieval IR Models Probability Basics 2 Document Ranking Problem

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 26/26: Feature Selection and Exam Overview Paul Ginsparg Cornell University,

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 9: Collaborative Filtering, SVD, and Linear Algebra Review Paul Ginsparg

More information

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes

INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING. Crista Lopes INF 141 IR METRICS LATENT SEMANTIC ANALYSIS AND INDEXING Crista Lopes Outline Precision and Recall The problem with indexing so far Intuition for solving it Overview of the solution The Math How to measure

More information

Fast LSI-based techniques for query expansion in text retrieval systems

Fast LSI-based techniques for query expansion in text retrieval systems Fast LSI-based techniques for query expansion in text retrieval systems L. Laura U. Nanni F. Sarracco Department of Computer and System Science University of Rome La Sapienza 2nd Workshop on Text-based

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 18: Latent Semantic Indexing Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-07-10 1/43

More information

Information Retrieval Basic IR models. Luca Bondi

Information Retrieval Basic IR models. Luca Bondi Basic IR models Luca Bondi Previously on IR 2 d j q i IRM SC q i, d j IRM D, Q, R q i, d j d j = w 1,j, w 2,j,, w M,j T w i,j = 0 if term t i does not appear in document d j w i,j and w i:1,j assumed to

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26

Fall CS646: Information Retrieval. Lecture 6 Boolean Search and Vector Space Model. Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Fall 2016 CS646: Information Retrieval Lecture 6 Boolean Search and Vector Space Model Jiepu Jiang University of Massachusetts Amherst 2016/09/26 Outline Today Boolean Retrieval Vector Space Model Latent

More information

Boolean and Vector Space Retrieval Models

Boolean and Vector Space Retrieval Models Boolean and Vector Space Retrieval Models Many slides in this section are adapted from Prof. Joydeep Ghosh (UT ECE) who in turn adapted them from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) 1

More information

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 IIR 18: Latent Semantic Indexing Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1

Retrieval by Content. Part 2: Text Retrieval Term Frequency and Inverse Document Frequency. Srihari: CSE 626 1 Retrieval by Content Part 2: Text Retrieval Term Frequency and Inverse Document Frequency Srihari: CSE 626 1 Text Retrieval Retrieval of text-based information is referred to as Information Retrieval (IR)

More information

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review

INFO 4300 / CS4300 Information Retrieval. IR 9: Linear Algebra Review INFO 4300 / CS4300 Information Retrieval IR 9: Linear Algebra Review Paul Ginsparg Cornell University, Ithaca, NY 24 Sep 2009 1/ 23 Overview 1 Recap 2 Matrix basics 3 Matrix Decompositions 4 Discussion

More information

Latent semantic indexing

Latent semantic indexing Latent semantic indexing Relationship between concepts and words is many-to-many. Solve problems of synonymy and ambiguity by representing documents as vectors of ideas or concepts, not terms. For retrieval,

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

.. CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. CSC 566 Advanced Data Mining Alexander Dekhtyar.. Information Retrieval Latent Semantic Indexing Preliminaries Vector Space Representation of Documents: TF-IDF Documents. A single text document is a

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

1. Ignoring case, extract all unique words from the entire set of documents.

1. Ignoring case, extract all unique words from the entire set of documents. CS 378 Introduction to Data Mining Spring 29 Lecture 2 Lecturer: Inderjit Dhillon Date: Jan. 27th, 29 Keywords: Vector space model, Latent Semantic Indexing(LSI), SVD 1 Vector Space Model The basic idea

More information

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25

Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Lecture 9: Probabilistic IR The Binary Independence Model and Okapi BM25 Trevor Cohn (Slide credits: William Webber) COMP90042, 2015, Semester 1 What we ll learn in this lecture Probabilistic models for

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 4: Probabilistic Retrieval Models April 29, 2010 Wolf-Tilo Balke and Joachim Selke Institut für Informationssysteme Technische Universität Braunschweig

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

Problems. Looks for literal term matches. Problems:

Problems. Looks for literal term matches. Problems: Problems Looks for literal term matches erms in queries (esp short ones) don t always capture user s information need well Problems: Synonymy: other words with the same meaning Car and automobile 电脑 vs.

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Lecture 3: Probabilistic Retrieval Models

Lecture 3: Probabilistic Retrieval Models Probabilistic Retrieval Models Information Retrieval and Web Search Engines Lecture 3: Probabilistic Retrieval Models November 5 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya

CS 3750 Advanced Machine Learning. Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya CS 375 Advanced Machine Learning Applications of SVD and PCA (LSA and Link analysis) Cem Akkaya Outline SVD and LSI Kleinberg s Algorithm PageRank Algorithm Vector Space Model Vector space model represents

More information

Information Retrieval

Information Retrieval https://vvtesh.sarahah.com/ Information Retrieval Venkatesh Vinayakarao Term: Aug Dec, 2018 Indian Institute of Information Technology, Sri City Characteristic vectors representing code are often high

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK).

Boolean and Vector Space Retrieval Models CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). Boolean and Vector Space Retrieval Models 2013 CS 290N Some of slides from R. Mooney (UTexas), J. Ghosh (UT ECE), D. Lee (USTHK). 1 Table of Content Boolean model Statistical vector space model Retrieval

More information

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Manning & Schuetze, FSNLP (c) 1999,2000

Manning & Schuetze, FSNLP (c) 1999,2000 558 15 Topics in Information Retrieval (15.10) y 4 3 2 1 0 0 1 2 3 4 5 6 7 8 Figure 15.7 An example of linear regression. The line y = 0.25x + 1 is the best least-squares fit for the four points (1,1),

More information

Updating the Partial Singular Value Decomposition in Latent Semantic Indexing

Updating the Partial Singular Value Decomposition in Latent Semantic Indexing Updating the Partial Singular Value Decomposition in Latent Semantic Indexing Jane E. Tougas a,1, a Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 1W5, Canada Raymond J. Spiteri b,2

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 5: Scoring, Term Weighting, The Vector Space Model II Paul Ginsparg Cornell

More information

Linear Algebra Background

Linear Algebra Background CS76A Text Retrieval and Mining Lecture 5 Recap: Clustering Hierarchical clustering Agglomerative clustering techniques Evaluation Term vs. document space clustering Multi-lingual docs Feature selection

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 23 Sep 2010

More information

Manning & Schuetze, FSNLP, (c)

Manning & Schuetze, FSNLP, (c) page 554 554 15 Topics in Information Retrieval co-occurrence Latent Semantic Indexing Term 1 Term 2 Term 3 Term 4 Query user interface Document 1 user interface HCI interaction Document 2 HCI interaction

More information

Embeddings Learned By Matrix Factorization

Embeddings Learned By Matrix Factorization Embeddings Learned By Matrix Factorization Benjamin Roth; Folien von Hinrich Schütze Center for Information and Language Processing, LMU Munich Overview WordSpace limitations LinAlgebra review Input matrix

More information

Informa(on Retrieval 5/19/15. Example of manual thesaurus. Thesaurus- based query expansion. Search log query expansion.

Informa(on Retrieval 5/19/15. Example of manual thesaurus. Thesaurus- based query expansion. Search log query expansion. Introduc*on to Informa(on Retrieval CS276: Informa*on Retrieval and Web Search Christopher Manning and Pandu Nayak Lecture 15: Distributed Word Representa*ons for Informa*on Retrieval How can we more robustly

More information

Generic Text Summarization

Generic Text Summarization June 27, 2012 Outline Introduction 1 Introduction Notation and Terminology 2 3 4 5 6 Text Summarization Introduction Notation and Terminology Two Types of Text Summarization Query-Relevant Summarization:

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

Chap 2: Classical models for information retrieval

Chap 2: Classical models for information retrieval Chap 2: Classical models for information retrieval Jean-Pierre Chevallet & Philippe Mulhem LIG-MRIM Sept 2016 Jean-Pierre Chevallet & Philippe Mulhem Models of IR 1 / 81 Outline Basic IR Models 1 Basic

More information

A Note on the Effect of Term Weighting on Selecting Intrinsic Dimensionality of Data

A Note on the Effect of Term Weighting on Selecting Intrinsic Dimensionality of Data BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 1 Sofia 2009 A Note on the Effect of Term Weighting on Selecting Intrinsic Dimensionality of Data Ch. Aswani Kumar 1,

More information

Assignment 3. Latent Semantic Indexing

Assignment 3. Latent Semantic Indexing Assignment 3 Gagan Bansal 2003CS10162 Group 2 Pawan Jain 2003CS10177 Group 1 Latent Semantic Indexing OVERVIEW LATENT SEMANTIC INDEXING (LSI) considers documents that have many words in common to be semantically

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture; IIR Sections

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture;

More information

DISTRIBUTIONAL SEMANTICS

DISTRIBUTIONAL SEMANTICS COMP90042 LECTURE 4 DISTRIBUTIONAL SEMANTICS LEXICAL DATABASES - PROBLEMS Manually constructed Expensive Human annotation can be biased and noisy Language is dynamic New words: slangs, terminology, etc.

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

1 Information retrieval fundamentals

1 Information retrieval fundamentals CS 630 Lecture 1: 01/26/2006 Lecturer: Lillian Lee Scribes: Asif-ul Haque, Benyah Shaparenko This lecture focuses on the following topics Information retrieval fundamentals Vector Space Model (VSM) Deriving

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Probabilistic Latent Semantic Analysis Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 47 Big picture: KDDM

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016 GloVe on Spark Alex Adamson SUNet ID: aadamson June 6, 2016 Introduction Pennington et al. proposes a novel word representation algorithm called GloVe (Global Vectors for Word Representation) that synthesizes

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

IR Models: The Probabilistic Model. Lecture 8

IR Models: The Probabilistic Model. Lecture 8 IR Models: The Probabilistic Model Lecture 8 ' * ) ( % $ $ +#! "#! '& & Probability of Relevance? ' ', IR is an uncertain process Information need to query Documents to index terms Query terms and index

More information

How Latent Semantic Indexing Solves the Pachyderm Problem

How Latent Semantic Indexing Solves the Pachyderm Problem How Latent Semantic Indexing Solves the Pachyderm Problem Michael A. Covington Institute for Artificial Intelligence The University of Georgia 2011 1 Introduction Here I present a brief mathematical demonstration

More information

Knowledge Discovery in Data: Overview. Naïve Bayesian Classification. .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar..

Knowledge Discovery in Data: Overview. Naïve Bayesian Classification. .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar Knowledge Discovery in Data: Naïve Bayes Overview Naïve Bayes methodology refers to a probabilistic approach to information discovery

More information

Eigenvalue Problems Computation and Applications

Eigenvalue Problems Computation and Applications Eigenvalue ProblemsComputation and Applications p. 1/36 Eigenvalue Problems Computation and Applications Che-Rung Lee cherung@gmail.com National Tsing Hua University Eigenvalue ProblemsComputation and

More information

Behavioral Data Mining. Lecture 2

Behavioral Data Mining. Lecture 2 Behavioral Data Mining Lecture 2 Autonomy Corp Bayes Theorem Bayes Theorem P(A B) = probability of A given that B is true. P(A B) = P(B A)P(A) P(B) In practice we are most interested in dealing with events

More information

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan Term Weighting and the Vector Space Model borrowing from: Pandu Nayak and Prabhakar Raghavan IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes

More information

A few applications of the SVD

A few applications of the SVD A few applications of the SVD Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem Regularization methods require the solution

More information

Semantic Similarity from Corpora - Latent Semantic Analysis

Semantic Similarity from Corpora - Latent Semantic Analysis Semantic Similarity from Corpora - Latent Semantic Analysis Carlo Strapparava FBK-Irst Istituto per la ricerca scientifica e tecnologica I-385 Povo, Trento, ITALY strappa@fbk.eu Overview Latent Semantic

More information

Let A an n n real nonsymmetric matrix. The eigenvalue problem: λ 1 = 1 with eigenvector u 1 = ( ) λ 2 = 2 with eigenvector u 2 = ( 1

Let A an n n real nonsymmetric matrix. The eigenvalue problem: λ 1 = 1 with eigenvector u 1 = ( ) λ 2 = 2 with eigenvector u 2 = ( 1 Eigenvalue Problems. Introduction Let A an n n real nonsymmetric matrix. The eigenvalue problem: EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] Au = λu Example: ( ) 2 0 A = 2 1 λ 1 = 1 with eigenvector

More information

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides

CSE 494/598 Lecture-6: Latent Semantic Indexing. **Content adapted from last year s slides CSE 494/598 Lecture-6: Latent Semantic Indexing LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Homework-1 and Quiz-1 Project part-2 released

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4]

EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] EIGENVALE PROBLEMS AND THE SVD. [5.1 TO 5.3 & 7.4] Eigenvalue Problems. Introduction Let A an n n real nonsymmetric matrix. The eigenvalue problem: Au = λu λ C : eigenvalue u C n : eigenvector Example:

More information

Folding-up: A Hybrid Method for Updating the Partial Singular Value Decomposition in Latent Semantic Indexing

Folding-up: A Hybrid Method for Updating the Partial Singular Value Decomposition in Latent Semantic Indexing Folding-up: A Hybrid Method for Updating the Partial Singular Value Decomposition in Latent Semantic Indexing by Jane Elizabeth Bailey Tougas Submitted in partial fulfillment of the requirements for the

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002

CS276A Text Information Retrieval, Mining, and Exploitation. Lecture 4 15 Oct 2002 CS276A Text Information Retrieval, Mining, and Exploitation Lecture 4 15 Oct 2002 Recap of last time Index size Index construction techniques Dynamic indices Real world considerations 2 Back of the envelope

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

More PCA; and, Factor Analysis

More PCA; and, Factor Analysis More PCA; and, Factor Analysis 36-350, Data Mining 26 September 2008 Reading: Principles of Data Mining, section 14.3.3 on latent semantic indexing. 1 Latent Semantic Analysis: Yet More PCA and Yet More

More information

CS630 Representing and Accessing Digital Information Lecture 6: Feb 14, 2006

CS630 Representing and Accessing Digital Information Lecture 6: Feb 14, 2006 Scribes: Gilly Leshed, N. Sadat Shami Outline. Review. Mixture of Poissons ( Poisson) model 3. BM5/Okapi method 4. Relevance feedback. Review In discussing probabilistic models for information retrieval

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Information Retrieval and Organisation Chapter 13 Text Classification and Naïve Bayes Dell Zhang Birkbeck, University of London Motivation Relevance Feedback revisited The user marks a number of documents

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Retrieval models II. IN4325 Information Retrieval

Retrieval models II. IN4325 Information Retrieval Retrieval models II IN4325 Information Retrieval 1 Assignment 1 Deadline Wednesday means as long as it is Wednesday you are still on time In practice, any time before I make it to the office on Thursday

More information

Updating the Centroid Decomposition with Applications in LSI

Updating the Centroid Decomposition with Applications in LSI Updating the Centroid Decomposition with Applications in LSI Jason R. Blevins and Moody T. Chu Department of Mathematics, N.C. State University May 14, 24 Abstract The centroid decomposition (CD) is an

More information

Matrices, Vector Spaces, and Information Retrieval

Matrices, Vector Spaces, and Information Retrieval Matrices, Vector Spaces, and Information Authors: M. W. Berry and Z. Drmac and E. R. Jessup SIAM 1999: Society for Industrial and Applied Mathematics Speaker: Mattia Parigiani 1 Introduction Large volumes

More information

Matrix decompositions and latent semantic indexing

Matrix decompositions and latent semantic indexing 18 Matrix decompositions and latent semantic indexing On page 113, we introduced the notion of a term-document matrix: an M N matrix C, each of whose rows represents a term and each of whose columns represents

More information

Variable Latent Semantic Indexing

Variable Latent Semantic Indexing Variable Latent Semantic Indexing Prabhakar Raghavan Yahoo! Research Sunnyvale, CA November 2005 Joint work with A. Dasgupta, R. Kumar, A. Tomkins. Yahoo! Research. Outline 1 Introduction 2 Background

More information

PV211: Introduction to Information Retrieval

PV211: Introduction to Information Retrieval PV211: Introduction to Information Retrieval http://www.fi.muni.cz/~sojka/pv211 IIR 6: Scoring, term weighting, the vector space model Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics,

More information

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models

Motivation. User. Retrieval Model Result: Query. Document Collection. Information Need. Information Retrieval / Chapter 3: Retrieval Models 3. Retrieval Models Motivation Information Need User Retrieval Model Result: Query 1. 2. 3. Document Collection 2 Agenda 3.1 Boolean Retrieval 3.2 Vector Space Model 3.3 Probabilistic IR 3.4 Statistical

More information

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Latent Semantic Models Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Vector Space Model: Pros Automatic selection of index terms Partial matching of queries

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Intelligent Data Analysis. Mining Textual Data. School of Computer Science University of Birmingham

Intelligent Data Analysis. Mining Textual Data. School of Computer Science University of Birmingham Intelligent Data Analysis Mining Textual Data Peter Tiňo School of Computer Science University of Birmingham Representing documents as numerical vectors Use a special set of terms T = {t 1, t 2,..., t

More information

Information Retrieval. Lecture 6

Information Retrieval. Lecture 6 Information Retrieval Lecture 6 Recap of the last lecture Parametric and field searches Zones in documents Scoring documents: zone weighting Index support for scoring tf idf and vector spaces This lecture

More information