Class Objectives MISTAKES AND ERRORS MISTAKES AND ERRORS CE 211 SURVEYING ENGINEERING FALL 2011 CLASS 03: THEORY OF ERROS 8/26/2011

Size: px
Start display at page:

Download "Class Objectives MISTAKES AND ERRORS MISTAKES AND ERRORS CE 211 SURVEYING ENGINEERING FALL 2011 CLASS 03: THEORY OF ERROS 8/26/2011"

Transcription

1 8/6/011 Class Objectives CE 11 SURVEYING ENGINEERING FALL 011 CLASS 03: THEORY OF ERROS Ahmed Abdel-Rahim, Ph.D, P.E. Associate Professor, Civil Engineering Define mistakes and errors in measurements and relate them to different sources Compute the most probable value, standard deviation, and 95 % error Understand how errors propagate through multiple measurements Define accuracy and precision MISTAKES AND ERRORS No measurement can be perfect or exact because of the physical limitations of the measuring instruments as well as limits in human perception. The difference between a measured distance or angle and its true value may be due to mistakes and/or errors. These are two distinct terms. MISTAKES AND ERRORS Blunders A blunder is a significant mistake caused by human error. It may also be called a gross error. Systematic and Accidental Errors Systematic Errors Accidental (Random) Errors Analytical Procedures Most Probable Value The 95 Percent Error How Accidental Errors Add Up 1

2 8/6/011 Types of Errors Errors in Observations Systematic Errors Repeated if identified and modeled, can be easily corrected (Natural errors and Instrumental errors) Random Errors Occur randomly remain in the measurements after mistakes and systematic errors are corrected. Magnitude and direction of the error are subject to chance Mistakes versus Observation errors Mistakes can be easily identified and isolated (examples of mistakes???) Our study and analysis will focus of observation errors Sources of Errors Natural errors [Systematic] Instrumental errors [Systematic] Personal errors [Random] Again, Which source of error is harder correct? Errors in Observations Theory of Probability X = Observed Value X = True Value E = Error Facts: No observation is exact Every observation contains an error True value (and thus the error) is never known E X X Most probable value represent the best estimate of the true value as the true value of any observation is never known M = individual measurements n = total number of observations Average (mean) value M M n

3 Frequancy Frequancy 8/6/011 Theory of Probability Residuals or errors in individual measurements : the difference between any observation M and the its most probable value. For a group of observations, residuals can be assumed to be normally distributed with an average value of zero M M Residual Distribution (Length) Residuals Residual Distribution (Width) Residuals More about residuals Characteristics of Normal Distribution It can be assumed that residuals for a group of measurements are normally distributed with the following characteristics: Small residuals (errors) are more probable, they occur more often that large ones Large residuals may be mistakes rather than random errors (again, what s the difference between random errors and mistakes?) Positive and negative errors of the same size happen with equal frequency 3

4 8/6/011 Normal Distribution Normal Distribution Standard deviation Defines the abscissa width for the distribution curve. SD is a measure of precision n 1 Percent Errors Defines the probability of an error of any percentage Engineers typically look at 95% percent Ep C P E E ( ) n(n 1) Error Propagation Error Propagation Case I: Sum of Errors Z a b c... n E z E E E E a b c... n Case II: Error of a serious (group of the same observations E z Z na E E E... E E z n E E 1 n 4

5 8/6/011 Error Propagation Case III: Error in a product Z AB E z A E b B E a ACCURACY AND PRECISION Precision Degree of perfection used in the survey Accuracy Degree of perfection obtained in the results FIGURE -4. It is important to understand the difference between accuracy and precision in surveying measurements. Concepts and Definitions Precision: An indication of the uniformity or reproducibility of a result. Accuracy: the degree of conformity with a standard (the "truth"). Concepts and Definitions The accuracy of an analytical measurement is how close a result comes to the true value. Determining the accuracy of a measurement usually requires calibration of the analytical method with a known standard. Precision is the reproducibility of multiple measurements and is usually described by the standard deviation, standard error, or confidence interval. 5

6 8/6/011 Concepts and Definitions Any measurement has three numbers associated with it: Estimate of the quantity Range of error or uncertainty Level of certainty (confidence level) ACCURACY AND PRECISION Error of Closure and Relative Accuracy Relative Accuracy Standards of Accuracy Choice of Survey Procedure Relative Accuracy Relative accuracy = 1 : D/C D = Distance measures C = Error of closure ACCURACY AND PRECISION Table -1. Selected Federal Standards for Traverse Surveys 6

7 8/6/011 HW Assignment #1 Chapter, problems: 7, 8, 9, 1, 13, 19, 0, 1,, 5, 7, 9, 31, 35 Due at the beginning of class on Monday 08/9/011 7

Chapter 2. Theory of Errors and Basic Adjustment Principles

Chapter 2. Theory of Errors and Basic Adjustment Principles Chapter 2 Theory of Errors and Basic Adjustment Principles 2.1. Introduction Measurement is an observation carried out to determine the values of quantities (distances, angles, directions, temperature

More information

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Student Learning Objectives Experimental Errors and Statistics The tolerances noted for volumetric glassware represent the accuracy associated

More information

Error Analysis How Do We Deal With Uncertainty In Science.

Error Analysis How Do We Deal With Uncertainty In Science. How Do We Deal With Uncertainty In Science. 1 Error Analysis - the study and evaluation of uncertainty in measurement. 2 The word error does not mean mistake or blunder in science. 3 Experience shows no

More information

Introduction to Measurement

Introduction to Measurement Units and Measurement Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we measure simple quantities

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Measurement and Uncertainty

Measurement and Uncertainty Measurement and Uncertainty Michael Gold Physics 307L September 16, 2006 Michael Gold (Physics 307L) Measurement and Uncertainty September 16, 2006 1 / 9 Goal of Experiment Measure a parameter: statistical

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION 1.1 INTRODUCTION We currently live in what is often termed the information age. Aided by new and emerging technologies, data are being collected at unprecedented rates in all walks

More information

CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz)

CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz) CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz) In taking physical measurements, the true value is never known with certainty; the value obtained

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Chapter 3 Experimental Error

Chapter 3 Experimental Error Chapter 3 Experimental Error Homework Due Friday January 27 Problems: 3-2, 3-5, 3-9, 3-10, 3-11, 3-12, 3-14, 3-19 Chapter 3 Experimental Error Uncertainties They are everywhere!! We need to learn to understand

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION 1.1 INTRODUCTION We currently live in what is often termed the information age. Aided by new and emerging technologies, data are being collected at unprecedented rates in all walks

More information

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation).

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). Basic Statistics There are three types of error: 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). 2. Systematic error - always too high or too low

More information

Treatment of Error in Experimental Measurements

Treatment of Error in Experimental Measurements in Experimental Measurements All measurements contain error. An experiment is truly incomplete without an evaluation of the amount of error in the results. In this course, you will learn to use some common

More information

23. MORE HYPOTHESIS TESTING

23. MORE HYPOTHESIS TESTING 23. MORE HYPOTHESIS TESTING The Logic Behind Hypothesis Testing For simplicity, consider testing H 0 : µ = µ 0 against the two-sided alternative H A : µ µ 0. Even if H 0 is true (so that the expectation

More information

Vertical Curve Profile Views. Vertical Alignment Fundamentals. Offsets. Offset Formulas 9/17/2009

Vertical Curve Profile Views. Vertical Alignment Fundamentals. Offsets. Offset Formulas 9/17/2009 9/17/009 Vertical Alignment Fundamentals Vertical Curve Profile Views CE 3 Transportation Engineering Dr. Ahmed Abdel-Rahim, Ph.D., P.E. Fig. 3.3 Fig. 3.4 Offsets Offsets are vertical distances from initial

More information

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 17 ame Date Partners TA Section Lab 1: Measurement, Uncertainty, and Uncertainty Propagation The first principle is that you must not fool yourself

More information

An Introduction to Statistics, Measurements and Error Theory

An Introduction to Statistics, Measurements and Error Theory An Introduction to Statistics, Measurements and Error Theory Washington Council of County Surveyors Survey Camp Presentation January 23, 2008 by Jon B. Purnell, PLS 1 There are three kinds of lies: lies,

More information

Aim: to give a description of the sources and significance of errors and an understanding of accuracy and precision of measurements.

Aim: to give a description of the sources and significance of errors and an understanding of accuracy and precision of measurements. ACET108 SURVEYING I Sources of errors Precision and Accuracy Trigonometry A. Sources of Errors Aim: to give a description of the sources and significance of errors and an understanding of accuracy and

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR Every measurement is subject to errors. In the simple case of measuring the distance between two points by means of a meter rod, a number of measurements

More information

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation).

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). Basic Statistics There are three types of error: 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). 2. Systematic error - always too high or too low

More information

Appendix II Calculation of Uncertainties

Appendix II Calculation of Uncertainties Part 1: Sources of Uncertainties Appendix II Calculation of Uncertainties In any experiment or calculation, uncertainties can be introduced from errors in accuracy or errors in precision. A. Errors in

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Sampling. Where we re heading: Last time. What is the sample? Next week: Lecture Monday. **Lab Tuesday leaving at 11:00 instead of 1:00** Tomorrow:

Sampling. Where we re heading: Last time. What is the sample? Next week: Lecture Monday. **Lab Tuesday leaving at 11:00 instead of 1:00** Tomorrow: Sampling Questions Define: Sampling, statistical inference, statistical vs. biological population, accuracy, precision, bias, random sampling Why do people use sampling techniques in monitoring? How do

More information

Review of the Normal Distribution

Review of the Normal Distribution Sampling and s Normal Distribution Aims of Sampling Basic Principles of Probability Types of Random Samples s of the Mean Standard Error of the Mean The Central Limit Theorem Review of the Normal Distribution

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Uncertainty Analysis of Experimental Data and Dimensional Measurements

Uncertainty Analysis of Experimental Data and Dimensional Measurements Uncertainty Analysis of Experimental Data and Dimensional Measurements Introduction The primary objective of this experiment is to introduce analysis of measurement uncertainty and experimental error.

More information

Topic 1.2 Measurement and Uncertainties Uncertainty and error in measurement. Random Errors

Topic 1.2 Measurement and Uncertainties Uncertainty and error in measurement. Random Errors Uncertainty and error in measurement Random Errors Definition of Random Error Random errors are sources of uncertainties in the measurement, whose effect can be reduced by a repeated experiment, and taking

More information

Uncertainties in Measurement

Uncertainties in Measurement Uncertainties in Measurement Laboratory investigations involve taking measurements of physical quantities. All measurements will involve some degree of experimental uncertainty. QUESTIONS 1. How does one

More information

Judah Levine JILA S (2-7785) Monday, 2-4 pm Also by appointment Usually ok without an appointment

Judah Levine JILA S (2-7785) Monday, 2-4 pm Also by appointment Usually ok without an appointment http://www.colorado.edu/physics/phys2150 Judah Levine JILA S-460 Judah.Levine@colorado.edu 303 492-7785 (2-7785) Monday, 2-4 pm Also by appointment Usually ok without an appointment Judah Levine, 2150L3

More information

Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions

Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions Lecture 22/Chapter 19 Part 4. Statistical Inference Ch. 19 Diversity of Sample Proportions Probability versus Inference Behavior of Sample Proportions: Example Behavior of Sample Proportions: Conditions

More information

Source: Chapter 5: Errors in Chemical Analyses

Source: Chapter 5: Errors in Chemical Analyses Source: Chapter 5: Errors in Chemical Analyses Measurements invariably involve errors and uncertainties. it is impossible to perform a chemical analysis that is totally free of errors or uncertainties

More information

Study and research skills 2009 Duncan Golicher. and Adrian Newton. Last draft 11/24/2008

Study and research skills 2009 Duncan Golicher. and Adrian Newton. Last draft 11/24/2008 Study and research skills 2009. and Adrian Newton. Last draft 11/24/2008 Inference about the mean: What you will learn Why we need to draw inferences from samples The difference between a population and

More information

3. Measurement Error and Precision

3. Measurement Error and Precision 3.1 Measurement Error 3.1.1 Definition 3. Measurement Error and Precision No physical measurement is completely exact or even completely precise. - Difference between a measured value and the true value

More information

ME6504 METROLOGY AND MEASUREMENTS

ME6504 METROLOGY AND MEASUREMENTS ME6504 METROLOGY AND MEASUREMENTS Lecture by, M.E., Ph.D. Associate Professor/ Mechanical E.G.S. Pillay Engineering College, Nagapattinam SYLLABUS 06-Jul-18 2 UNIT I BASICS OF METROLOGY Introduction to

More information

EIE 240 Electrical and Electronic Measurements Class 2: January 16, 2015 Werapon Chiracharit. Measurement

EIE 240 Electrical and Electronic Measurements Class 2: January 16, 2015 Werapon Chiracharit. Measurement EIE 240 Electrical and Electronic Measurements Class 2: January 16, 2015 Werapon Chiracharit Measurement Measurement is to determine the value or size of some quantity, e.g. a voltage or a current. Analogue

More information

Ch 3. EXPERIMENTAL ERROR

Ch 3. EXPERIMENTAL ERROR Ch 3. EXPERIMENTAL ERROR 3.1 Measurement data how accurate? TRUE VALUE? No way to obtain the only way is approaching toward the true value. (how reliable?) How ACCURATE How REPRODUCIBLE accuracy precision

More information

It is the art of determining the relative positions of natural and artificial features on the earth s surface, vertically and horizontally.

It is the art of determining the relative positions of natural and artificial features on the earth s surface, vertically and horizontally. SVG 105 Lectures Notes March 2011 BASIC INTRODUCTION TO SURVEYING DEFINITION OF SURVEYING It is the art of determining the relative positions of natural and artificial features on the earth s surface,

More information

Normal Curve in standard form: Answer each of the following questions

Normal Curve in standard form: Answer each of the following questions Basic Statistics Normal Curve in standard form: Answer each of the following questions What percent of the normal distribution lies between one and two standard deviations above the mean? What percent

More information

Measurements and Errors

Measurements and Errors 1 Measurements and Errors If you are asked to measure the same object two different times, there is always a possibility that the two measurements may not be exactly the same. Then the difference between

More information

Review. Midterm Exam. Midterm Review. May 6th, 2015 AMS-UCSC. Spring Session 1 (Midterm Review) AMS-5 May 6th, / 24

Review. Midterm Exam. Midterm Review. May 6th, 2015 AMS-UCSC. Spring Session 1 (Midterm Review) AMS-5 May 6th, / 24 Midterm Exam Midterm Review AMS-UCSC May 6th, 2015 Spring 2015. Session 1 (Midterm Review) AMS-5 May 6th, 2015 1 / 24 Topics Topics We will talk about... 1 Review Spring 2015. Session 1 (Midterm Review)

More information

Fundamentals of data, graphical, and error analysis

Fundamentals of data, graphical, and error analysis Fundamentals of data, graphical, and error analysis. Data measurement and Significant Figures UTC - Physics 030L/040L Whenever we take a measurement, there are limitations to the data and how well we can

More information

Review of the role of uncertainties in room acoustics

Review of the role of uncertainties in room acoustics Review of the role of uncertainties in room acoustics Ralph T. Muehleisen, Ph.D. PE, FASA, INCE Board Certified Principal Building Scientist and BEDTR Technical Lead Division of Decision and Information

More information

Characteristics of instruments

Characteristics of instruments Characteristics of instruments Accuracy Accuracy is a property of a complete measurement rather than a single element. Accuracy is quantified using measurement error: E = measured value true value = system

More information

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/2011 1. Accuracy versus Precision 1.1 Precision how exact is a measurement, or how fine is the scale (# of significant figures).

More information

Error Analysis, Statistics and Graphing Workshop

Error Analysis, Statistics and Graphing Workshop Error Analysis, Statistics and Graphing Workshop Percent error: The error of a measurement is defined as the difference between the experimental and the true value. This is often expressed as percent (%)

More information

Averaging, Errors and Uncertainty

Averaging, Errors and Uncertainty Averaging, Errors and Uncertainty Types of Error There are three types of limitations to measurements: 1) Instrumental limitations Any measuring device can only be used to measure to with a certain degree

More information

o Lecture (2 hours) / week Saturday, g1: (period 1) g2: (period 2) o Lab., Sec (2 hours)/week Saturday, g1: (period 4) Wednesday, g2: (period 3)

o Lecture (2 hours) / week Saturday, g1: (period 1) g2: (period 2) o Lab., Sec (2 hours)/week Saturday, g1: (period 4) Wednesday, g2: (period 3) 1 o Lecture (2 hours) / week Saturday, g1: (period 1) g2: (period 2) o Lab., Sec (2 hours)/week Saturday, g1: (period 4) Wednesday, g2: (period 3) 2 This course introduces the principles of instrumentation

More information

Measurements and Data Analysis An Introduction

Measurements and Data Analysis An Introduction Measurements and Data Analysis An Introduction Introduction 1. Significant Figures 2. Types of Errors 3. Deviation from the Mean 4. Accuracy & Precision 5. Expressing Measurement Errors and Uncertainty

More information

Practical Statistics for the Analytical Scientist Table of Contents

Practical Statistics for the Analytical Scientist Table of Contents Practical Statistics for the Analytical Scientist Table of Contents Chapter 1 Introduction - Choosing the Correct Statistics 1.1 Introduction 1.2 Choosing the Right Statistical Procedures 1.2.1 Planning

More information

Statistics: Error (Chpt. 5)

Statistics: Error (Chpt. 5) Statistics: Error (Chpt. 5) Always some amount of error in every analysis (How much can you tolerate?) We examine error in our measurements to know reliably that a given amount of analyte is in the sample

More information

STATS DOESN T SUCK! ~ CHAPTER 16

STATS DOESN T SUCK! ~ CHAPTER 16 SIMPLE LINEAR REGRESSION: STATS DOESN T SUCK! ~ CHAPTER 6 The HR manager at ACME food services wants to examine the relationship between a workers income and their years of experience on the job. He randomly

More information

Preliminary Statistics. Lecture 5: Hypothesis Testing

Preliminary Statistics. Lecture 5: Hypothesis Testing Preliminary Statistics Lecture 5: Hypothesis Testing Rory Macqueen (rm43@soas.ac.uk), September 2015 Outline Elements/Terminology of Hypothesis Testing Types of Errors Procedure of Testing Significance

More information

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results Topic 11: Measurement and Data Processing and Analysis Topic 11.1- Uncertainties and Errors in Measurement and Results Key Terms Random Error- above or below true value, usually due to limitations of equipment

More information

Appendix III Testing rationality

Appendix III Testing rationality Appendix III Testing rationality An allocation π is directly revealed preferred to an allocation π 0, denoted πr D π 0,ifp π p π 0.Anallocationπis revealed preferred to an allocation π 0, denoted πrπ 0,

More information

Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13

Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13 Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13 Student Learning Objectives Experimental Errors and Statistics Calibration Results for a 2.0-mL Transfer Pipet 1.998 ml 1.991 ml 2.001 ml

More information

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured.

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured. Chemical Analysis can be of two types: Chapter 11- Measurement and Data Processing: - : Substances are classified on the basis of their or properties, such as - : The amount of the sample determined in

More information

Instrumentation & Measurement AAiT. Chapter 2. Measurement Error Analysis

Instrumentation & Measurement AAiT. Chapter 2. Measurement Error Analysis Chapter 2 Measurement Error Analysis 2.1 The Uncertainty of Measurements Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all measurements have some degree of uncertainty

More information

Uncertainty in Measurements

Uncertainty in Measurements Uncertainty in Measurements Joshua Russell January 4, 010 1 Introduction Error analysis is an important part of laboratory work and research in general. We will be using probability density functions PDF)

More information

Examine characteristics of a sample and make inferences about the population

Examine characteristics of a sample and make inferences about the population Chapter 11 Introduction to Inferential Analysis Learning Objectives Understand inferential statistics Explain the difference between a population and a sample Explain the difference between parameter and

More information

Introduction to Data Analysis

Introduction to Data Analysis Introduction to Data Analysis Analysis of Experimental Errors How to Report and Use Experimental Errors Statistical Analysis of Data Simple statistics of data Plotting and displaying the data Summary Errors

More information

Bias in parallax measurements

Bias in parallax measurements Bias in parallax measurements When we measure some physical quantity experimentally, we usually incur some error in the measurement process, leading to an uncertainty in the result. Parallax is no exception:

More information

Radioactivity: Experimental Uncertainty

Radioactivity: Experimental Uncertainty Lab 5 Radioactivity: Experimental Uncertainty In this lab you will learn about statistical distributions of random processes such as radioactive counts. You will also further analyze the gamma-ray absorption

More information

Determination of the Formula of a Hydrate. Ms. Kiely Coral Gables Senior High School IB Chemistry SL

Determination of the Formula of a Hydrate. Ms. Kiely Coral Gables Senior High School IB Chemistry SL Determination of the Formula of a Hydrate Ms. Kiely Coral Gables Senior High School IB Chemistry SL Bell-Ringer Read pg 23 and then answer the following questions: 1. What is a hydrated salt, a.k.a hydrated

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Topic 11: Measurement and data processing

Topic 11: Measurement and data processing Topic 11: Measurement and data processing 11.1 Uncertainty and error in measurement 11.2 Uncertainties in calculated results 11.3 Graphical techniques -later! From the syllabus Precision v. Accuracy The

More information

Stochastic calculus for summable processes 1

Stochastic calculus for summable processes 1 Stochastic calculus for summable processes 1 Lecture I Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions. It is a

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

NOAA Global Monitoring Division, Boulder CO, USA

NOAA Global Monitoring Division, Boulder CO, USA Efforts to separately report random and systematic measurement uncertainty for continuous measurements in the NOAA Global Greenhouse Gas Reference Network Arlyn Andrews 1, Michael Trudeau 1,2, Jonathan

More information

Physics Quantities Reducible to 7 Dimensions

Physics Quantities Reducible to 7 Dimensions Measurement Physics Quantities Reducible to 7 Dimensions Dimension SI Unit Symbol Example Length meter m Mass kilogram kg Time second s Electric Current ampere Temperature kelvin K A Standard door height:

More information

Measurement Error. Martin Bland. Accuracy and precision. Error. Measurement in Health and Disease. Professor of Health Statistics University of York

Measurement Error. Martin Bland. Accuracy and precision. Error. Measurement in Health and Disease. Professor of Health Statistics University of York Measurement in Health and Disease Measurement Error Martin Bland Professor of Health Statistics University of York http://martinbland.co.uk/ Accuracy and precision In this lecture: measurements which are

More information

Chapter 27 Summary Inferences for Regression

Chapter 27 Summary Inferences for Regression Chapter 7 Summary Inferences for Regression What have we learned? We have now applied inference to regression models. Like in all inference situations, there are conditions that we must check. We can test

More information

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world experiment. Suppose you wanted to forecast the results

More information

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing 1. Purpose of statistical inference Statistical inference provides a means of generalizing

More information

Counting Statistics and Error Propagation!

Counting Statistics and Error Propagation! Counting Statistics and Error Propagation Nuclear Medicine Physics Lectures 10/4/11 Lawrence MacDonald, PhD macdon@uw.edu Imaging Research Laboratory, Radiology Dept. 1 Statistics Type of analysis which

More information

Cogs 14B: Introduction to Statistical Analysis

Cogs 14B: Introduction to Statistical Analysis Cogs 14B: Introduction to Statistical Analysis Statistical Tools: Description vs. Prediction/Inference Description Averages Variability Correlation Prediction (Inference) Regression Confidence intervals/

More information

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test 1 Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test Learning Objectives After this section, you should be able to DESCRIBE the relationship between the significance level of a test, P(Type

More information

Uncertainty in the Yellow Change Interval

Uncertainty in the Yellow Change Interval Uncertainty in the Yellow Change Interval Abstract The difference between legal and illegal when it comes to running a red light is not black and white. Engineering is never exact. Tolerance is routine

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Extra hours at the tutoring center Fri Dec 3rd 10-4pm, Sat Dec 4 11-2 pm Final Dec 14th 5:30-7:30pm CH 5122 Last time: Making decisions We have a null hypothesis We have

More information

HW Solution 3 Due: Sep 11

HW Solution 3 Due: Sep 11 ECS 35: Probability and Random Processes 204/ HW Solution 3 Due: Sep Lecturer: Prapun Suksompong, PhD Instructions (a) ONE part of a question will be graded (5 pt) Of course, you do not know which part

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011 Uncertainty, Measurement, and Models Lecture 2 Physics 2CL Summer Session 2011 Outline What is uncertainty (error) analysis and what can it do for you Issues with measurement and observation What does

More information

Formalizing the Concepts: Simple Random Sampling. Juan Muñoz Kristen Himelein March 2012

Formalizing the Concepts: Simple Random Sampling. Juan Muñoz Kristen Himelein March 2012 Formalizing the Concepts: Simple Random Sampling Juan Muñoz Kristen Himelein March 2012 Purpose of sampling To study a portion of the population through observations at the level of the units selected,

More information

A Method for Measuring the Spatial Accuracy of Coordinates Collected Using the Global Positioning System

A Method for Measuring the Spatial Accuracy of Coordinates Collected Using the Global Positioning System This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. A Method for Measuring the Spatial Accuracy of Coordinates

More information

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015 Fall 2015 Population versus Sample Population: data for every possible relevant case Sample: a subset of cases that is drawn from an underlying population Inference Parameters and Statistics A parameter

More information

CE 3710: Uncertainty Analysis in Engineering

CE 3710: Uncertainty Analysis in Engineering FINAL EXAM Monday, December 14, 10:15 am 12:15 pm, Chem Sci 101 Open book and open notes. Exam will be cumulative, but emphasis will be on material covered since Exam II Learning Expectations for Final

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY CORRELATION OF EXPERIMENTAL DATA

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY CORRELATION OF EXPERIMENTAL DATA EM375 STATISTICS AND MEASUREMENT UNCERTAINTY CORRELATION OF EXPERIMENTAL DATA In this unit of the course we use statistical methods to look for trends in data. Often experiments are conducted by having

More information

Chapter 8 - Statistical intervals for a single sample

Chapter 8 - Statistical intervals for a single sample Chapter 8 - Statistical intervals for a single sample 8-1 Introduction In statistics, no quantity estimated from data is known for certain. All estimated quantities have probability distributions of their

More information

MECHANICAL ENGINEERING SYSTEMS LABORATORY

MECHANICAL ENGINEERING SYSTEMS LABORATORY MECHANICAL ENGINEERING SYSTEMS LABORATORY Group 02 Asst. Prof. Dr. E. İlhan KONUKSEVEN FUNDAMENTAL CONCEPTS IN MEASUREMENT AND EXPERIMENTATION MEASUREMENT ERRORS AND UNCERTAINTY THE ERROR IN A MEASUREMENT

More information

ACCURACY OF WALL STATION SURVEYS

ACCURACY OF WALL STATION SURVEYS ACCURACY OF WALL STATION SURVEYS ABSTRACT Strengths and weaknesses of the wall station surveys are discussed and the advantages of using least squares methodology to process underground control surveys

More information

A.0 SF s-uncertainty-accuracy-precision

A.0 SF s-uncertainty-accuracy-precision A.0 SF s-uncertainty-accuracy-precision Objectives: Determine the #SF s in a measurement Round a calculated answer to the correct #SF s Round a calculated answer to the correct decimal place Calculate

More information

CHOOSING THE RIGHT SAMPLING TECHNIQUE FOR YOUR RESEARCH. Awanis Ku Ishak, PhD SBM

CHOOSING THE RIGHT SAMPLING TECHNIQUE FOR YOUR RESEARCH. Awanis Ku Ishak, PhD SBM CHOOSING THE RIGHT SAMPLING TECHNIQUE FOR YOUR RESEARCH Awanis Ku Ishak, PhD SBM Sampling The process of selecting a number of individuals for a study in such a way that the individuals represent the larger

More information

Formalizing the Concepts: Simple Random Sampling. Juan Muñoz Kristen Himelein March 2013

Formalizing the Concepts: Simple Random Sampling. Juan Muñoz Kristen Himelein March 2013 Formalizing the Concepts: Simple Random Sampling Juan Muñoz Kristen Himelein March 2013 Purpose of sampling To study a portion of the population through observations at the level of the units selected,

More information

Measurement and Measurement Errors

Measurement and Measurement Errors 1 Measurement and Measurement Errors Introduction Physics makes very general yet quite detailed statements about how the universe works. These statements are organized or grouped together in such a way

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement.

Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement. Workshop... Resval. Practical tool for the validation of an analytical method and the quantification of the uncertainty of measurement. Henk Herbold Marco Blokland Saskia Sterk General topics. *What s

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information