Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Size: px
Start display at page:

Download "Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR"

Transcription

1 Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

2

3 Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true value of anything. - The best way we can do in a chemical analysis is to apply a technique that experience tells us is reliable. - Repetition of one method of measurement several times tells us the precision (reproducibility) of the measurement - If the results of measuring the same quantity by different methods agree with one another, then we become confident that the results are accurate, which means they are near the true value.

4 Chapter 3. Experimental Error 3-1. Significant Figures The number of significant figures is the minimum number of digits needed to write a given value in scientific notation without loss of accuarcy. Fig Scale of a spectrophotometer. Absorbance is a logarithmic scale. Absorbance = by interpolation. 2 and 3 are completely certain and the number 4 is an estimate. This number has three significant figures.

5 Chapter 3. Experimental Error 3-2. Significant Figures in Arithmetic ( rule of thumb ) 1) Addition & Substraction - In the addition or subtraction of numbers expressed in scientific notation, all numbers should first be expressed with the same exponent. - If the numbers being added do not have the same number of significant figures, we are limited by the least certain one. Rounding off - In the special case where the number is exactly halfway, round to the nearest even digit. ex) , , When rounding off, look at all the digits beyond the last place desired. ex)

6 Chapter 3. Experimental Error 3-2. Significant Figures in Arithmetic ( rule of thumb ) 2) Multiplication & Division We are normally limited to the number of digits contained in the number with the fewest significant figures. A rule of thumb : it suggests for multiplication and division that the answer should be rounded so that it contains the same number of significant digits as the original number with the smallest number of significant digits. * Rounding should only be done on the final answer (not intermediate results), to avoid accumulating round-off errors

7 Use the rule of thumb with Caution!! 2) Multiplication & Division A rule of thumb: it suggests for multiplication and division that the answer should be rounded so that it contains the same number of significant digits as the original number with the smallest number of significant digits. But use the rule of thumb with Caution!! Unfortunately, this procedure can lead to incorrect rounding. Example 1; consider the two calculations = 1.08 and = By the rule just described, the first answer would be rounded to 1.1 and the second to 0.96.

8 Use the rule of thumb with Caution!! However, if the last digit of each number making up the first quotient ( = 1.08 ) is uncertain by 1, the relative uncertainties associated with each of these numbers are 1/24, 1/452, and 1/1000. Because the first relative uncertainty is much larger than the other two, the relative uncertainty in the result is also 1/24; the absolute uncertainty is then /24 = = 0.04 By the same argument, the absolute uncertainty of the second answer is given by /24 = = 0.04 Therefore, the first result should be rounded to three significant figures, or 1.08, but the second should be rounded to only two; that is, 0.96

9 Use the rule of thumb with Caution!! In multiplication and division, keep an extra digit when the first digit of answer lies between 1 and 2 (p.59) Example 2: The quotient 82/80 is better written as 1.02 than 1.0. If the uncertainty in the last digit of each number, 82 and 80 is 1, the uncertainty is of the order of 1 %, which is the decimal place of If we write 1.0, you can surmise that the uncertainty is at least 1.0 ± 0.1 = ± 10 %, which is much larger than the actual uncertainty. Example 3: Even though the dividend and divisor each have three figures, the quotient is expressed with four figures ( ± 0.002) = ( ± 0.004) ( ± 0.002)

10 Use the rule of thumb with Caution!! Example 4: It is reasonable to keep an extra digit when the first digit of the answer is 1. ( x ) x (3.6 x ) = x 10-6 = 1.6 x 10-6 = 1.55 x 10-6 ( Better)

11 3-2. Significant Figures in Arithmetic 3) Logarithms and Antilogarithms * Number of digits in mantissa of log x = number of significant figures in x : log ( ) = digits character mantissa * Number of digits in the mantissa of x = Number of significant figures in the antilogarithm, antilog x (=10 x ) antilog = = mantissa, 3 digits 3 digits

12 Exam ) Convert p-function to molar concentration: Solution1) Number of digits in antilog x (= 10 x ) = number of significant figures in mantissa of x (P.54, L22) pmn = antilog ( ) = = 0.99 M Log 0.99 = (It s not reasonable!) Solution 2) Number of significant figures in antilog x (= 10 x ) = number of digits in mantissa of x (P.54, L20) pmn = antilog ( ) = = M (It s reasonable!) = M = M = M Log = Log =

13 3.3. Significant Figures and Graphs - When the graph is used to read data points, better is a fine grid superimposed on the graph - Rulings on graph should be compatible with the number of significant figures of the coordinates. a) Divisions are fine enough (0.53, 0.63), (1.08, 1.47)

14 3.3. Significant Figures and Graphs - When the graph is used to read data points, better is a fine grid superimposed on the graph -Rulings on graph should be compatible with the number of significant figures of the coordinates. b) Divisions are not fine enough (0.53, 0.63), (1.08, 1.47)

15 3.3. Significant Figures and Graphs When you are not expected to be able to read coordinates accurately on the graph, Qualitative behavior of data is OK (i.e., fine grid is not required)

16 3-4. Types of Errors in Experimental Data 1) Systematic errors (= Determinate Errors) - It is always in the same direction (unidirectional), and could be discovered and corrected. -It causes the mean of a set of data to differ from the accepted value ( Next slide, analyst 3 ) 2) Random Error ( = Indeterminate error) 3) Gross Errors

17 Systematic error (Analyst 3 & 4) Fig 5-3, p.94

18 3-4. Types of Errors in Experimental Data 1) Systematic errors (= Determinate Errors) i) Instrument Errors - imperfections in measuring devices. pipets, burets and volumetric flasks frequently deliver or contain volumes slightly different from those indicate by their graduations. The reasons are as following: Use of glassware at a temp. that differs significantly from the calibration temp. Distortions in container walls due to heating while drying. Errors in the original calibration. Contaminants on the inner surfaces of the container. Most systematic errors of this type are readily eliminated by calibration ( see next slide, textbook Fig. 3-3) - instruments powered by electricity. decreased voltage of battery-operated power supplies increased resistance in circuits because of dirty electrical contacts temp. effects on resistor

19 3.3. Significant Figures and Graphs Most systematic errors of this type are readily eliminated by calibration! Ex.) Buret reading: ml, Correction: ml Actual volume = =29.40 ml Fig. 3-3 Calibration Curve for a 50 ml buret

20 3-4. Types of Errors in Experimental Data ii) Method Errors Nonideal chemical or physical behavior of the reagents and reactions upon which an analysis is based. incompleteness of the reaction (ex: decomposition of pyridine ring) slowness of the reaction possible occurrence of side reactions that interfere with the measurement process in volumetric titration, the small excess of reagent required to cause an indicator to undergo the color change that signals completion of the reaction Errors inherent in a method are frequently difficult to detect, and are thus the most serious of the three types of determinate error.

21 3-4. Types of Errors in Experimental Data iii) Personal Errors Many measurements require personal judgments. - Prejudice (bias) Most of us have a natural tendency to estimate scale readings in a direction that improves the precision in a set of results or causes the results to fall closer to a preconceived notion of the true value. level of a liquid in buret color at the end point in titration the position of a pointer between two scales

22 3-4. Types of Errors in Experimental Data iii) Personal Errors Many measurements require personal judgments. - Number bias prefer 0 or 5 even number over odd number. * Detection of determinate errors. 1. Analysis of standard reference materials 2. a second reliable analytical method 3. Blank determinations 4. Variation in sample size in case of a constant error

23 3-4. Types of Errors in Experimental Data * Determinate Error may be either constant or proportional Constant Errors : magnitude is independent of size of the quantity measured. Ex). 500 mg of precipitate 0.5 mg wash out 50 mg of precipitate 0.5 mg wash out 0.5 relative error = = % relative error = = -1.0 % 50 Proportional Errors : increase or decrease in proportion to the size of the sample taken for analysis. Ex). the presence of interfering contaminants in the sample.

24 Absolute and Relative Uncertainty - Uncertainty is usually expressed as the standard deviation. Absolute Uncertainty : margin of uncertainty associated with a measurement. Ex). a buret reading : 12.35±0.02 ml Relative Uncertainty : comparing the size of the absolute uncertainty to the size of its associated measurement. R.U = absolute uncertainty magnitude of measurement 0.02 ml ex). R.U = = = 2 ppt = 0.2 % ml

25 3-4. Types of Errors in Experimental Data 2) Random Error ( = Indeterminate error) - It arises from natural limitation on our ability to make physical measurements. - It causes data to be scattered more or less systematically around a mean value. The precision of the data reflects the indeterminate errors in an analysis. - Sometimes positive, sometimes negative. - It is the ultimate limitation on the determination of a quantity. See next slide Ex). Electrical noise : small fluctuation resulting from electrical instability of the meter itself (voltameter)

26 3-4. Types of Errors in Experimental Data 3) Gross Errors - personal and arise from carelessness or ineptitude on the part of the experimenter. - Gross errors usually affect only a single result in a set of replicate data, causing it to differ significantly from the remaining results for that set. (outliers) Ex). Arithmetic mistakes Reading scale backward Reversing a sign Spilling a solution - They can be eliminated through self-discipline

27 3-4-1 Methods For Expressing Precision and Accuracy Precision : A measure of reproducibility of a result defined as the agreement between the numerical values of two or more measurements that have been made in an identical method. Accuracy : How close a measured value is to the true one - the nearness of a measurement to its accepted value - Accuracy is expressed in terms of error.

28 Fig 5-3, p.94 Precision and Accuracy

29 Accuracy (= nearness to the truth ) Methods for expressing accuracy 1) Absolute Error = x i x t x i : observed value x t : accepted value (It may itself be subject to considerable uncertainty) 2) Relative Error = x x x i t t 100 %

30 Precision (= reproducibility) Methods for expressing precision Mean or Average = x = Geometric Mean = n i x i i N x i 1) Standard Deviation For a very large set of data σ = N i= 1 ( x µ ) i N 2 σ: population S. D. µ: population mean ( = true value) σ 2 : variance

31 Methods for expressing precision For a small number of replicate measurements, S = N i= 1 ( x x) i N -1 2 S : sample standard deviation x : measured mean for the small set 2) Relative Standard Deviation (RSD) S RSD = x 1,000 (ppt) S CV (coefficient of variation) = 100 % x

32 Methods for expressing precision 3) Variance (S 2 ) S 2 = N i= 1 ( x x) i N ) Spread or Range (w) = highest lowest

33

34 3-5. Propagation of Uncertainty from Random Error - We can easily estimate or measure the random error associated with a measurement. - Uncertainty is usually expressed as the standard deviation of calculated results or as a confidence interval. These parameters are based upon a series of replicate measurements. - In most experiments, it is necessary to perform successive arithmetic operations on several numbers, each of which has its associated random error. - The most likely uncertainty in the result is not the sum of individual errors, because some of these are likely positive and some negative. We expect some cancellation of errors. - The first uncertain figure should be the last significant figure : ex) (±0.0002)

35 3-5. Propagation of Uncertainty from Random Error 1) Addition and Subtraction 1.76 (±0.03) e (±0.02) e (±0.02) e (± e 4 ) e Uncertainty in addition and subtraction: = e1 + e2 + e3 = Absolute uncertainty e = ( 0.03) + (0.02) + (0.02) = Percent relative uncertainty = 100 = 1. 3% 3.06 Two expressions of final result : 3.06 (±0.04) (absolute uncertainty) 3.06 (±1%) (relative uncertainty)

36 3-5. Propagation of Uncertainty from Random Error 2) Multiplication and Division Uncertainty in multiplication and division: For example, 1.76( ± 0.03) 1.89( ± 0.02) = 0.59( ± 0.02) % e + e 5.64 ± e = (% e1 ) + (% e2 ) (% 3) First, convert absolute uncertainties to percent relative uncertainties ( ± 1. 7 %) 1.89( ± ( ± 3. 4 %) 1 %) = 5.64 ± e % e4 = (1. 7 ) + (1. 1) + (3. 4 ) = 4. 0% 4. = 0% 5.64 = Two expressions of final result : 5.6 (±0.2) (absolute uncertainty) 5.6 (±4%) (relative uncertainty)

37

38 tip) Propagation of Uncertainty in the Product x x Table 3-1 says that the uncertainty in the function y = x a is % e y = a (%e x ). If y = X 2, then %e y = 2(%e x ). A 3% uncertainty in x leads to a (2)(3%) = 6% uncertainty in y. But what if we just apply the multiplication formula 3-6 to the product x x? 2 x ( ± e1 ) x( ± e2 ) = x ( ± e3) % e + e = (% e1 ) (% 2 ) = 2 2 ( 3%) + (3%) = 4. 2% Which uncertainty is correct, 6 % or 4.2 %?

39 tip) Propagation of Uncertainty in the Product x x

40 3-6. Propagation of Uncertainty from Systematic Error Systematic error occurs in some common situations and is treated differently from random error in arithmetic operation 1) The Rectangular Distribution : uncertainty in atomic mass - atomic mass of oxygen in the periodic table : ± ( Next slide) - The uncertainty is not mainly from random error in measuring atomic mass, but it is predominantly from isotopic variation in samples of oxygen from different sources. Therefore, the atomic mass of oxygen in a particular lot of reagent has a systematic uncertainty - There is approximately equal probability of finding any atomic mass between and and negligible probability of finding an atomic mass outside of the range. - Mean: , range : The standard uncertainty (standard deviation) = ± a (range)/ 3

41 End Papers: Periodic Table

42 3-6. Propagation of Uncertainty from Systematic Error -Oxygen atomic mass from different sources approximates a rectangular distribution. - There is approximately equal probability of finding any atomic mass between and and negligible probability of finding any atomic mass outside of the range (a).

43 3-6. Propagation of Uncertainty from Systematic Error - Systematic error occurs in some common situations, and is treated differently from random error in arithmetic operations 1) The Rectangular Distribution : uncertainty in atomic mass - The periodic table gives the atomic mass of oxygen as ± g/mol. The uncertainty is not mainly from random error in measuring the atomic mass, but it is predominantly from isotopic variation in sampled oxygen from different sources. - The atomic mass of oxygen in a particular lot of reagent has a systematic uncertainty.

44 3-6. Propagation of Uncertainty from Systematic Error - Propagation of systematic uncertainty : uncertainty of n identical atoms = n x (standard uncertainty in atomic mass) - The sum of atomic masses of different elements : Use the rules for propagation of random uncertainty Example: what is the standard uncertainty in molecular mass of C 2 H 4? From periodic table, Atomic mass of C = ± / 3 = ± Atomic mass of H = ± / = ±

45 3-6. Propagation of Uncertainty from Systematic Error -For the uncertainty in the sum of the masses of 2C +4H, we use equations for random error, because the uncertainties in the mass of C and H are independent of each other. One might be positive and one might be negative ± = ± = ±

46 3-6. Propagation of Uncertainty from Systematic Error 2) The Triangular Distribution : multiple deliveries from one pipet - A 25 ml pipet is certified to deliver ± 0.03 ml - The volume delivered by a pipet is reproducible, but can be in the range of ~ ml, depending on a pipet. - However, the manufacturer works hard to make the volume close to 25.00mL. In such case, we approximate the volumes of a large number of pipets by the triangular distribution.

47 3-6. Propagation of Uncertainty from Systematic Error - The probability falls off approximately in a linear manner as the volume deviates from ml because the manufacturer works hard to make the volume close to 25.00mL. - There is negligible probability that a volume outside of ± 0.03 ml will be delibered. - The standard uncertainty (standard deviation) = ± a (range)/ 6 3

48 3-6. Propagation of Uncertainty from Systematic Error Example: 1) What is the uncertainty in 100 ml if you use an uncalibrated 25 ml pipet four times to deliver of 100 ml? The uncertainty is a systematic error. So the standard uncertainty = ± 4 x 0.03/ 6 = ± 4 x = ± ml So uncalibrated pipet volume = ± 0.05 ml - The difference between ml and the actual volume delibered by a particular pipet is a systematic error. In other words, it is always the same, within a small random error - You could calibrate the pipet by weighing the water it delivers to eliminate a systematic error. In such case, the pipet always delivers, say, ± ml. The uncertainty (± ml) is random error.

49 3-6. Propagation of Uncertainty from Systematic Error Example: 1) What is the uncertainty in 100 ml if you use a calibrated pipet which delivers a mean volume of ml with a standard uncertainty of ± ml? You deliver four times, so the volume is 4 x ml = ml But the uncertainty = ± = ± ml We use equations for random error, because the uncertainties in four delivered aliquots are independent of each other. One might be positive and one might be negative because they are random error. So calibrated pipet volume = ± ml

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Source: Chapter 5: Errors in Chemical Analyses

Source: Chapter 5: Errors in Chemical Analyses Source: Chapter 5: Errors in Chemical Analyses Measurements invariably involve errors and uncertainties. it is impossible to perform a chemical analysis that is totally free of errors or uncertainties

More information

Ch 3. EXPERIMENTAL ERROR

Ch 3. EXPERIMENTAL ERROR Ch 3. EXPERIMENTAL ERROR 3.1 Measurement data how accurate? TRUE VALUE? No way to obtain the only way is approaching toward the true value. (how reliable?) How ACCURATE How REPRODUCIBLE accuracy precision

More information

Chapter 5. Errors in Chemical Analysis 熊同銘.

Chapter 5. Errors in Chemical Analysis 熊同銘. Chapter 5 Errors in Chemical Analysis 熊同銘 tmhsiung@gmail.com http://www.chem.ntou.edu.tw/ Slide 1 of 19 Contents in Chapter 5 5.1 Accuracy, Precision and Bias 5.2 Types of Errors in Experimental Data 5.3

More information

Statistics: Error (Chpt. 5)

Statistics: Error (Chpt. 5) Statistics: Error (Chpt. 5) Always some amount of error in every analysis (How much can you tolerate?) We examine error in our measurements to know reliably that a given amount of analyte is in the sample

More information

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures Lecture 3 SIGNIFICANT FIGURES e.g. - all digits that are certain plus one which contains some uncertainty are said to be significant figures 10.07 ml 0.1007 L 4 significant figures 0.10070 L 5 significant

More information

Chapter 3 Math Toolkit

Chapter 3 Math Toolkit Chapter 3 Math Toolkit Problems - any Subtitle: Error, where it comes from, how you represent it, and how it propagates into your calculations. Before we can start talking chemistry we must first make

More information

Chapter 3 Experimental Error

Chapter 3 Experimental Error Chapter 3 Experimental Error Homework Due Friday January 27 Problems: 3-2, 3-5, 3-9, 3-10, 3-11, 3-12, 3-14, 3-19 Chapter 3 Experimental Error Uncertainties They are everywhere!! We need to learn to understand

More information

Measurements, Sig Figs and Graphing

Measurements, Sig Figs and Graphing Measurements, Sig Figs and Graphing Chem 1A Laboratory #1 Chemists as Control Freaks Precision: How close together Accuracy: How close to the true value Accurate Measurements g Knowledge Knowledge g Power

More information

ANALYTICAL CHEMISTRY 1 LECTURE NOTES

ANALYTICAL CHEMISTRY 1 LECTURE NOTES ANALYTICAL CHEMISTRY 1 LECTURE NOTES FUNDAMENTALS OF PRE ANALYSES TOPIC 1: Theory of Errors 1.0 Introduction Analytical chemistry is a specialised aspect of chemistry that deals with both qualitative analysis

More information

Chem 222 #3 Ch3 Aug 31, 2004

Chem 222 #3 Ch3 Aug 31, 2004 Chem 222 #3 Ch3 Aug 31, 2004 Announcement Please work in the lab session you registered for. If you are found to work in any other lab without my permission, no points will be given for the lab. Please

More information

Topic 2 Measurement and Calculations in Chemistry

Topic 2 Measurement and Calculations in Chemistry Topic Measurement and Calculations in Chemistry Nature of Measurement Quantitative observation consisting of two parts. number scale (unit) Examples 0 grams 6.63 10 34 joule seconds The Fundamental SI

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

Why the fuss about measurements and precision?

Why the fuss about measurements and precision? Introduction In this tutorial you will learn the definitions, rules and techniques needed to record measurements in the laboratory to the proper precision (significant figures). You should also develop

More information

Jan 18, 2005 #3. Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error

Jan 18, 2005 #3. Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error Jan 18, 2005 #3 Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error Announcement When you send me an e- mail, please identify your full name and lab session. Jan 21 is the last day

More information

Measurements Chapter 3

Measurements Chapter 3 Measurements Chapter 3 Analytical Chemistry is the science of chemical measurement. Its object is the generation, treatment and evaluation of signals from which information is obtained on the composition

More information

Data Analysis I. CU- Boulder CHEM-4181 Instrumental Analysis Laboratory. Prof. Jose-Luis Jimenez Spring 2007

Data Analysis I. CU- Boulder CHEM-4181 Instrumental Analysis Laboratory. Prof. Jose-Luis Jimenez Spring 2007 Data Analysis I CU- Boulder CHEM-4181 Instrumental Analysis Laboratory Prof. Jose-Luis Jimenez Spring 2007 Presentation will be posted on course web page based on lab manual, Skoog, web links 5 Objective

More information

Uncertainties in Measurement

Uncertainties in Measurement Uncertainties in Measurement Laboratory investigations involve taking measurements of physical quantities. All measurements will involve some degree of experimental uncertainty. QUESTIONS 1. How does one

More information

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results

Topic 11: Measurement and Data Processing and Analysis. Topic Uncertainties and Errors in Measurement and Results Topic 11: Measurement and Data Processing and Analysis Topic 11.1- Uncertainties and Errors in Measurement and Results Key Terms Random Error- above or below true value, usually due to limitations of equipment

More information

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water Accuracy and Precision of Laboratory Glassware: Determining the Density of Water During the semester in the general chemistry lab, you will come into contact with various pieces of laboratory glassware.

More information

Chemistry Calibration of a Pipet and Acid Titration

Chemistry Calibration of a Pipet and Acid Titration Chemistry 3200 Today you are given a chance to brush up on some of the techniques that you will be using during the remainder of the semester. Lab grades will be based on obtaining the correct answer in

More information

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks Error Analysis Significant Figures in Calculations Most lab report must have an error analysis. For many experiments, significant figure rules are sufficient. Remember to carry at least one extra significant

More information

Chapters 0, 1, 3. Read Chapter 0, pages 1 8. Know definitions of terms in bold, glossary in back.

Chapters 0, 1, 3. Read Chapter 0, pages 1 8. Know definitions of terms in bold, glossary in back. 1 Chapters 0, 1, 3 Analytical chemistry is chemical measurement science. Qualitative analysis what is it? Quantitative analysis how much of it is there? This class covers the following: 1. Measurement

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Student Learning Objectives Experimental Errors and Statistics The tolerances noted for volumetric glassware represent the accuracy associated

More information

What is measurement uncertainty?

What is measurement uncertainty? What is measurement uncertainty? What is measurement uncertainty? Introduction Whenever a measurement is made, the result obtained is only an estimate of the true value of the property being measured.

More information

Introduction to Measurements & Error Analysis

Introduction to Measurements & Error Analysis Introduction to Measurements & Error Analysis The Uncertainty of Measurements Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all measurements have some degree of uncertainty

More information

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM ADVANCED ANALYTICAL LAB TECH (Lecture) CHM 4130-0001 Spring 2013 Professor Andres D. Campiglia Textbook: Principles of Instrumental Analysis Skoog, Holler and Crouch, 5 th Edition, 6 th Edition or newest

More information

Practice Lab. Balances and calibration of volumetric tools

Practice Lab. Balances and calibration of volumetric tools Practice Lab. Balances and calibration of volumetric tools Balances are a very basic and very valuable tool in any chemistry lab and any chemist must understand their use, their proper treatment, their

More information

precision accuracy both neither

precision accuracy both neither I. Measurement and Observation There are two basic types of data collected in the lab: Quantitative : numerical information (e.g., the mass of the salt was.45 g) Qualitative : non-numerical, descriptive

More information

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) EXPERIMENT 21 Molarity of a Hydrochloric Acid Solution by Titration INTRODUCTION Volumetric analysis is a general term meaning any method in which a volume measurement is the critical operation; however,

More information

Fundamentals of data, graphical, and error analysis

Fundamentals of data, graphical, and error analysis Fundamentals of data, graphical, and error analysis. Data measurement and Significant Figures UTC - Physics 030L/040L Whenever we take a measurement, there are limitations to the data and how well we can

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory Calibration of Volumetric Glassware Introduction Volumetric glassware is a class of glass vessels that are calibrated to contain or deliver certain volumes of substances. Graduated cylinders, pipettes

More information

Chapter 2. Theory of Errors and Basic Adjustment Principles

Chapter 2. Theory of Errors and Basic Adjustment Principles Chapter 2 Theory of Errors and Basic Adjustment Principles 2.1. Introduction Measurement is an observation carried out to determine the values of quantities (distances, angles, directions, temperature

More information

The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class

The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class Part 1. Review the mole concept and how it s used. This includes mass (grams) to moles, moles-to-mass calculations,

More information

Uncertainty Analysis of Experimental Data and Dimensional Measurements

Uncertainty Analysis of Experimental Data and Dimensional Measurements Uncertainty Analysis of Experimental Data and Dimensional Measurements Introduction The primary objective of this experiment is to introduce analysis of measurement uncertainty and experimental error.

More information

Identification Of The Common Laboratory Glassware, Pipettes And Equipment. BCH 312 [Practical]

Identification Of The Common Laboratory Glassware, Pipettes And Equipment. BCH 312 [Practical] Identification Of The Common Laboratory Glassware, Pipettes And Equipment BCH 312 [Practical] (1) Identification of the common laboratory glassware : Conical flasks and beakers: Graduated cylinders Volumetric

More information

TOPIC 3: READING AND REPORTING NUMERICAL DATA

TOPIC 3: READING AND REPORTING NUMERICAL DATA Page 1 TOPIC 3: READING AND REPORTING NUMERICAL DATA NUMERICAL DATA 3.1: Significant Digits; Honest Reporting of Measured Values Why report uncertainty? That is how you tell the reader how confident to

More information

Part 01 - Notes: Identifying Significant Figures

Part 01 - Notes: Identifying Significant Figures Part 01 - Notes: Identifying Significant Figures Objectives: Identify the number of significant figures in a measurement. Compare relative uncertainties of different measurements. Relate measurement precision

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE 102 Engineering Computation Phillip Wong Error Analysis Accuracy vs. Precision Significant Figures Systematic and Random Errors Basic Error Analysis Physical measurements are never exact. Uncertainty

More information

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0.

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0. Chapter 11 Measurement and Data Processing Page 1 Students are to read and complete any part that requires answers and will submit this assignment on the first day of class. You may use internet sources

More information

Instrumentation & Measurement AAiT. Chapter 2. Measurement Error Analysis

Instrumentation & Measurement AAiT. Chapter 2. Measurement Error Analysis Chapter 2 Measurement Error Analysis 2.1 The Uncertainty of Measurements Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, all measurements have some degree of uncertainty

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error Statistical methods describe random or indeterminate errors in experimental

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement

SPH3U1 Lesson 03 Introduction. 6.1 Expressing Error in Measurement SIGNIFICANT DIGITS AND SCIENTIFIC NOTATION LEARNING GOALS Students will: 6 ERROR Describe the difference between precision and accuracy Be able to compare values quantitatively Understand and describe

More information

ents & Uncertainties Significant Figures 1.005, Round best to the experimental want to meters and use 300 m 2. significant figures because of

ents & Uncertainties Significant Figures 1.005, Round best to the experimental want to meters and use 300 m 2. significant figures because of Introduction to Measureme ents & Uncertainties Significant Figures A measurement and its experimental uncertainty should have significance. All numerical results and/or measurements are expressed with

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Chemistry Lab: Introduction to Measurement

Chemistry Lab: Introduction to Measurement Name Hour Chemistry Lab: Introduction to Measurement (adapted from Flinn ChemTopic Labs) Introduction Much of what we know about the physical world has been obtained from measurements made in the laboratory.

More information

SIGNIFICANT FIGURES. x 100%

SIGNIFICANT FIGURES. x 100% Page 1 SIGNIFICANT FIGURES ASSIGNED READING: Zumdahal, et.al, Chemistry (10 th ed.), Chapter 1, Sec. 4 and 5. I. Accuracy and Precision It is important to remember, here at the outset of this course, that

More information

Decimal Scientific Decimal Scientific

Decimal Scientific Decimal Scientific Experiment 00 - Numerical Review Name: 1. Scientific Notation Describing the universe requires some very big (and some very small) numbers. Such numbers are tough to write in long decimal notation, so

More information

Titration of an Unknown Acid

Titration of an Unknown Acid Experiment 6 Titration of an Unknown Acid Prepared by Stephen E. Schullery and Ross Nord, Eastern Michigan University PURPSE To determine the apparent molar mass of an unknown monoprotic acid by titrating

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

EXPERIMENT 5 THE ASSAY OF ASPIRIN

EXPERIMENT 5 THE ASSAY OF ASPIRIN EXPERIMENT 5 THE ASSAY OF ASPIRIN Aspirin is made by combining two acids, salicylic acid and acetic acid. Therefore aspirin has two acid portions, each of which can be neutralized by base. One mole of

More information

Chapter 2 - Analyzing Data

Chapter 2 - Analyzing Data Chapter 2 - Analyzing Data Section 1: Units and Measurements Section 2: Scientific Notation and Dimensional Analysis Section 3: Uncertainty in Data Section 4: Representing Data Chemists collect and analyze

More information

Liquid-in-glass thermometer

Liquid-in-glass thermometer Liquid-in-glass thermometer Objectives The objective of this experiment is to introduce some basic concepts in measurement, and to develop good measurement habits. In the first section, we will develop

More information

MEASUREMENTS AND ERRORS

MEASUREMENTS AND ERRORS Measurements 1 MESUREMENTS ND ERRORS ccuracy Error Precision Uncertainty Reliability measure of the closeness of agreement between an individual result and the accepted value. n accurate result is in close

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

Measurement Uncertainties

Measurement Uncertainties Measurement Uncertainties Introduction We all intuitively know that no experimental measurement can be "perfect''. It is possible to make this idea quantitative. It can be stated this way: the result of

More information

EXPERIMENT 30A1: MEASUREMENTS. Learning Outcomes. Introduction. Experimental Value - True Value. 100 True Value

EXPERIMENT 30A1: MEASUREMENTS. Learning Outcomes. Introduction. Experimental Value - True Value. 100 True Value 1 Learning Outcomes EXPERIMENT 30A1: MEASUREMENTS Upon completion of this lab, the student will be able to: 1) Use various common laboratory measurement tools such as graduated cylinders, volumetric flask,

More information

Measurement And Uncertainty

Measurement And Uncertainty Measurement And Uncertainty Based on Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition PHYS 407 1 Measurement approximates or

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta Error Analysis and Significant Figures Errors using inadequate data are much less than those using no data at all. C. Babbage No measurement of a physical quantity can be entirely accurate. It is important

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

A.0 SF s-uncertainty-accuracy-precision

A.0 SF s-uncertainty-accuracy-precision A.0 SF s-uncertainty-accuracy-precision Objectives: Determine the #SF s in a measurement Round a calculated answer to the correct #SF s Round a calculated answer to the correct decimal place Calculate

More information

Assessment of Accuracy and Precision

Assessment of Accuracy and Precision 2 chapter Assessment of Accuracy and Precision S.S. Nielsen, Food Analysis Laboratory Manual, Food Science Texts Series, DOI 10.1007/978-1-4419-1463-7_2, Springer Science+Business Media, LLC 2010 9 Chapter

More information

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10 CHM 110 - Accuracy, Precision, and Significant Figures (r14) - 2014 C. Taylor 1/10 Introduction Observations are vitally important to all of science. Some observations are qualitative in nature - such

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER?

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER? UNITS & MEASUREMENT WHY DO UNITS AND MEASUREMENT MATTER? Chemistry In Action On 9/3/99, $15,000,000 Mars Climate Orbiter entered Mar s atmosphere 100 km (6 miles) lower than planned and was destroyed by

More information

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution In this experiment, you will determine the molarity and percent

More information

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured.

Accuracy: An accurate measurement is a measurement.. It. Is the closeness between the result of a measurement and a value of the measured. Chemical Analysis can be of two types: Chapter 11- Measurement and Data Processing: - : Substances are classified on the basis of their or properties, such as - : The amount of the sample determined in

More information

Measurements and Errors

Measurements and Errors 1 Measurements and Errors If you are asked to measure the same object two different times, there is always a possibility that the two measurements may not be exactly the same. Then the difference between

More information

Measurement. New Topics accuracy vs. precision rounding in chemistry significant figures determining uncertainty of a measurement % error moles - 1 -

Measurement. New Topics accuracy vs. precision rounding in chemistry significant figures determining uncertainty of a measurement % error moles - 1 - Measurement Unit Description In this unit we will focus on the mathematical tools we use in science, especially chemistry the metric system and moles. We will also talk about how to gauge the accuracy

More information

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements

Engineering Fundamentals and Problem Solving, 6e. Chapter 6 Engineering Measurements Engineering Fundamentals and Problem Solving, 6e Chapter 6 Engineering Measurements Chapter Objectives Determine the number of significant digits in a measurement Perform numerical computations with measured

More information

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR

PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR PHYS 212 PAGE 1 OF 6 ERROR ANALYSIS EXPERIMENTAL ERROR Every measurement is subject to errors. In the simple case of measuring the distance between two points by means of a meter rod, a number of measurements

More information

3. Measurement Error and Precision

3. Measurement Error and Precision 3.1 Measurement Error 3.1.1 Definition 3. Measurement Error and Precision No physical measurement is completely exact or even completely precise. - Difference between a measured value and the true value

More information

IB Physics (HL) Student Guide for Measurement Error and Uncertainty Analysis. Ballston Spa High School

IB Physics (HL) Student Guide for Measurement Error and Uncertainty Analysis. Ballston Spa High School IB Physics (HL) Student Guide for Measurement Error and Uncertainty Analysis Ballston Spa High School Error & Uncertainty No measurement is ever perfectly exact or perfectly correct; every measurement

More information

Measurements UNITS FOR MEASUREMENTS

Measurements UNITS FOR MEASUREMENTS Measurements UNITS FOR MEASUREMENTS Chemistry is an experimental science that requires the use of a standardized system of measurements. By international agreement in 1960, scientists around the world

More information

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Determination of the K a Value and Molar Mass of an Unknown Weak Acid 10 Determination of the K a Value and Molar Mass of an Unknown Weak Acid Introduction In this experiment you will titrate a monoprotic weak acid with a strong base, and measure the titration curve with

More information

Dr. Kevin Moore CHM 111

Dr. Kevin Moore CHM 111 Dr. Kevin Moore CHM 111 www.dictionary.com the science that deals with the composition and properties of substances and various elementary forms of matter Burdge Study of matter and the changes it undergoes

More information

Uncertainty in numbers

Uncertainty in numbers 1.03 Accuracy, Precision and Significant Figures Uncertainty in numbers Story: Taxi driver (13 years experience) points to a pyramid "...this here pyramid is exactly 4511 years old". After a quick calculation,

More information

Propagation of Uncertainty

Propagation of Uncertainty 76 nalytical Chemistry 2.1 lthough we will not derive or further justify the rules presented in this section, you may consult this chapter s additional resources for references that discuss the propagation

More information

Pre-lab: Read section 9.9 (pages ) on acid-base titrations in the textbook. Complete the attached pre-lab by Tuesday, June 2.

Pre-lab: Read section 9.9 (pages ) on acid-base titrations in the textbook. Complete the attached pre-lab by Tuesday, June 2. Chemistry 121 Lab 5: Titration of an unknown acid Objective: Determine the concentration of an unknown monoprotic acid by titration, the process that matches the number of moles of base with the number

More information

5. Statistical Evaluation of Acid-Base Indicators 1

5. Statistical Evaluation of Acid-Base Indicators 1 5. Statistical Evaluation of Acid-Base Indicators 1 This experiment introduces you to the use of indicators and to the statistical concepts of mean, standard deviation, Grubbs test, F test, and t test.

More information

The periodic table currently lists 116 different atoms. New atoms are being discovered.

The periodic table currently lists 116 different atoms. New atoms are being discovered. CHEM100 Week 1 Notes Page 1 of 11 Chemistry is the study of matter. Matter is made up of atoms. The periodic table currently lists 116 different atoms. New atoms are being discovered. Atoms consist of

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory The Methods of Calibration Curve and Standard Addition Introduction One of the principle activities in the Quantitative Analysis Laboratory is the measurement of the concentration or total quantity of

More information

Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview

Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview Estimation of Uncertainties in Chemical Measurement Guide to the Expression of Uncertainty in Measurement (GUM)- An Overview Angelique Botha Method of evaluation: Analytical measurement Step 1: Specification

More information

Appendix A: Significant Figures and Error Analysis

Appendix A: Significant Figures and Error Analysis 1 Appendix A: Significant Figures and Error Analysis Every measurement of a physical quantity contains some amount of uncertainty or error. We often speak of a certain number or measurement as being precise

More information

experiment3 Introduction to Data Analysis

experiment3 Introduction to Data Analysis 63 experiment3 Introduction to Data Analysis LECTURE AND LAB SKILLS EMPHASIZED Determining what information is needed to answer given questions. Developing a procedure which allows you to acquire the needed

More information

Pre-lab: Read sections 10.6 in the textbook. Complete the attached pre-lab by Thursday, May 22.

Pre-lab: Read sections 10.6 in the textbook. Complete the attached pre-lab by Thursday, May 22. Lab 5: Titration of an unknown acid Objective: Determine the concentration of an unknown monoprotic acid by titration, the process that matches the number of moles of base with the number of moles of acid.

More information

Analyzing Data. Click a hyperlink or folder tab to view the corresponding slides. Exit

Analyzing Data. Click a hyperlink or folder tab to view the corresponding slides. Exit Analyzing Data Section 2.1 Units and Measurements Section 2.2 Scientific Notation and Dimensional Analysis Section 2.3 Uncertainty in Data Section 2.4 Representing Data Click a hyperlink or folder tab

More information

PURPOSE: To determine the Rate Law for the following chemical reaction:

PURPOSE: To determine the Rate Law for the following chemical reaction: PURPOSE: To determine the Rate Law for the following chemical reaction: H 2 O 2 (aq) + 2 I - (aq) + 2 H 3 O + (aq) 4 H 2 O(l) + I 2 (aq) Hydrogen Iodide Hydronium Water Iodine Peroxide Ion Ion PRINCIPLES:

More information

ISP 207L Supplementary Information

ISP 207L Supplementary Information ISP 207L Supplementary Information Scientific Notation Numbers written in Scientific Notation are composed of two numbers. 1) Digit term A number between 1 and 10 2) Exponential term Integer power of 10

More information

Appendix F. Treatment of Numerical Data. I. Recording Data F-1

Appendix F. Treatment of Numerical Data. I. Recording Data F-1 Treatment of umerical Data I. Recording Data When numerical data are recorded, three kinds of information must be conveyed: the magnitude of the number, how well the number is known, and the units used

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

LESSON ASSIGNMENT. After completing this lesson, you should be able to:

LESSON ASSIGNMENT. After completing this lesson, you should be able to: LESSON ASSIGNMENT LESSON 1 General Mathematics Review. TEXT ASSIGNMENT Paragraphs 1-1 through 1-49. LESSON OBJECTIVES After completing this lesson, you should be able to: 1-1. Identify and apply the properties

More information