3. Measurement Error and Precision

Size: px
Start display at page:

Download "3. Measurement Error and Precision"

Transcription

1 3.1 Measurement Error Definition 3. Measurement Error and Precision No physical measurement is completely exact or even completely precise. - Difference between a measured value and the true value - Absolute error(e) vs Percent(Relative) error(%e) e = true value measured value, e e true value - In most of real measurements the true value is unknown, thus the average of a sample replaces it Kinds of measurement error - Supposed there are no mistakes, * measured value(x) = true value(t) + measurement error(e) * measurement error(e) = random error(e r ) + systematic error(e s ) 1) Random Error(Accidental Error) - due to unpredictable variations in the experimental conditions or a deficiency in defining the variable. - does not have any consistent effects across the entire sample. - does not affect the average but only a distribution of measured values about the sample mean. scatter(precision), decrease the precision. - averaging of multiple measurements reduces random error. 2) Systematic Error - caused by systematic faults in the measuring instrument. - shifts the sample mean away from the true value by a fixed amount, that is, an offset (bias error) decrease the accuracy. - usually adjusting zero offset reduces systematic error. - can be estimated by comparison such as calibration, concomitant method. (A: Larger bias, smaller scatter, B: Smaller bias, larger scatter) PNU Prof. Ahn, Jung Hwan

2 Ex 3.1) 10 independent measurements with the true value known(fig 3.1) Fig independent measurements 3.2 Accuracy vs Precision Accuracy - Indicates how close to the truth the measured value is, in other words how small the bias error(=average value true value) is. - described as (% of reading) + offset. Ex 3.2) If the accuracy of a voltmeter is ±(0.3%+0.2), for a measured value of 73.6 volts the max. error is 0.42 V including 0.2 V of zero shift and for 100 V the max error is 0.5 V Precision - Indicates how closely a group of repeated measurements get together to the average the more they scatter, the worse the precision is. - Usually described as 2*S x (95%), standard deviation S x N i x i x - Is getting better as the resolution is smaller. cf. repeatability(or reproducibility) N Ex 3.3) Precision vs Accuracy (Fig 3.2) Fig 3.2 Comparison of accuracy, precision, bias errors; a:(low, high, large) b:(high, high, zero) c:(low, low, small) PNU Prof. Ahn, Jung Hwan

3 3.3 Precision vs the resolution of a measuring scale - How precisely can we measure? - a measured value is expressed by the significant (meaningful) digits, that is all the digits with certainty + one estimated(or uncertain) digit. 2.55/2.5, the last digit is therefore somewhat inaccurate(uncertain). - the precision of any measured value can be assumed to be 1 of the least significant digit. Measurement resolution is dependent on the graduation of a scale, which corresponds to the bit number in A/D converter. 3.4 Calibration Fig 3.3 Various graduations - Process of comparing an instrument with a more accurate known standard. - a calibration chart of relationship between input and output is drawn up. - Static calibration is usual; output variable(y) is measured each time when the input variable(x) is independently controlled to a certain value - A correlation equation, y=f(x), is determined through curve-fitting. dy - Static gain (static sensitivity): K dx - Output span (FSO: full-scale operating range) : r y m ax y m in - Input span : r i x m ax x m in cf. Dynamic calibration: When the variables of interest are time(or space) dependent, the dynamic behavior of the output variable is investigated against dynamic input signal such as a sinusoidal or a step signal. Fig 3.4 Representative static calibration curve PNU Prof. Ahn, Jung Hwan

4 3.5 Instrumental errors 1) Hysteresis error - differences between an upscale sequential test and a downscale one e h e h max y u pscale y down scale, Max hysteresis error : e h max r 2) Linearity error e L x yx yx (calibration: yx a a x yx measured) 3) sensitivity error( e K ): error in the slope of the calibration curve 4) zero shift error( e Z ): a drift in the zero intercept 5) instrument repeatability error( e R ) - The ability to indicate the same value upon repeated but independent application of the same input under the same equipment and environment S x - e R max r ( Sx : standard deviation) cf) Reproducibility: The results of multiple repeatability tests(replication) performed in different environment on a single unit. 6) Overall instrumental error: combining all elemental errors, RSS(root-sum squares). e c e e e M Fig 3.5 Instrumental errors PNU Prof. Ahn, Jung Hwan

5 3.6 Presentation of a measured value with significant digits Significant digits(significant figures) in measurement - Uncertainty for a group of data( a sample) = standard deviation - More significant digits means the value is more precise. - Scientific notation * = (two sig-fig) * = (six sig-fig) * 1300= (four sig-fig) or (two sig-fig) - How much precision is your instrument capable of? * 2.55(3 sig-fig) vs 2.5(2 sig-fig) * If your instrument are precise to 3 sig-fig, you can distinguish 2.55 and 2.56 cm long. cf. The units have nothing to do with the precision of a measurement. For example grams is not more precise than 12.1 kilograms. The first has 1 sig-fig and the second has 3 sig-figs Stating Results with Uncertainty - S x ± S x or x x with a percent uncertainty ( ) x e.g. 9.2 ± 0.3 g or 9.2 grams with an uncertainty of 3 % - The uncertainty in the final result should have, at most, 2 digits, and more commonly 1 digit. Ex. 9.5±0.3g, or 9.52 ±0.14g, but not 9.52±0.3g - for some reasons the data points varied so that the standard deviation is 2g. Then, the result should be reported as 9±2g. - If The uncertainty is much smaller than the least significant digit, then assume that is equal to "1" of the smallest digit. For example, 9.52±0.01g Comparing quantities with uncertainty To know whether two numbers obtained by two different methods but hypothetically referring to the same physical quantity agree. - State the quantities with their uncertainty and see if they overlap. If they do, they agree. If not, they don't. Ex 3.4) A theory predicts that the density of an object should be 10.0±0.1 g/cm 3. - If a measurement value is 9.8±0.3 g/cm 3, the two values agree within the experimental uncertainty. - If the measurement value is 9.81±0.02 g/cm 3, the two values did not agree PNU Prof. Ahn, Jung Hwan

6 3.7 Uncertainty in calculation (significance arithmetic) - Are the calculated results below "correct"? * 2.3 = , 3.7 / = Those are correct in a pure mathematical sense but in the real world, when we make measurements of anything, not correct because the value have uncertainty. - Rules for estimating the uncertainty in calculation using significant digits. 1) For addition and subtraction, the result should have as many decimal places as the measured number with the smallest number of decimal places. Ex 3.5) total weight of A,B,C: W= 1.23 N N N = N 9.5N Ex 3.6) ⁴ ³= = > = ) For multiplication and division, the result should have as many significant digits as the measured number with the smallest number of significant digits. Ex 3.7) Area of a rectangle: S= 1.25m 5.213m = m m 2 Ex 3.8) Volume of a sphere (D=20.05mm): D V = = = 2, ,374 cf. round-off errors: there is no reason to prematurely truncate a result, just because it is found to be uncertain. So keep your extra digits as you go (at most one or two extra, if calculating by hand), but make sure to adjust the final result when presenting your measurements for comparison PNU Prof. Ahn, Jung Hwan

7 3.8 Propagation of Uncertainty( Error propagation) - method of computing the uncertainty in a result which depends on several variables having its own uncertainty, respectively. - a relationship between a dependent variable y and a measured variable x: y f x x x n (3.1) From a number of measurements, the sample mean and the uncertainty interval for x are x, x x x n while for y they are - Expanding y as a Taylor series and taking a linear approximation, y, y f x. f f f f y x x x x xn xn xi xi : contribution to y by x i ) uncertainty of y: f y x f xn n - With no information on i, it is more practical to use the maximum error ; y f x x f x x f xn xn (3.2) - Measurement rules in an aspect of error propagation * Variables with a larger gain or power should be measured more accurately. * The variable with worst accuracy determines the whole accuracy. * It is effective to make all the variables even in accuracy. Ex 3.9) Find the maximum error in measuring the diameter and height of a cylinder so that the maximum error in calculating its volume falls within ±1%. V= d V h V d d h h * 1st term: no problem because can be approximated to any accuracy level. * 2nd term: affects two times as large as the third term does. Let the accuracy of each variable even, d d h h Substituting d= 2cm, l = 10cm, then d mm h mm the maximum measurement error: d ± mm h ± mm Function Formula Uncertainty formula Multiplication, Division f xy or f xy f x y Addition, Subtraction f x y or f x y f x y Product of Power fn. f x m y n f m x n y Constant multiplication f K x K constant f K x Logarithmic functions Exponential functions f log e x f log x f e x f x or f x f y x x y f log x x f x x log x x Table 3.1 Common formulas for propagating uncertainty( percent error PNU Prof. Ahn, Jung Hwan

8 Homework #3.1: In an experiment with an air track, an experimenter wishes to determine the average speed of an air track cart between two photo gates. The distance between the photo gates is given by ±, and the time of travel between these two points is ±. Calculate the average speed, the fractional uncertainty, and the absolute uncertainty given these data. Show your work, and state the results using correct significant digits, and following the format given in the section Stating Results with Uncertainty. Homework #3.2: To measure the density of a rectangular object, an experimenter measures the object's volume and mass. The volume is given by the formula, where is the length, is the width, and is the height. The density is given by, where is the object's mass. If the measurement of the mass is uncertain by 2%, and each of and is uncertain by 4%, what is the uncertainty, in percent, of the density? Show your work. Homework #3.3: The experimenter conducts the same density measurement with a second sample that is spherical in shape. The mass is again uncertain by 2%. The diameter of the sphere is measured to a precision of 4%. The volume of a sphere is given by the formula. What is the percent uncertainty of the density in this case? Show your work. Why is the uncertainty in this case different than in the case of a rectangular object? What is the underlying reason (not just how are the formulas different)? Homework #3.4: For a displacement transducer having a calibration curve, estimate the uncertainty in displacement for, if with ± and ± at 95% confidence PNU Prof. Ahn, Jung Hwan

Uncertainties in Measurement

Uncertainties in Measurement Uncertainties in Measurement Laboratory investigations involve taking measurements of physical quantities. All measurements will involve some degree of experimental uncertainty. QUESTIONS 1. How does one

More information

Appendix II Calculation of Uncertainties

Appendix II Calculation of Uncertainties Part 1: Sources of Uncertainties Appendix II Calculation of Uncertainties In any experiment or calculation, uncertainties can be introduced from errors in accuracy or errors in precision. A. Errors in

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Numbers and Uncertainty

Numbers and Uncertainty Significant Figures Numbers and Uncertainty Numbers express uncertainty. Exact numbers contain no uncertainty. They are obtained by counting objects (integers) or are defined, as in some conversion factors

More information

MECHANICAL ENGINEERING SYSTEMS LABORATORY

MECHANICAL ENGINEERING SYSTEMS LABORATORY MECHANICAL ENGINEERING SYSTEMS LABORATORY Group 02 Asst. Prof. Dr. E. İlhan KONUKSEVEN FUNDAMENTAL CONCEPTS IN MEASUREMENT AND EXPERIMENTATION MEASUREMENT ERRORS AND UNCERTAINTY THE ERROR IN A MEASUREMENT

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results Topic 11: Measurement and Data Processing and Analysis Topic 11.1- Uncertainties and Errors in Measurement and Results Key Terms Random Error- above or below true value, usually due to limitations of equipment

More information

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry.

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Chemistry Name: Section ANALYZE DATA KEY Date: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry. Most, but not all,

More information

CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz)

CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz) CHAPTER 9: TREATING EXPERIMENTAL DATA: ERRORS, MISTAKES AND SIGNIFICANCE (Written by Dr. Robert Bretz) In taking physical measurements, the true value is never known with certainty; the value obtained

More information

PHYS 2211L - Principles of Physics Laboratory I Propagation of Errors Supplement

PHYS 2211L - Principles of Physics Laboratory I Propagation of Errors Supplement PHYS 2211L - Principles of Physics Laboratory I Propagation of Errors Supplement 1. Introduction. Whenever two or more quantities are measured directly in order to indirectly determine the value of another,

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

MEP365. MEP365 Thermal Measurements, Ch Our Daily use of measurements. Thermal Measurements. Measurements uses in control.

MEP365. MEP365 Thermal Measurements, Ch Our Daily use of measurements. Thermal Measurements. Measurements uses in control. Our Daily use of measurements MEP365 Thermal Measurements Introduction March 2009 1-Length [in making drawings, in reporting the area of a land] 2-Weight [Human being, food, materials, etc] 3-Temperature

More information

Chapter 3 Experimental Error

Chapter 3 Experimental Error Chapter 3 Experimental Error Homework Due Friday January 27 Problems: 3-2, 3-5, 3-9, 3-10, 3-11, 3-12, 3-14, 3-19 Chapter 3 Experimental Error Uncertainties They are everywhere!! We need to learn to understand

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Methods and Tools of Physics

Methods and Tools of Physics Methods and Tools of Physics Order of Magnitude Estimation: Essential idea: Scientists aim towards designing experiments that can give a true value from their measurements, but due to the limited precision

More information

Accuracy of Measurement: how close your measured value is to the actual measurement

Accuracy of Measurement: how close your measured value is to the actual measurement Standard: an exact quantity that people use to make measurements Good Example: a meter stick (everyone one knows the length of a meter) Bad Example: Ms. Pluchino s foot (everyone does not know how big

More information

Errors: What they are, and how to deal with them

Errors: What they are, and how to deal with them Errors: What they are, and how to deal with them A series of three lectures plus exercises, by Alan Usher Room 111, a.usher@ex.ac.uk Synopsis 1) Introduction ) Rules for quoting errors 3) Combining errors

More information

Scientific Measurement

Scientific Measurement Scientific Measurement A quantity is anything having a measurable size or amount For Example: 5 But 5 what? A unit assigns value to a measured quantity For Example: 5 ft, 5 gal, 5 sec, 5 m, 5 g. Base Units

More information

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific notation in calculations. Significant figures - consist of

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

Chapter 2 - Analyzing Data

Chapter 2 - Analyzing Data Chapter 2 - Analyzing Data Section 1: Units and Measurements Section 2: Scientific Notation and Dimensional Analysis Section 3: Uncertainty in Data Section 4: Representing Data Chemists collect and analyze

More information

FUNDAMENTAL CONCEPTS IN MEASUREMENT & EXPERIMENTATION (continued) Measurement Errors and Uncertainty:

FUNDAMENTAL CONCEPTS IN MEASUREMENT & EXPERIMENTATION (continued) Measurement Errors and Uncertainty: FUNDAMENTAL CNCEPTS N MEASUREMENT & EXPERMENTATN (continued) Measurement Errors and Uncertainty: The Error in a measurement is the difference between the Measured Value and the True Value of the Measurand.

More information

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision?

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision? Lesson Starter Look at the specifications for electronic balances. How do the instruments vary in precision? Discuss using a beaker to measure volume versus using a graduated cylinder. Which is more precise?

More information

Appendix B: Accuracy, Precision and Uncertainty

Appendix B: Accuracy, Precision and Uncertainty Appendix B: Accuracy, Precision and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

Scientific Measurement

Scientific Measurement Scientific Measurement Sprint times are often measured to the nearest hundredth of a second (0.01 s). Chemistry also requires making accurate and often very small measurements. CHEMISTRY & YOU How do you

More information

CHAPTER 2 Data Analysis

CHAPTER 2 Data Analysis CHAPTER 2 Data Analysis 2.1 Units of Measurement The standard of measurement used in science are those of the metric system. All the units are based on 10 or multiples of 10. SI Units: The International

More information

Dimensional Analysis, SI Units & Significant figures

Dimensional Analysis, SI Units & Significant figures Dimensional Analysis, SI Units & Significant figures WHAT IS CHEMISTRY The study of matter, its composition, structure, properties, and the changes it undergoes & energy changes associated with it. Scientific

More information

Base unit-a defined unit of measurement based on an object or event in the physical world. Length

Base unit-a defined unit of measurement based on an object or event in the physical world. Length Base unit-a defined unit of measurement based on an object or event in the physical world Five base units: Temperature Mass Length Time Energy Derived unit-a unit of measurement defined by a combination

More information

Meas ure ment: Uncertainty and Error in Lab Measurements

Meas ure ment: Uncertainty and Error in Lab Measurements Meas ure ment: Uncertainty and Error in Lab Measurements Measurement is at the heart of science. In order to do science, we must be able to measure quantities such as time, distance, and mass. As famous

More information

Why the fuss about measurements and precision?

Why the fuss about measurements and precision? Introduction In this tutorial you will learn the definitions, rules and techniques needed to record measurements in the laboratory to the proper precision (significant figures). You should also develop

More information

HW #1: 1.42, 1.52, 1.54, 1.64, 1.66, 1.70, 1.76, 1.78, 1.80, 1.82, 1.84, 1.86, 1.92, 1.94, 1.98, 1.106, 1.110, 1.116

HW #1: 1.42, 1.52, 1.54, 1.64, 1.66, 1.70, 1.76, 1.78, 1.80, 1.82, 1.84, 1.86, 1.92, 1.94, 1.98, 1.106, 1.110, 1.116 Chemistry 121 Lecture 3: Physical Quantities Measuring Mass, Length, and Volume; Measurement and Significant Figures; Scientific Notation; Rounding Review Sections 1.7-1.11 in McMurry, Ballantine, et.

More information

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR Every measurement is subject to errors. In the simple case of measuring the distance between two points by means of a meter rod, a number of measurements

More information

SIGNIFICANT FIGURES. x 100%

SIGNIFICANT FIGURES. x 100% Page 1 SIGNIFICANT FIGURES ASSIGNED READING: Zumdahal, et.al, Chemistry (10 th ed.), Chapter 1, Sec. 4 and 5. I. Accuracy and Precision It is important to remember, here at the outset of this course, that

More information

Errors. Intensive Computation. Annalisa Massini 2017/2018

Errors. Intensive Computation. Annalisa Massini 2017/2018 Errors Intensive Computation Annalisa Massini 2017/2018 Intensive Computation - 2017/2018 2 References Scientific Computing: An Introductory Survey - Chapter 1 M.T. Heath http://heath.cs.illinois.edu/scicomp/notes/index.html

More information

Warm-up: Are accuracy and precision the same thing? (If so do you want to bet the house on it?)

Warm-up: Are accuracy and precision the same thing? (If so do you want to bet the house on it?) Obj: Students will: 1. Distinguish between accuracy and precision. 2. Examine various pieces of lab equipment for their accuracy. 3. Define and identify significant figures. Warm-up: Are accuracy and precision

More information

Measurements and Errors

Measurements and Errors 1 Measurements and Errors If you are asked to measure the same object two different times, there is always a possibility that the two measurements may not be exactly the same. Then the difference between

More information

Chapter 2. Measurements and Calculations

Chapter 2. Measurements and Calculations Chapter 2 Measurements and Calculations Section 2.1 Scientific Notation Measurement Quantitative observation. Has 2 parts number and unit. Number tells comparison. Unit tells scale. If something HAS a

More information

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured.

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured. Chemical Analysis can be of two types: Chapter 11- Measurement and Data Processing: - : Substances are classified on the basis of their or properties, such as - : The amount of the sample determined in

More information

Topic 2 Measurement and Calculations in Chemistry

Topic 2 Measurement and Calculations in Chemistry Topic Measurement and Calculations in Chemistry Nature of Measurement Quantitative observation consisting of two parts. number scale (unit) Examples 0 grams 6.63 10 34 joule seconds The Fundamental SI

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Fundamentals of data, graphical, and error analysis

Fundamentals of data, graphical, and error analysis Fundamentals of data, graphical, and error analysis. Data measurement and Significant Figures UTC - Physics 030L/040L Whenever we take a measurement, there are limitations to the data and how well we can

More information

Chapter 3 Math Toolkit

Chapter 3 Math Toolkit Chapter 3 Math Toolkit Problems - any Subtitle: Error, where it comes from, how you represent it, and how it propagates into your calculations. Before we can start talking chemistry we must first make

More information

A.0 SF s-uncertainty-accuracy-precision

A.0 SF s-uncertainty-accuracy-precision A.0 SF s-uncertainty-accuracy-precision Objectives: Determine the #SF s in a measurement Round a calculated answer to the correct #SF s Round a calculated answer to the correct decimal place Calculate

More information

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit.

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit. Significant Figures When counting objects, it is easy to determine the EXACT number of objects. Significant Figures Unit B1 But when a property such as mass, time, volume, or length is MEASURED, you can

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Measurements, Sig Figs and Graphing

Measurements, Sig Figs and Graphing Measurements, Sig Figs and Graphing Chem 1A Laboratory #1 Chemists as Control Freaks Precision: How close together Accuracy: How close to the true value Accurate Measurements g Knowledge Knowledge g Power

More information

Part 01 - Notes: Identifying Significant Figures

Part 01 - Notes: Identifying Significant Figures Part 01 - Notes: Identifying Significant Figures Objectives: Identify the number of significant figures in a measurement. Compare relative uncertainties of different measurements. Relate measurement precision

More information

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks Error Analysis Significant Figures in Calculations Most lab report must have an error analysis. For many experiments, significant figure rules are sufficient. Remember to carry at least one extra significant

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Qualitative Observations: General types of observations. Easy to determine. Not necessarily precise. I have many fingers, the speed limit is fast, class is long,

More information

Chemistry 11. Measuring and Recording Scientific Data. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures

Chemistry 11. Measuring and Recording Scientific Data. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Chemistry 11 Measuring and Recording Scientific Data Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Name: Block: Measuring and Recording Significant Data SI

More information

BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS

BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS BRIEF SURVEY OF UNCERTAINITY IN PHYSICS LABS THREE CASES OF UNCERTAINTY CALCULATION There are two main situations when dealing with uncertainty calculation of a given parameter; or it is measured or it

More information

Assume that you have made n different measurements of a quantity x. Usually the results of these measurements will vary; call them x 1

Assume that you have made n different measurements of a quantity x. Usually the results of these measurements will vary; call them x 1 #1 $ http://www.physics.fsu.edu/users/ng/courses/phy2048c/lab/appendixi/app1.htm Appendix I: Estimates for the Reliability of Measurements In any measurement there is always some error or uncertainty in

More information

Raymond A. Serway Chris Vuille. Chapter One. Introduction

Raymond A. Serway Chris Vuille. Chapter One. Introduction Raymond A. Serway Chris Vuille Chapter One Introduction Theories and Experiments The goal of physics is to develop theories based on experiments A physical theory, usually expressed mathematically, describes

More information

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures Lecture 3 SIGNIFICANT FIGURES e.g. - all digits that are certain plus one which contains some uncertainty are said to be significant figures 10.07 ml 0.1007 L 4 significant figures 0.10070 L 5 significant

More information

Pre-Lab: Primer on Experimental Errors

Pre-Lab: Primer on Experimental Errors IUPUI PHYS 15 Laboratory Page 1 of 5 Pre-Lab: Primer on Eperimental Errors There are no points assigned for this Pre-Lab. n essential skill in the repertoire of an eperimental physicist is his/her ability

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

Appendix F. Treatment of Numerical Data. I. Recording Data F-1

Appendix F. Treatment of Numerical Data. I. Recording Data F-1 Treatment of umerical Data I. Recording Data When numerical data are recorded, three kinds of information must be conveyed: the magnitude of the number, how well the number is known, and the units used

More information

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Preview Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Section 1 Scientific Method Objectives Describe the purpose of

More information

Appendix C: Accuracy, Precision, and Uncertainty

Appendix C: Accuracy, Precision, and Uncertainty Appendix C: Accuracy, Precision, and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

Measurements UNITS FOR MEASUREMENTS

Measurements UNITS FOR MEASUREMENTS Measurements UNITS FOR MEASUREMENTS Chemistry is an experimental science that requires the use of a standardized system of measurements. By international agreement in 1960, scientists around the world

More information

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions

PHYSICS. Chapter 1 Review. Rounding Scientific Notation Factor Label Conversions PHYSICS Chapter 1 Review Rounding Scientific Notation Factor Label Conversions The Tools Of PHYSICS Metric Prefixes Prefix Symbol Meaning Kilo K 1000 Deci d tenth Centi c hundreth Milli m thousandth Prefix

More information

Introduction to Measurements & Error Analysis

Introduction to Measurements & Error Analysis Introduction to Measurements & Error Analysis The Uncertainty of Measurements Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all measurements have some degree of uncertainty

More information

Measurements and Calculations. Chapter 2

Measurements and Calculations. Chapter 2 Measurements and Calculations Chapter 2 Scientific Method Section 2-1 The Scientific Method The scientific method is a logical approach to solving problems by observing and collecting data, formulating

More information

Chemistry 11. Unit 2: Introduction to Chemistry. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures

Chemistry 11. Unit 2: Introduction to Chemistry. Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Chemistry 11 Unit 2: Introduction to Chemistry Measurement tools Graphing Scientific notation Unit conversions Density Significant figures Book 1: Measuring and Recording Scientific Data Name: Block: 1

More information

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION LEARNING GOALS Students will: 6 ERROR Describe the difference between precision and accuracy Be able to compare values quantitatively Understand and describe

More information

ERROR AND GRAPHICAL ANALYSIS WORKSHEET

ERROR AND GRAPHICAL ANALYSIS WORKSHEET Student Names: Course: Section: Instructor: ERROR AND GRAPHICAL ANALYSIS WORKSHEET Instructions: For each section of this assignment, first read the relevant section in the Yellow Pages of your Lab Manual.

More information

Topic 11: Measurement and data processing

Topic 11: Measurement and data processing Topic 11: Measurement and data processing 11.1 Uncertainty and error in measurement 11.2 Uncertainties in calculated results 11.3 Graphical techniques -later! From the syllabus Precision v. Accuracy The

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

Chapter 2 - Measurements and Calculations

Chapter 2 - Measurements and Calculations Chapter 2 - Measurements and Calculations 2-1 The Scientific Method "A logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

MEASUREMENT IN THE LABORATORY

MEASUREMENT IN THE LABORATORY 1 MEASUREMENT IN THE LABORATORY INTRODUCTION Today's experiment will introduce you to some simple but important types of measurements commonly used by the chemist. You will measure lengths of objects,

More information

EXPERIMENT 30A1: MEASUREMENTS. Learning Outcomes. Introduction. Experimental Value - True Value. 100 True Value

EXPERIMENT 30A1: MEASUREMENTS. Learning Outcomes. Introduction. Experimental Value - True Value. 100 True Value 1 Learning Outcomes EXPERIMENT 30A1: MEASUREMENTS Upon completion of this lab, the student will be able to: 1) Use various common laboratory measurement tools such as graduated cylinders, volumetric flask,

More information

Ch 3. EXPERIMENTAL ERROR

Ch 3. EXPERIMENTAL ERROR Ch 3. EXPERIMENTAL ERROR 3.1 Measurement data how accurate? TRUE VALUE? No way to obtain the only way is approaching toward the true value. (how reliable?) How ACCURATE How REPRODUCIBLE accuracy precision

More information

MEASUREMENT CALCULATIONS AND. Chapter 2 Chemistry I

MEASUREMENT CALCULATIONS AND. Chapter 2 Chemistry I MEASUREMENT AND CALCULATIONS Chapter 2 Chemistry I 2018-2019 I. SCIENTIFIC METHOD A. SCIENTIFIC METHOD: The Scientific Method is a logical approach to solving problems by observing and collecting data,

More information

2053 College Physics. Chapter 1 Introduction

2053 College Physics. Chapter 1 Introduction 2053 College Physics Chapter 1 Introduction 1 Fundamental Quantities and Their Dimension Length [L] Mass [M] Time [T] other physical quantities can be constructed from these three 2 Systems of Measurement

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty Introduction to Measurement and Uncertainty Prelab Questions! Q These questions need to be completed before entering the lab. Show all workings. Prelab 1: A car takes time t = 2.5 +/- 0.2 s to travel a

More information

AQA Physics A-level Section 1: Measurements and Their Errors

AQA Physics A-level Section 1: Measurements and Their Errors AQA Physics A-level Section 1: Measurements and Their Errors Key Points The base units are the set of seven units of measure from which all other SI units can be derived. Units All other units can be expressed

More information

AE2160 Introduction to Experimental Methods in Aerospace

AE2160 Introduction to Experimental Methods in Aerospace AE160 Introduction to Experimental Methods in Aerospace Uncertainty Analysis C.V. Di Leo (Adapted from slides by J.M. Seitzman, J.J. Rimoli) 1 Accuracy and Precision Accuracy is defined as the difference

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

C. A laboratory course helps the students realize the distinction.

C. A laboratory course helps the students realize the distinction. lntro-1 NTRODUCTON How To Make A Good Grade n A Lab Course Without Really Trying A laboratory course may seem to involve a lot of work for too few credits. However, remembering the following points may

More information

Uncertainties in AH Physics

Uncertainties in AH Physics Advanced Higher Physics Contents This booklet is one of a number that have been written to support investigative work in Higher and Advanced Higher Physics. It develops the skills associated with handling

More information

Do Now: Use the ruler below to answer the following questions

Do Now: Use the ruler below to answer the following questions Chemistry Ms. Ye Name Date Block Do Now: Use the ruler below to answer the following questions 1. What is each tick mark worth on the ruler? 2. When measuring, to which decimal place should you estimate

More information

Choose the right equipment for lab work. Following Rules for Precision and Accuracy. Following Significant Figure Rules

Choose the right equipment for lab work. Following Rules for Precision and Accuracy. Following Significant Figure Rules Chemistry is a Quantitative Science Part I Measuring Matter At the end of Part I you should be able to: Choose the right equipment for lab work Make accurate measurements Following Rules for Precision

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Contents Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Copyright July 1, 2000 Vern Lindberg 1. Systematic versus Random Errors 2. Determining

More information

Significant Figures: A Brief Tutorial

Significant Figures: A Brief Tutorial Significant Figures: A Brief Tutorial 2013-2014 Mr. Berkin *Please note that some of the information contained within this guide has been reproduced for non-commercial, educational purposes under the Fair

More information

Principles and Problems. Chapter 1: A Physics Toolkit

Principles and Problems. Chapter 1: A Physics Toolkit PHYSICS Principles and Problems Chapter 1: A Physics Toolkit CHAPTER 1 A Physics Toolkit BIG IDEA Physicists use scientific methods to investigate energy and matter. CHAPTER 1 Table Of Contents Section

More information

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10 CHM 110 - Accuracy, Precision, and Significant Figures (r14) - 2014 C. Taylor 1/10 Introduction Observations are vitally important to all of science. Some observations are qualitative in nature - such

More information

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions Objectives 1. Use measuring tools correctly 2. Read and record measurements correctly (significant digits and unit) 3.

More information

Welcome to Physics 40!

Welcome to Physics 40! Welcome to Physics 40! Physics 40: Mechanics Kinematics: The physics of motion Newton s Three Laws of Motion Energy: Kinetic and Potential Linear & Angular Momentum Conservation Laws Newton s Universal

More information

Measurements and Data Analysis An Introduction

Measurements and Data Analysis An Introduction Measurements and Data Analysis An Introduction Introduction 1. Significant Figures 2. Types of Errors 3. Deviation from the Mean 4. Accuracy & Precision 5. Expressing Measurement Errors and Uncertainty

More information

Notes: Measurement and Calculation

Notes: Measurement and Calculation Name Chemistry-PAP Per. I. The Basics of Measurement Notes: Measurement and Calculation A. Measurement Most provide quantitative information, but because they are obtained experimentally, they are inexact.

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Numbers and Data Analysis

Numbers and Data Analysis Numbers and Data Analysis With thanks to George Goth, Skyline College for portions of this material. Significant figures Significant figures (sig figs) are only the first approimation to uncertainty and

More information

ISP 207L Supplementary Information

ISP 207L Supplementary Information ISP 207L Supplementary Information Scientific Notation Numbers written in Scientific Notation are composed of two numbers. 1) Digit term A number between 1 and 10 2) Exponential term Integer power of 10

More information