1 Measurement Uncertainties

Size: px
Start display at page:

Download "1 Measurement Uncertainties"

Transcription

1 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise. For example, knowledge of length determined with a meter stick or ruler divided into centimeters and millimeters is limited to fractions of a millimeter. Such measurement is an estimate of the position between millimeter lines on the scale, but even this is less than certain because the reading also depends on exactly how you align the measured object with the scale and your vantage point while reading it. Repeated measurements that span the true value (however this is known) are said to be accurate. Those that have very little spread among them are said to be precise. High precision makes it more difficult to be accurate. Precision is related to statistical, or random, uncertainties, and accuracy is related to systematic uncertainties. We will discuss both sorts of uncertainty later in this note. 1.2 Reporting measured values Science, in contrast to almost every other branch of knowledge, attempts to quantify the degree of uncertainty associated with any statement of fact. 1 Stating the uncertainty provides a sense of the range in which the true value of a quantity being measured probably lies. A measurement should always be accompanied by the uncertainty of the measurement, both labeled with appropriate units. Thus, scientific measurements include appropriately precise numerical values, uncertainties of matching precision, and units to label what in fact was measured. Results lacking any of these are useless, because they are uninterpretable. As students in this course, you are required to provide all of them every time you state a result. Note that an uncertainty is not a mistake, which is the result of inattention or other carelessness on the part of the experimenter, but rather an inadvertent and inevitable part of the measurement process. Mistakes (sometimes referred to as experimenter error, for that is what they are) are correctable in real time and therefore inexcusable: it is not an acceptable explanation of results. You must be careful, pay attention, and check your results as you go along. It is a universal convention in scientific work to report a numerical result with the number of significant figures, digits, or decimal places up to, and including, but no more than, the first uncertain one. This immediately tells the reader the approximate level of uncertainty. To return to our example: in reading a meter stick or ruler on which the smallest scale divisions are millimeters, measurements (in cm) would be reported 1 Another name for uncertainty is error, and the two terms are often used interchangeably. This instructor prefers the former to the latter. 1

2 as, say, cm or 5.30 cm or cm, etc. If the reading is exactly seven centimeters, it is reported as 7.00 cm and not as 7 cm or cm. If the edges of an object were particularly uneven such that trying to read the ruler to a tenth of a mm is hopeless, and the best estimate can be made only to the nearest whole mm, a measured value would be reported as 48.2 cm or 1.3 cm, etc. This indicates an uncertainty at the level of tenths of a cm (whole mm s) rather than at the hundredth of a cm level as the scale itself might indicate. Thus, the scale s precision is only one factor determining the precision of a measurement. What to report is a judgment call, and one of the purposes of this course is to help you develop the capacity to judge. This appropriate use of significant figures tells only order of magnitude of the uncertainty (to the tenths, hundredths, or whatever). It indicates that the next-to-last figure is the one in which we can have considerable confidence, while the last one is uncertain, although it represents the best estimate we can make. The size of the uncertainty is not conveyed by this convention, but must be estimated and reported separately. 1.3 Precision of significant figures When reporting a measurement, you express its relative precision in terms of the number of digits or significant figures, in the sense that the fractional uncertainty in the last figure becomes smaller as the number of significant figures increases. The place of the least significant digit gives the absolute precision. If, for example, the length of a cylinder is reported to be cm, the claim is that the length of the cylinder is known to the level of tenths of a millimeter; this is the absolute precision of the measurement. In this case, because there are four significant figures, the relative precision is therefore a few parts in a couple of thousand. Even if you wrote this number in terms of kilometers as km, it still has the same precision and number of significant figures. The zeros preceding the 2 are used only to indicate the position of the decimal point. The zero between the 2 and 6 is a significant figure, but the other zeros are not. If you reported a length as 0.78 cm, you still claim to know it to within tenths of a millimeter but to just two significant figures. This measurement has been made to the same absolute level of precision, but the relative precision is less. Clearly, it takes better precision to know a larger measurement to a certain level of uncertainty than to know a smaller measurement to the same level: while the fractional uncertainty in the cm measurement is a few parts in a couple of thousand, the fractional uncertainty in 0.78 is no better than a few parts in less than a hundred. Writing numbers in scientific notation helps remove some of the ambiguity of zeros while emphasizing the relative precision of a number. For example, cm can be rewritten as cm and km can be written as km. Now, in both cases, it s easy to see that there are four figures considered significant. Similarly, 0.78 cm can be written as cm, and it becomes immediately obvious that is has two significant figures, and is relatively less precise than the former. 2

3 It s usually a simple matter to determine the greatest possible precision that can be recorded for a measurement (if, for example, your meter stick is ruled in millimeter divisions, then your precision is at best a fraction of a millimeter), but you must take into consideration all aspects involved in the making of the measurement to determine a realistic level of precision. Furthermore, additional difficulties may arise when measurements are used in calculations, which can produce a large number of figures that might seem significant but really aren t. Calculators, in particular, often prove a bane to understanding, because they produce all kinds of figures which, unfortunately, tend to be written down without consideration. Calculators don t cause errors (assuming all the numbers have been correctly entered), but mindlessly recording all the figures of the result gives a physically incorrect answer. No mathematical computation may produce a result whose absolute precision is greater than that of the quantities used; the result can be no more precise than the least precise quantity that went into the calculation. As a general rule, though, it is better when computing to carry too many figures than not enough, and then to round-off to the appropriate precision later. This is more or less straight forward when adding or subtracting, since all the numbers involved have to be the same sort of quantities, that is they have to have the same dimensions, such as length, time, mass, or volume. Simply enter the experimental values (being sure that they are all in the same units) to the absolute precision known and then round to that of the least precise quantity. For example, if you combined four masses, g, g, g, and g, you would be adding four numbers each with four significant figures. But plugging these values into your calculator leads to something that has eight figures. The worst absolute precision is a tenth of a gram, so you must round to this, giving a total of g. In this case, the worst relative precision is around a part in a thousand, and simple rounding produced an answer that roughly matches both senses of precision. Multiplication and division are not so obvious because they may involve unrelated quantities. The least precise result still determines the precision of the final result, but it s not so clear what the absolute precision of the final result is, because its units may be different from those entering into the computation. Suppose your measurements for the sides of a rectangle were 38.2 cm and 21.4 cm, respectively. By the convention, the 2 in the first number and the 4 in the second number are the uncertain figures. If we want to determine the area of the rectangle, we multiply the two measurements together. A calculator would give the value of and the units would be cm 2. But the 7, 4, and final 8 of the result each involves an uncertain number (for example, the 8 results from the multiplication of the uncertain 2 of the first side by the uncertain 4 of the second). Any result in which an uncertain number is involved must itself be uncertain. Here, since the 7 is uncertain, any figure following it must be completely meaningless. If you reported cm 2 as the area of the rectangle, you would be misleading the reader by implying that the final 8 was the first uncertain figure and all the others were certain. This would be untrue. The truth of the situation would be conveyed by reporting the result as 817 cm 2 and 3

4 dropping the other figures. In this way, the relative precision of the outcome roughly matches that of the least (relatively) precise factor. Yet, even this is inadequate. We know by looking that the last digit is uncertain, but unless told explicitly the magnitude of this uncertainty, we are still in the dark about the meaning of the result. We discuss ways to clarify this question in what follows. 1.4 Statistical and Systematic Uncertainties Repeated measurements, even of the same quantity, tend to vary. Variations that distribute indeterminately both in magnitude and sign about a central value and thus average to zero are known as statistical or random uncertainties. A basic tenant of probability and statistics is that if only random uncertainties arise, then the average of more measurements is a better estimate of the actual value than the average of fewer measurements. The quantity given of statistical uncertainty should indicate the range of results that would be obtained from multiple measurements. Typically, this quantity characterizes the measuring device(s) and process. The most common method for estimating this quantity is simply to repeat the measurement many times. If measurements are all shifted in both magnitude and direction from the true value, the uncertainty is called systematic. Repeating measurements, without identifying and rectifying the cause of the shift, will not improve knowledge of an actual value. The difficulty, of course, is that the true value is usually unknown (why else measure it?), and so this uncertainty is difficult to quantify. The most common methods for doing so are to recheck the calibration of the measuring device after the measurement and to alter slightly and in carefully controlled ways aspects of the measuring process. Almost all measurements suffer from both random and systematic uncertainties. When these can be estimated independently, they should be quoted independently. 1.5 Uncertainty in Individual Measurements An irreducible source of uncertainty is the precision or resolution of the measuring instrument whose values are typically indicated on a dial or scale. The coarseness of the divisions on an indicator limits the absolute precision with which a value can be determined. One ends up guessing to a fraction of a division, and the variation of guesses is typically random. This, then, is a source of statistical uncertainty. Common practice assigns an uncertainty due to the instrument of half the smallest division on the indicator. But this is probably just one component of the total uncertainty. Consider the case of a digital stop watch, which gives readings to 0.01 second. The inherent uncertainty of the watch would ordinarily be estimated to be second, but human reaction time associated with starting and stopping the watch is roughly 0.05 second, also a statistical effect. Thus, the uncertainty associated with a stop-watch measurement must be at least 0.05 second, rather than second as the scale 4

5 resolution might suggest. If the watch were fast or slow compared to a standard clock, then a systematic uncertainty would have to be cited, as well. Careful consideration, you should see, is often necessary to identify the dominant sources of uncertainty in a measurement. 1.6 The RMS Deviation Perhaps the most common way of specifying statistical uncertainty is with the quantity called the RMS deviation, where RMS stands for Root Mean Squared. In words, this quantity measures a kind of average discrepancy around the mean, or average, of values. Given a set of N values of x i, the average, or mean, value x is defined as x 1 N N x i. (1) The RMS deviation of this distribution, denoted σ, is then defined as σ 1 N (x i x) N 2. (2) If the variation of values happens to be normally distributed (like a so-called bell curve) about the mean, then sigma is called the standard deviation. If N is small (< 30), then this quantity actually gives too small an estimation of the uncertainty and the factor 1/(N 1) is used instead of 1/N in Equation 2 and the symbol typically used is s rather than σ. s 1 N 1 N (x i x) 2. (3) You will show in your homework that an expression for σ equivalent equivalent to Equation 2 is given by: σ = = x 2 x 2 (4) ( ) 2 1 N x 2 i N 1 N x i. N As an example, consider the following two sets of measurements taken with two different devices (arbitrary units): Set 1: Set 2:

6 The average for both sets is the same (3.00 in arbitrary units). The RMS deviation for the first set is 0.65 (0.73) in arbitrary units, while the RMS deviation for the second is 0.12 (0.14) in arbitrary units [the values in parenthesis, more appropriate in this case, use Equation 3 instead of Equation 2]. The second device is said to have greater precision than the first. If the number of measurements N is increased, the values of x and σ tend toward limiting values which are independent of N. The limiting value of x is presumably that of the physical quantity being measured. The values of the uncertainties depend on the measurement technique employed. The implication of this is that the more measurements we make, the more confident we become of the central value and the uncertainty of an individual measurement: after many measurements, neither the mean nor the RMS will change substantially even if many more measurements are made. Thus, as the number of measurements increases, confidence in the value of the central value increases regardless of the size of the uncertainty of an individual measurements. We indicate the level of confidence by reporting not RMS as the statistical uncertainty of the result, but rather a quantity called the RMS of the mean, σ x. You will prove in a homework assignment that this is given by σ x = σ x N, (5) where σ x is the RMS deviation of the individual measurements x, and N is the number of measurement. This uncertainty, σ x is the statistical uncertainty that should be reported when the central value is an average: (x ± σ x ) in some units (assuming there is no systematic uncertainty). Note that the standard way to report results, which include systematic uncertainties, is: (central value ± statistical uncertainty ± systematic uncertainty) units. It is essential that the number of decimal places for the central value and for the uncertainty is the same. This must always be the case. One cannot know the uncertainty to more decimal places (absolute precision) than the central value or vice versa. If the statistical uncertainties are Gaussian, or normally distributed, as they often are, the RMS deviation, or standard deviation, has a very specific, probabilistic interpretation. Given a mean of x and a standard deviation σ x (standard deviation of the mean σ x ), the probability that an individual measurement (another determination of the mean) will differ from the mean decreases as the magnitude of this difference increases. This probability can be related to increments of standard deviations [see Table 1]. 6

7 Table 1: Probability that a value x i differs by n standard deviations from the mean x. n, Number Probability Probability of standard x i x > nσ x i x < nσ deviations (%) (%) It is not statistically likely for a measured value to differ from a true value by more than 3 4σ, but not unusual for one to differ by 1 2σ. You see in this the importance of knowing the uncertainty of a result: agreement or disagreement depends not on the absolute difference between values, or even the relative, or percent, difference, but on the difference relative to the uncertainty x measured x expected, RMS for example. Consider the results of two investigations of a certain quantity which a theory, for example, predicts [see Figure 1]. First of all, note that experiments A and B disagree with each other as to the central value (as indicated by a dot) of their results, with B s result closer to the predicted value. But since the uncertainties of the experiments (as indicated by the error bars) overlap, this disagreement is not considered significant. Experiment A, however, deviates from the prediction by less than 2σ, and therefore cannot be said to disagree significantly with the prediction, while experiment B deviates by more than 3.5σ from the prediction, which is a significant disagreement. So, even though B is closer to the prediction than A, and A and B are consistent within uncertainties, B is said to disagree with the prediction, while A does not. Again, what matters is not the absolute difference, but the difference in units of uncertainty. 1.7 Error Propagation Frequently, the goal of an experiment requires arithmetically combining the results of different sorts of measurements. For example, determining the average velocity may require measuring the displacement and the associated time interval with different instruments and then dividing the former by the latter. We may determine the statistical uncertainty of the displacement and the change of time separately, but what then is the uncertainty of the resulting velocity? To get this, we perform what is known as error propagation. 7

8 Experimental values A B Expected value Data Points Figure 1: Data points from experiments A and B. The dots indicate central values and the lines indicate 1σ uncertainties. Let us say that the final result, z, depends on two, independent sets of measurements, x and y, according to some functional relationship f: z = f(x, y). (6) Knowing the functional relationship f as well as the uncertainties of x and y, σ x and σ y, respectively, we determine the uncertainty of z, σ z, by ( f ) 2 ( ) 2 f σ z = σx x 2 + σ y y, 2 (7) where f x is the partial derivative of f with respect to x (that is, as if x is the only variable in f, all other terms in the function are treated as constants). And similarly for y. This expression can be extended to any number of independent measurements included in the relationship. Suppose that z = xy 2. Then, z x = y2 and z y = 2xy, so (σx ) ( ) 2 2 σ z = y 4 σx 2 + 4x 2 y 2 σy 2 = xy 2 2σy +. x y Be sure to check that you can get this answer. You will need to derive uncertainties for other functional relationships in homework, labs, and final examination. 8

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

Numbers and Data Analysis

Numbers and Data Analysis Numbers and Data Analysis With thanks to George Goth, Skyline College for portions of this material. Significant figures Significant figures (sig figs) are only the first approimation to uncertainty and

More information

EXPERIMENTAL UNCERTAINTY

EXPERIMENTAL UNCERTAINTY 3 EXPERIMENTAL UNCERTAINTY I am no matchmaker, as you well know, said Lady Russell, being much too aware of the uncertainty of all human events and calculations. --- Persuasion 3.1 UNCERTAINTY AS A 95%

More information

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located.

ACCELERATION. 2. Tilt the Track. Place one block under the leg of the track where the motion sensor is located. Team: ACCELERATION Part I. Galileo s Experiment Galileo s Numbers Consider an object that starts from rest and moves in a straight line with constant acceleration. If the object moves a distance x during

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Significant Figures and an Introduction to the Normal Distribution

Significant Figures and an Introduction to the Normal Distribution Significant Figures and an Introduction to the Normal Distribution Object: To become familiar with the proper use of significant figures and to become acquainted with some rudiments of the theory of measurement.

More information

In chemistry we use metric units (called SI units after the French term for Systeme internationale.

In chemistry we use metric units (called SI units after the French term for Systeme internationale. Metric system / SI units: In chemistry we use metric units (called SI units after the French term for Systeme internationale. SI units: The SI units we ll be primarily concerned with are shown here: Base

More information

MEASUREMENT IN THE LABORATORY

MEASUREMENT IN THE LABORATORY 1 MEASUREMENT IN THE LABORATORY INTRODUCTION Today's experiment will introduce you to some simple but important types of measurements commonly used by the chemist. You will measure lengths of objects,

More information

Meas ure ment: Uncertainty and Error in Lab Measurements

Meas ure ment: Uncertainty and Error in Lab Measurements Meas ure ment: Uncertainty and Error in Lab Measurements Measurement is at the heart of science. In order to do science, we must be able to measure quantities such as time, distance, and mass. As famous

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

Introduction to Measurement

Introduction to Measurement Units and Measurement Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we measure simple quantities

More information

Physics 12 Rules for Significant Digits and Rounding

Physics 12 Rules for Significant Digits and Rounding 1 Physics 12 Rules for Significant Digits and Rounding One mathematical aspect of problem-solving in the physical sciences that gives some students difficulty deals with the rounding of computed numerical

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta Error Analysis and Significant Figures Errors using inadequate data are much less than those using no data at all. C. Babbage No measurement of a physical quantity can be entirely accurate. It is important

More information

MEASUREMENT UNCERTAINTIES

MEASUREMENT UNCERTAINTIES MEASUREMENT UNCERTAINTIES What distinguishes science rom philosophy is that it is grounded in experimental observations. These observations are most striking when they take the orm o a quantitative measurement.

More information

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR Every measurement is subject to errors. In the simple case of measuring the distance between two points by means of a meter rod, a number of measurements

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories.

Error Analysis. To become familiar with some principles of error analysis for use in later laboratories. 1. Object Error Analysis To become familiar with some principles of error analysis for use in later laboratories. 2. Apparatus A plastic tub, water, Saxon Bowls, and a stopwatch. 3. Theory In science one

More information

Why the fuss about measurements and precision?

Why the fuss about measurements and precision? Introduction In this tutorial you will learn the definitions, rules and techniques needed to record measurements in the laboratory to the proper precision (significant figures). You should also develop

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10 CHM 110 - Accuracy, Precision, and Significant Figures (r14) - 2014 C. Taylor 1/10 Introduction Observations are vitally important to all of science. Some observations are qualitative in nature - such

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Fundamentals of data, graphical, and error analysis

Fundamentals of data, graphical, and error analysis Fundamentals of data, graphical, and error analysis. Data measurement and Significant Figures UTC - Physics 030L/040L Whenever we take a measurement, there are limitations to the data and how well we can

More information

1m 100cm=1m =1 100cm 1m 89cm = 0.89m 100cm

1m 100cm=1m =1 100cm 1m 89cm = 0.89m 100cm Units and Measurement Physics 40 Lab 1: Introduction to Measurement One of the most important steps in applying the scientific method is experiment: testing the prediction of a hypothesis. Typically we

More information

Measurement Error PHYS Introduction

Measurement Error PHYS Introduction PHYS 1301 Measurement Error Introduction We have confidence that a particular physics theory is telling us something interesting about the physical universe because we are able to test quantitatively its

More information

Astronomy 102 Math Review

Astronomy 102 Math Review Astronomy 102 Math Review 2003-August-06 Prof. Robert Knop r.knop@vanderbilt.edu) For Astronomy 102, you will not need to do any math beyond the high-school alegbra that is part of the admissions requirements

More information

Appendix II Calculation of Uncertainties

Appendix II Calculation of Uncertainties Part 1: Sources of Uncertainties Appendix II Calculation of Uncertainties In any experiment or calculation, uncertainties can be introduced from errors in accuracy or errors in precision. A. Errors in

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

ABE Math Review Package

ABE Math Review Package P a g e ABE Math Review Package This material is intended as a review of skills you once learned and wish to review before your assessment. Before studying Algebra, you should be familiar with all of the

More information

Using Scientific Measurements

Using Scientific Measurements Section 3 Main Ideas Accuracy is different from precision. Significant figures are those measured precisely, plus one estimated digit. Scientific notation is used to express very large or very small numbers.

More information

Precision Correcting for Random Error

Precision Correcting for Random Error Precision Correcting for Random Error The following material should be read thoroughly before your 1 st Lab. The Statistical Handling of Data Our experimental inquiries into the workings of physical reality

More information

Introduction to Measurements & Error Analysis

Introduction to Measurements & Error Analysis Introduction to Measurements & Error Analysis The Uncertainty of Measurements Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all measurements have some degree of uncertainty

More information

Introduction to Measurement Physics 114 Eyres

Introduction to Measurement Physics 114 Eyres 1 Introduction to Measurement Physics 114 Eyres 6/5/2016 Module 1: Measurement 1 2 Significant Figures Count all non-zero digits Count zeros between non-zero digits Count zeros after the decimal if also

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

Review of Scientific Notation and Significant Figures

Review of Scientific Notation and Significant Figures II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information

experiment3 Introduction to Data Analysis

experiment3 Introduction to Data Analysis 63 experiment3 Introduction to Data Analysis LECTURE AND LAB SKILLS EMPHASIZED Determining what information is needed to answer given questions. Developing a procedure which allows you to acquire the needed

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

The Celsius temperature scale is based on the freezing point and the boiling point of water. 12 degrees Celsius below zero would be written as

The Celsius temperature scale is based on the freezing point and the boiling point of water. 12 degrees Celsius below zero would be written as Prealgebra, Chapter 2 - Integers, Introductory Algebra 2.1 Integers In the real world, numbers are used to represent real things, such as the height of a building, the cost of a car, the temperature of

More information

Chemistry Lab: Introduction to Measurement

Chemistry Lab: Introduction to Measurement Name Hour Chemistry Lab: Introduction to Measurement (adapted from Flinn ChemTopic Labs) Introduction Much of what we know about the physical world has been obtained from measurements made in the laboratory.

More information

Introduction to the General Physics Laboratories

Introduction to the General Physics Laboratories Introduction to the General Physics Laboratories September 5, 2007 Course Goals The goal of the IIT General Physics laboratories is for you to learn to be experimental scientists. For this reason, you

More information

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions

CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions CHM 130 Measurements, Significant Figures, Derived Quantities, and Unit Conversions Objectives 1. Use measuring tools correctly 2. Read and record measurements correctly (significant digits and unit) 3.

More information

A.0 SF s-uncertainty-accuracy-precision

A.0 SF s-uncertainty-accuracy-precision A.0 SF s-uncertainty-accuracy-precision Objectives: Determine the #SF s in a measurement Round a calculated answer to the correct #SF s Round a calculated answer to the correct decimal place Calculate

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

LAB 1 PRE-LAB. residuals (cm)

LAB 1 PRE-LAB. residuals (cm) LAB 1 PRE-LAB 1. The table below records measurements of the lengths l of five goldfish. Calculate the average length l avg of this population of goldfish, and the residual, or deviation from average length

More information

Liquid-in-glass thermometer

Liquid-in-glass thermometer Liquid-in-glass thermometer Objectives The objective of this experiment is to introduce some basic concepts in measurement, and to develop good measurement habits. In the first section, we will develop

More information

Accuracy, Precision, and Significant Figures

Accuracy, Precision, and Significant Figures Accuracy, Precision, and Significant Figures Bởi: OpenStaxCollege A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and objects

More information

Measurement, Uncertainty, and Uncertainty Propagation

Measurement, Uncertainty, and Uncertainty Propagation Measurement, Uncertainty, and Uncertainty Propagation 205 Name Date Partners TA Section Measurement, Uncertainty, and Uncertainty Propagation Objective: To understand the importance of reporting both a

More information

EM Waves in Media. What happens when an EM wave travels through our model material?

EM Waves in Media. What happens when an EM wave travels through our model material? EM Waves in Media We can model a material as made of atoms which have a charged electron bound to a nucleus by a spring. We model the nuclei as being fixed to a grid (because they are heavy, they don t

More information

This term refers to the physical quantity that is the result of the measurement activity.

This term refers to the physical quantity that is the result of the measurement activity. Metrology is the science of measurement and involves what types of measurements are possible, standards, how to properly represent a number and how to represent the uncertainty in measurement. In 1993

More information

Reporting Measurement and Uncertainty

Reporting Measurement and Uncertainty Introduction Reporting Measurement and Uncertainty One aspect of Physics is to describe the physical world. In this class, we are concerned primarily with describing objects in motion and objects acted

More information

ents & Uncertainties Significant Figures 1.005, Round best to the experimental want to meters and use 300 m 2. significant figures because of

ents & Uncertainties Significant Figures 1.005, Round best to the experimental want to meters and use 300 m 2. significant figures because of Introduction to Measureme ents & Uncertainties Significant Figures A measurement and its experimental uncertainty should have significance. All numerical results and/or measurements are expressed with

More information

AP PHYSICS 1 SUMMER PREVIEW

AP PHYSICS 1 SUMMER PREVIEW AP PHYSICS 1 SUMMER PREVIEW Name: Your summer homework assignment is to read through this summer preview, completing the practice problems, and completing TASK 1 and Task 2. It is important that you read

More information

Measurement and Measurement Errors

Measurement and Measurement Errors 1 Measurement and Measurement Errors Introduction Physics makes very general yet quite detailed statements about how the universe works. These statements are organized or grouped together in such a way

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world experiment. Suppose you wanted to forecast the results

More information

Chapter 2 Using the SI System in Science

Chapter 2 Using the SI System in Science Chapter 2 Using the SI System in Science Section 2.1 SI System Units Terms: Measurement Precision Accuracy A measurement is a repeatable observation of a quantity that includes a number and unit. An estimate

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

Significant Figures: A Brief Tutorial

Significant Figures: A Brief Tutorial Significant Figures: A Brief Tutorial 2013-2014 Mr. Berkin *Please note that some of the information contained within this guide has been reproduced for non-commercial, educational purposes under the Fair

More information

Introduction to Physics Physics 114 Eyres

Introduction to Physics Physics 114 Eyres What is Physics? Introduction to Physics Collecting and analyzing experimental data Making explanations and experimentally testing them Creating different representations of physical processes Finding

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Note: at no time will we be measuring the weight of any substance in this class, only its mass.

Note: at no time will we be measuring the weight of any substance in this class, only its mass. Measurement 1. Handout: Condensed notes for Measurement Unit 2. Film: Measurement of Flouride Video Clip 3. Homework: Read article on the loss of the Mars Orbiter 4. Units/Scientific Notation 1. Scientific

More information

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract

What Every Programmer Should Know About Floating-Point Arithmetic DRAFT. Last updated: November 3, Abstract What Every Programmer Should Know About Floating-Point Arithmetic Last updated: November 3, 2014 Abstract The article provides simple answers to the common recurring questions of novice programmers about

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Journal of Geoscience Education, v. 46, n. 3, p , May 1998 (edits, June 2005)

Journal of Geoscience Education, v. 46, n. 3, p , May 1998 (edits, June 2005) Journal of Geoscience Education, v. 46, n. 3, p. 292-295, May 1998 (edits, June 2005) Computational Geology 1 Significant Figures! H.L. Vacher, Department of Geology, University of South Florida, 4202

More information

Part 01 - Notes: Identifying Significant Figures

Part 01 - Notes: Identifying Significant Figures Part 01 - Notes: Identifying Significant Figures Objectives: Identify the number of significant figures in a measurement. Compare relative uncertainties of different measurements. Relate measurement precision

More information

Table 2.1 presents examples and explains how the proper results should be written. Table 2.1: Writing Your Results When Adding or Subtracting

Table 2.1 presents examples and explains how the proper results should be written. Table 2.1: Writing Your Results When Adding or Subtracting When you complete a laboratory investigation, it is important to make sense of your data by summarizing it, describing the distributions, and clarifying messy data. Analyzing your data will allow you to

More information

The measurements you make in the science laboratory, whether for time,

The measurements you make in the science laboratory, whether for time, Measuring Up Middle Grades Science Middle Grades Measuring Science Up Exploring Experimental Error through Measurement MATERIALS balance beaker, 250 ml copy of Nick and Nack template graduated cylinder,

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

Methods and Tools of Physics

Methods and Tools of Physics Methods and Tools of Physics Order of Magnitude Estimation: Essential idea: Scientists aim towards designing experiments that can give a true value from their measurements, but due to the limited precision

More information

Units and Dimensionality

Units and Dimensionality Chapter 1 Units and Dimensionality If somebody asked me how tall I am, I might respond 1.78. But what do I mean by that? 1.78 feet? 1.78 miles? In fact, my height is 1.78 meters. Most physical measurements

More information

Making Measurements. On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue )

Making Measurements. On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue ) On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue ) 0 1 2 3 4 5 cm If the measurement you made was 3.7 cm (or 3.6 cm or 3.8 cm),

More information

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction 59 CH 59 SQUARE ROOTS Introduction W e saw square roots when we studied the Pythagorean Theorem. They may have been hidden, but when the end of a right-triangle problem resulted in an equation like c =

More information

Granite School District Parent Guides Utah Core State Standards for Mathematics Grades K-6

Granite School District Parent Guides Utah Core State Standards for Mathematics Grades K-6 Granite School District Parent Guides Grades K-6 GSD Parents Guide for Kindergarten The addresses Standards for Mathematical Practice and Standards for Mathematical Content. The standards stress not only

More information

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit.

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit. Significant Figures When counting objects, it is easy to determine the EXACT number of objects. Significant Figures Unit B1 But when a property such as mass, time, volume, or length is MEASURED, you can

More information

Appendix C: Accuracy, Precision, and Uncertainty

Appendix C: Accuracy, Precision, and Uncertainty Appendix C: Accuracy, Precision, and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

Error analysis in biology

Error analysis in biology Error analysis in biology Marek Gierliński Division of Computational Biology Hand-outs available at http://is.gd/statlec Errors, like straws, upon the surface flow; He who would search for pearls must

More information

Lesson 2: Put a Label on That Number!

Lesson 2: Put a Label on That Number! Lesson 2: Put a Label on That Number! What would you do if your mother approached you, and, in an earnest tone, said, Honey. Yes, you replied. One million. Excuse me? One million, she affirmed. One million

More information

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 17 ame Date Partners TA Section Lab 1: Measurement, Uncertainty, and Uncertainty Propagation The first principle is that you must not fool yourself

More information

Physics. Nov Title: Nov 3 8:52 AM (1 of 45)

Physics. Nov Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Physics is the branch of science that studies matter and energy, how they are related and how they interact. Physics covers everything

More information

Pre-Lab 0.2 Reading: Measurement

Pre-Lab 0.2 Reading: Measurement Name Block Pre-Lab 0.2 Reading: Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You

More information

SPH4C COLLEGE PHYSICS

SPH4C COLLEGE PHYSICS SPH4C COLLEGE PHYSICS REVIEW: MATH SKILLS L Scientific Notation (P.547) Scientific Notation In science we frequently encounter numbers which are difficult to write in the traditional way - velocity of

More information

Uncertainty in Measurements

Uncertainty in Measurements Uncertainty in Measurements Joshua Russell January 4, 010 1 Introduction Error analysis is an important part of laboratory work and research in general. We will be using probability density functions PDF)

More information

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte Reference Guide Contents...1 1. General Scientific Terminology...2 2. Types of Errors...3 3. Scientific Notation...4 4. Significant Figures...6 5. Graphs...7 6. Making Measurements...8 7. Units...9 8.

More information

Measurement and Uncertainty

Measurement and Uncertainty Measurement and Uncertainty Name: Date: Block: There is uncertainty in every measurement due to of accuracy and precision. Accuracy: how close the instrument measures to an accepted. Precision: how closely

More information

UNIT 1: NATURE OF SCIENCE

UNIT 1: NATURE OF SCIENCE Nature of Science UNIT 1: NATURE OF SCIENCE Chapter 1.1-1.3, pages 6-26 Honors Physical Science Pure science aims to come to a common understanding of the universe Scientists suspend judgment until they

More information

Dealing with uncertainty

Dealing with uncertainty Appendix A Dealing with uncertainty A.1 Overview An uncertainty is always a positive number δx > 0. If you measure x with a device that has a precision of u, thenδx is at least as large as u. Fractional

More information

How long is the arrow?

How long is the arrow? 1.2 Measurements Measuring We have all measured things before, but how would you define it? Measurement: comparing an unknown quantity to a standard unit (known quantity) How long is the arrow? Any measurement

More information

Appendix B: Accuracy, Precision and Uncertainty

Appendix B: Accuracy, Precision and Uncertainty Appendix B: Accuracy, Precision and Uncertainty How tall are you? How old are you? When you answered these everyday questions, you probably did it in round numbers such as "five foot, six inches" or "nineteen

More information

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Unit 2: (Chapter 5) Measurements and Calculations Cartoon courtesy of NearingZero.net Steps in the

More information

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section C

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section C Section C.1: Significant Digits Significant digits The digits in a number that represents actual measurements and therefore have meaning are called significant digits. Significant digits: Nonzero digits.

More information

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Contents Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Copyright July 1, 2000 Vern Lindberg 1. Systematic versus Random Errors 2. Determining

More information

TOPIC 3: READING AND REPORTING NUMERICAL DATA

TOPIC 3: READING AND REPORTING NUMERICAL DATA Page 1 TOPIC 3: READING AND REPORTING NUMERICAL DATA NUMERICAL DATA 3.1: Significant Digits; Honest Reporting of Measured Values Why report uncertainty? That is how you tell the reader how confident to

More information