Chapters 0, 1, 3. Read Chapter 0, pages 1 8. Know definitions of terms in bold, glossary in back.

Size: px
Start display at page:

Download "Chapters 0, 1, 3. Read Chapter 0, pages 1 8. Know definitions of terms in bold, glossary in back."

Transcription

1 1 Chapters 0, 1, 3 Analytical chemistry is chemical measurement science. Qualitative analysis what is it? Quantitative analysis how much of it is there? This class covers the following: 1. Measurement science basics 2. Gravimetric analysis (by mass), 1 st lab of semester 3. Volumetric analysis (by volume, titrations) too many labs 4. Spectrophotometric analysis (by light absorption), lab 3 5. Potentiometry (by voltage) near the end of the semester Read Chapter 0, pages 1 8. Know definitions of terms in bold, glossary in back. Review Chapter 1, pages 9 17, mostly on units and unit conversions. Stoichiometry problems must be mastered to pass this class. For practice I have included additional problems on the web site. Of utmost importance: 1. How to prepare solutions from the solid 2. How to prepare a dilute solution from a more concentrated solution. Chapter 1 problems from book: Excercises A, C + Problems 8, 15, 17, 23, 28, 31, 32a, 34. Chapter 2 is for the laboratory, read it before we first meet. You may not understand it all, you will understand some.

2 2 Chapter 3 Experimental Error We will be covering pages in this chapter. Vocabulary/jargon to know: Absolute uncertainty, accuracy, determinate error, indeterminate error, precision, random error, relative uncertainty, significant figure, systematic error.

3 3 A statement of fact every quantitative measurement has error (uncertainty) associated with it. Corollary quantitative measurements are meaningless without knowledge of the error (uncertainty) of the measurement(s). So how is this uncertainty determined? In great part the answer to this question is the subject of Chapters 3 & 4. A short discussion of significant figures see page 46. Systematic (determinate) error is basically a reproducible screw up that gives an experimental bias such that the result is always too high (positive bias) or too low (negative bias). In principle at least this can be corrected. Random (indeterminate) error is from the natural limitations of the ability to make a measurement. This cannot be corrected. It

4 4 is random because it may give a result that is either too high or too low; i.e., positive or negative bias. This random or indeterminate error is what is possible to address statistically. Precision describes the measurement reproducibility arising from random or indeterminate error. Accuracy describes the agreement between a result and its true or accepted value. Accuracy can affected by both indeterminate and determinate errors. Delete measurements with systematic error if you know they exist, so only random error is present. The measurement of random error (precision) is discussed in Chapter 4 when standard deviation, variance, and confidence interval are introduced. The accurate or true value of a measurement is the average of a large number of measurements, mathematically an infinite number but practically a hundred or more, in the absence of systematic error.

5 5 Two more definitions of immediate importance: The absolute error of a buret measurement is ± 0.02 ml The relative error is: Absolute error/measurement value 1) Consider a buret with ± 0.02 ml of liquid: 2) Consider a buret with ± 0.02 ml of liquid: Or if multiple measurements are made as is almost always done: The following, Section 3.4, is mostly helpful in lab. People find this possibly the most difficult stuff in quant. You still have to be able to do it, or you will pay for it by at least 1 grade reduction per lab. Error (uncertainty) is usually expressed as a standard deviation (s), variance (s 2 ), and usually ultimately as a confidence interval. These are introduced in Chapter 4. For now error is just given the symbol e, but we will use the standard deviation (s) once it is defined.

6 6 Almost invariably a quantitative measurement results from a series of measurements, each measurement with its own inherent uncertainty. You then do math on these measurements to obtain the final result. How does the uncertainty propagate through the calculation? (Can t just add them up since some may have + bias and others bias). 2 rules: 1 for adding/subtracting numbers derived from measurements, and 1 for multiplying and dividing numbers derived from measurements. 1. Addition/subtraction. If 2 numbers each with its own uncertainty must be added or subtracted, the answer s absolute uncertainty is obtained from the absolute uncertainties of the individual measurements. If e is the absolute uncertainty (it will be s later) Example: An analytical balance can measure a mass to ± 0.2 mg or g. Normally one obtains a mass by difference, meaning 2 measurements are made for each mass obtained. The value of the 2 measurements are subtracted one from the other.

7 7 The following illustrates the real rule of significant figures. Similarly for 2 buret readings in a volumetric analysis, each measurement can be done to ± 0.02 ml. Doing the same math shows that the error from a single titration, comprising 2 readings one before titration and one when it is done, is ± 0.03 ml. This won t be used much unless we go all out. However the following rule will be used a lot. 2. Multiplication/division. If 2 numbers each with its own uncertainty must be multiplied or divided, the answer s absolute uncertainty is obtained from the relative uncertainties of the individual measurements. Note that we are always ultimately interested in the absolute uncertainty of the final value. Example: If you have a ± M HCl solution and deliver 100 ± 0.02 ml of solution to another flask, how many mmoles have you delivered? What is the (absolute) uncertainty?

8 8 Additional notes: 1. In Labs 2 & 3, to propagate uncertainty you will do the equivalent of the mixed operations example on page Read the real rule for significant figures also on page 46. Think about it. 3. Skip section Remember what we just did is really for working up uncertainties in lab data. 5. If you want to know why uncertainties propagate in the way just discussed, see Appendix C (calculus required). Chapter 3 problems: 9 13

Chapter 3 Math Toolkit

Chapter 3 Math Toolkit Chapter 3 Math Toolkit Problems - any Subtitle: Error, where it comes from, how you represent it, and how it propagates into your calculations. Before we can start talking chemistry we must first make

More information

Measurements, Sig Figs and Graphing

Measurements, Sig Figs and Graphing Measurements, Sig Figs and Graphing Chem 1A Laboratory #1 Chemists as Control Freaks Precision: How close together Accuracy: How close to the true value Accurate Measurements g Knowledge Knowledge g Power

More information

Chemistry Calibration of a Pipet and Acid Titration

Chemistry Calibration of a Pipet and Acid Titration Chemistry 3200 Today you are given a chance to brush up on some of the techniques that you will be using during the remainder of the semester. Lab grades will be based on obtaining the correct answer in

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 03: EXPERIMENTAL ERROR Chapter 3. Experimental Error -There is error associated with every measurement. -There is no way to measure the true

More information

Part 01 - Notes: Identifying Significant Figures

Part 01 - Notes: Identifying Significant Figures Part 01 - Notes: Identifying Significant Figures Objectives: Identify the number of significant figures in a measurement. Compare relative uncertainties of different measurements. Relate measurement precision

More information

Statistics: Error (Chpt. 5)

Statistics: Error (Chpt. 5) Statistics: Error (Chpt. 5) Always some amount of error in every analysis (How much can you tolerate?) We examine error in our measurements to know reliably that a given amount of analyte is in the sample

More information

Analytical Chemistry. Course Philosophy

Analytical Chemistry. Course Philosophy Analytical Chemistry Definition: the science of extraction, identification, and quantitation of an unknown sample. Example Applications: Human Genome Project Lab-on-a-Chip (microfluidics) and anotechnology

More information

Oddo-Harkins rule of element abundances

Oddo-Harkins rule of element abundances Page 1 of 5 Oddo-Harkins rule of element abundances To instructors This is a simple exercise that is meant to introduce students to the concept of isotope ratios, simple counting statistics, intrinsic

More information

What is measurement uncertainty?

What is measurement uncertainty? What is measurement uncertainty? What is measurement uncertainty? Introduction Whenever a measurement is made, the result obtained is only an estimate of the true value of the property being measured.

More information

CHM111 Lab Math Review Grading Rubric

CHM111 Lab Math Review Grading Rubric Name CHM111 Lab Math Review Grading Rubric Part 1. Basic Algebra and Percentages Criteria Points possible Points earned Question 1 (0.25 points each question) 2 Question 2 (0.25 points each question) 1

More information

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water Accuracy and Precision of Laboratory Glassware: Determining the Density of Water During the semester in the general chemistry lab, you will come into contact with various pieces of laboratory glassware.

More information

Source: Chapter 5: Errors in Chemical Analyses

Source: Chapter 5: Errors in Chemical Analyses Source: Chapter 5: Errors in Chemical Analyses Measurements invariably involve errors and uncertainties. it is impossible to perform a chemical analysis that is totally free of errors or uncertainties

More information

CHM101 Lab Math Review and Significant Figures Grading Rubric

CHM101 Lab Math Review and Significant Figures Grading Rubric Name CHM101 Lab Math Review and Significant Figures Grading Rubric Criteria Points possible Points earned Part A (0.25 each) 3.5 Part B (0.25 each) 2.5 Part C (0.25 each) 1.5 Part D (Q5 0.25 each, Q6 &

More information

Why the fuss about measurements and precision?

Why the fuss about measurements and precision? Introduction In this tutorial you will learn the definitions, rules and techniques needed to record measurements in the laboratory to the proper precision (significant figures). You should also develop

More information

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks

Error Analysis. Table 1. Tolerances of Class A Pipets and Volumetric Flasks Error Analysis Significant Figures in Calculations Most lab report must have an error analysis. For many experiments, significant figure rules are sufficient. Remember to carry at least one extra significant

More information

Error Analysis General Chemistry Laboratory November 13, 2015

Error Analysis General Chemistry Laboratory November 13, 2015 Error Analysis General Chemistry Laboratory November 13, 2015 Error and uncertainty may seem synonymous with trivial mistakes in the lab, but they are well defined aspects of any numerical measurement

More information

Chapter 3 Scientific Measurement

Chapter 3 Scientific Measurement Chapter 3 Scientific Measurement Measurements We make measurements every day: buying products, sports activities, and cooking Qualitative measurements are words, such as heavy or hot Quantitative measurements

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 Define the problem: Suppose we have a 5-layer feed-forward neural network. (I intentionally

More information

Ch 3. EXPERIMENTAL ERROR

Ch 3. EXPERIMENTAL ERROR Ch 3. EXPERIMENTAL ERROR 3.1 Measurement data how accurate? TRUE VALUE? No way to obtain the only way is approaching toward the true value. (how reliable?) How ACCURATE How REPRODUCIBLE accuracy precision

More information

Physics. Nov Title: Nov 3 8:52 AM (1 of 45)

Physics. Nov Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Title: Nov 3 8:52 AM (1 of 45) Physics Nov 3 2008 Physics is the branch of science that studies matter and energy, how they are related and how they interact. Physics covers everything

More information

Measurements Chapter 3

Measurements Chapter 3 Measurements Chapter 3 Analytical Chemistry is the science of chemical measurement. Its object is the generation, treatment and evaluation of signals from which information is obtained on the composition

More information

Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13

Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13 Chem 321 Lecture 5 - Experimental Errors and Statistics 9/10/13 Student Learning Objectives Experimental Errors and Statistics Calibration Results for a 2.0-mL Transfer Pipet 1.998 ml 1.991 ml 2.001 ml

More information

Chapter 3 Experimental Error

Chapter 3 Experimental Error Chapter 3 Experimental Error Homework Due Friday January 27 Problems: 3-2, 3-5, 3-9, 3-10, 3-11, 3-12, 3-14, 3-19 Chapter 3 Experimental Error Uncertainties They are everywhere!! We need to learn to understand

More information

ANALYTICAL CHEMISTRY 1 LECTURE NOTES

ANALYTICAL CHEMISTRY 1 LECTURE NOTES ANALYTICAL CHEMISTRY 1 LECTURE NOTES FUNDAMENTALS OF PRE ANALYSES TOPIC 1: Theory of Errors 1.0 Introduction Analytical chemistry is a specialised aspect of chemistry that deals with both qualitative analysis

More information

Dr. Kevin Moore CHM 111

Dr. Kevin Moore CHM 111 Dr. Kevin Moore CHM 111 www.dictionary.com the science that deals with the composition and properties of substances and various elementary forms of matter Burdge Study of matter and the changes it undergoes

More information

Jan 18, 2005 #3. Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error

Jan 18, 2005 #3. Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error Jan 18, 2005 #3 Average (Ch. 4) Standard deviation Q-test Significant Figures (Ch 3) Error Announcement When you send me an e- mail, please identify your full name and lab session. Jan 21 is the last day

More information

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error Statistical methods describe random or indeterminate errors in experimental

More information

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b).

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b). Confidence Intervals 1) What are confidence intervals? Simply, an interval for which we have a certain confidence. For example, we are 90% certain that an interval contains the true value of something

More information

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES INTRODUCTION DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES SOLUBILTY EQUILIBRIA Many systems in chemistry appear to be static when in fact they are in (dynamic) equilibrium. When a system

More information

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM

ADVANCED ANALYTICAL LAB TECH (Lecture) CHM ADVANCED ANALYTICAL LAB TECH (Lecture) CHM 4130-0001 Spring 2013 Professor Andres D. Campiglia Textbook: Principles of Instrumental Analysis Skoog, Holler and Crouch, 5 th Edition, 6 th Edition or newest

More information

TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS. Teacher Notes

TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS. Teacher Notes TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS Teacher Notes This experiment is designed for students working singly or in groups of two. The overall purpose of this experiment

More information

Chem 310, Fall 2005 Final Exam December 15, :15-12:15 (You must stop working at 12:15!)

Chem 310, Fall 2005 Final Exam December 15, :15-12:15 (You must stop working at 12:15!) NAME: Chem 310, Fall 2005 Final Exam December 15, 2005 10:15-12:15 (You must stop working at 12:15!) There are 3 pages of questions on this exam (not counting this page), with points allocated as indicated.

More information

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures

Lecture 3. - all digits that are certain plus one which contains some uncertainty are said to be significant figures Lecture 3 SIGNIFICANT FIGURES e.g. - all digits that are certain plus one which contains some uncertainty are said to be significant figures 10.07 ml 0.1007 L 4 significant figures 0.10070 L 5 significant

More information

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY Water, the common solvent Solution is a homogeneous mixture Solvent is the substance that does the dissolving Solute is the substance that

More information

Chemical Reactions: Titrations

Chemical Reactions: Titrations 1 Chemical Reactions: Titrations ORGANIZATION Mode: laboratory work, work in pairs Grading: lab notes, lab performance (titration accuracy), and post-lab report Safety: goggles, lab coat, closed-toe shoes,

More information

Spectrophotometric Determination of Ferrocyanide in Effluents

Spectrophotometric Determination of Ferrocyanide in Effluents Spectrophotometric Determination of Ferrocyanide in Effluents ECN-0025-1 INTRODUCTION This method is used to determine the concentration of ferrocyanide ion in photoprocessing solution effluents. The ion

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Uncertainties & Error Analysis Tutorial

Uncertainties & Error Analysis Tutorial Uncertainties & Error Analysis Tutorial Physics 118/198/1 Reporting Measurements Uncertainties & Error Analysis Tutorial When we report a measured value of some parameter, X, we write it as X X best ±

More information

A Quick Introduction to Data Analysis (for Physics)

A Quick Introduction to Data Analysis (for Physics) A Quick Introduction to Data Analysis for Physics Dr. Jeff A. Winger What is data analysis? Data analysis is the process by which experimental data is used to obtain a valid and quantifiable result. Part

More information

Pre-lab: Read sections 10.6 in the textbook. Complete the attached pre-lab by Thursday, May 22.

Pre-lab: Read sections 10.6 in the textbook. Complete the attached pre-lab by Thursday, May 22. Lab 5: Titration of an unknown acid Objective: Determine the concentration of an unknown monoprotic acid by titration, the process that matches the number of moles of base with the number of moles of acid.

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0.

11.1 Uncertainty and error in measurement (1 Hour) 11.2 Uncertainties in calculated results (0.5 Hour) 11.3 Graphical techniques (0. Chapter 11 Measurement and Data Processing Page 1 Students are to read and complete any part that requires answers and will submit this assignment on the first day of class. You may use internet sources

More information

Fundamentals of Macroscopic Chemical Analysis (CHEM 255) Spring 2013 Course Syllabus, Policies, and Procedures

Fundamentals of Macroscopic Chemical Analysis (CHEM 255) Spring 2013 Course Syllabus, Policies, and Procedures Fundamentals of Macroscopic Chemical Analysis (CHEM 255) Spring 2013 Course Syllabus, Policies, and Procedures Prerequisites: Completed CHEM 125 Instructor: Fazal, M. Abul Office: Ardolf Science Center,

More information

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

Propagation of Uncertainty

Propagation of Uncertainty 76 nalytical Chemistry 2.1 lthough we will not derive or further justify the rules presented in this section, you may consult this chapter s additional resources for references that discuss the propagation

More information

The trick is to multiply the numerator and denominator of the big fraction by the least common denominator of every little fraction.

The trick is to multiply the numerator and denominator of the big fraction by the least common denominator of every little fraction. Complex Fractions A complex fraction is an expression that features fractions within fractions. To simplify complex fractions, we only need to master one very simple method. Simplify 7 6 +3 8 4 3 4 The

More information

Chemistry 6A F2007. Dr. J.A. Mack 11/28/07. Exam 3: Friday 12/7/07 (here in lecture) Standard Solutions: What will be covered on the exam?

Chemistry 6A F2007. Dr. J.A. Mack 11/28/07. Exam 3: Friday 12/7/07 (here in lecture) Standard Solutions: What will be covered on the exam? Chemistry 6A F2007 Dr. J.A. Mack Exam : Friday 12/7/07 (here in lecture) What will be covered on the exam? Chapter 6: 6.9-6.15 Chapter 7: All Chapter 8: All Chapter 9: 9.1-9.9 Any thing from lab as well

More information

REVIEW PACKET FOR CHEM 110 EXAM 1

REVIEW PACKET FOR CHEM 110 EXAM 1 REVIEW PACKET FOR CHEM 110 EXAM 1 EXAM FORMAT You will have one hour for the exam. Expert Level (A+): Finished at 30 min Mastery Level (A): Finished between 30 min and 45 min Proficiency Level (B): Finished

More information

PHARMACEUTICAL ANALYTICAL CHEMISTRY

PHARMACEUTICAL ANALYTICAL CHEMISTRY 1 PHARMACEUTICAL ANALYTICAL CHEMISTRY 0510113 Dr. Ahmad Najjar Faculty of Pharmacy Department of Pharmaceutical Sciences First Semester, 2017/2018 2 CHAPTER 1 ANALYTICAL OBJECTIVES 3 ANALYTICAL CHEMISTRY

More information

Precision Correcting for Random Error

Precision Correcting for Random Error Precision Correcting for Random Error The following material should be read thoroughly before your 1 st Lab. The Statistical Handling of Data Our experimental inquiries into the workings of physical reality

More information

Chemistry Unit 1. Chapter 1 Chemical Overview

Chemistry Unit 1. Chapter 1 Chemical Overview Chemistry Unit 1 Chapter 1 Chemical Overview Chemistry Unit 1 Section 1 Overview Scientific Method Measurement Significant Figures Dimensional Analysis A main challenge of chemistry is to understand the

More information

experiment3 Introduction to Data Analysis

experiment3 Introduction to Data Analysis 63 experiment3 Introduction to Data Analysis LECTURE AND LAB SKILLS EMPHASIZED Determining what information is needed to answer given questions. Developing a procedure which allows you to acquire the needed

More information

Topic 2 Measurement and Calculations in Chemistry

Topic 2 Measurement and Calculations in Chemistry Topic Measurement and Calculations in Chemistry Nature of Measurement Quantitative observation consisting of two parts. number scale (unit) Examples 0 grams 6.63 10 34 joule seconds The Fundamental SI

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

-However, this definition can be expanded to include: biology (biometrics), environmental science (environmetrics), economics (econometrics).

-However, this definition can be expanded to include: biology (biometrics), environmental science (environmetrics), economics (econometrics). Chemometrics Application of mathematical, statistical, graphical or symbolic methods to maximize chemical information. -However, this definition can be expanded to include: biology (biometrics), environmental

More information

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n = Hypothesis testing I I. What is hypothesis testing? [Note we re temporarily bouncing around in the book a lot! Things will settle down again in a week or so] - Exactly what it says. We develop a hypothesis,

More information

Section 1.1: Patterns in Division

Section 1.1: Patterns in Division Section 1.1: Patterns in Division Dividing by 2 All even numbers are divisible by 2. E.g., all numbers ending in 0,2,4,6 or 8. Dividing by 4 1. Are the last two digits in your number divisible by 4? 2.

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

Chemistry. The study of matter and the changes it undergoes

Chemistry. The study of matter and the changes it undergoes Chemistry. The study of matter and the changes it undergoes 5 Major Areas of Chemistry Analytical Chemistry- composition of substances. Inorganic Chemistry- substances without carbon Organic Chemistry-

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

**Multiply has higher priority **some calculators will do in correct order but not all DO NOT rely on your calculator!

**Multiply has higher priority **some calculators will do in correct order but not all DO NOT rely on your calculator! 1 Chemistry 047 Math in Chem Math in Chemistry: A. Multiplication/Division symbols B. Order of operations C. Ratio D. proportion E. Scientific notation F. Unit conversions G. Dimensional analysis H. Derived

More information

precision accuracy both neither

precision accuracy both neither I. Measurement and Observation There are two basic types of data collected in the lab: Quantitative : numerical information (e.g., the mass of the salt was.45 g) Qualitative : non-numerical, descriptive

More information

General Information. 1. Course Description. 2. Course Objectives

General Information. 1. Course Description. 2. Course Objectives College of Science Department of Chemistry Course Code: CHEM 334 Course Title: Analytical Chemistry I General Information Number of Credits: 3 Instructional Format: hours Lectures + 3 hours Lab Contact

More information

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Conversion factor Density Uncertainty Significant digits/figures Precision Accuracy Percent error September 2017 Page 1 of 32 Scientific

More information

5. Statistical Evaluation of Acid-Base Indicators 1

5. Statistical Evaluation of Acid-Base Indicators 1 5. Statistical Evaluation of Acid-Base Indicators 1 This experiment introduces you to the use of indicators and to the statistical concepts of mean, standard deviation, Grubbs test, F test, and t test.

More information

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13

Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Chem 321 Lecture 4 - Experimental Errors and Statistics 9/5/13 Student Learning Objectives Experimental Errors and Statistics The tolerances noted for volumetric glassware represent the accuracy associated

More information

5 Major Areas of Chemistry

5 Major Areas of Chemistry Chapter 1 What is Chemistry? Chemistry is the study of the composition of matter (matter is anything with mass and occupies space), its composition, properties, and the changes it undergoes. Has a definite

More information

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vectors. Vectors. Reminder: Scalars and Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 Reminder: Scalars and Vectors Vector: Scalar: A number (magnitude) with a direction. Just a number. I have continually asked you, which

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

EXPERIMENT 5 THE ASSAY OF ASPIRIN

EXPERIMENT 5 THE ASSAY OF ASPIRIN EXPERIMENT 5 THE ASSAY OF ASPIRIN Aspirin is made by combining two acids, salicylic acid and acetic acid. Therefore aspirin has two acid portions, each of which can be neutralized by base. One mole of

More information

MASTER COURSE OUTLINE

MASTER COURSE OUTLINE A. CHEM 1201 General Chemistry I B. COURSE DESCRIPTION: MASTER COURSE OUTLINE This is the first course of a two semester sequence in general inorganic chemistry, Atomic Theory, stoichiometry, chemical

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Lab 2 - Scientific Measurement

Lab 2 - Scientific Measurement Name: Lab 2 - Scientific Measurement As a biology student you will often be asked to make observations. These observations will be of either a qualitative or quantitative nature. A qualitative observation

More information

Master Syllabus and Course Content MATH 0989 Foundations for College Algebra Georgia Highlands College Updated for Fall 2017

Master Syllabus and Course Content MATH 0989 Foundations for College Algebra Georgia Highlands College Updated for Fall 2017 Course Description: Master Syllabus and Course Content MATH 0989 Foundations for College Algebra Georgia Highlands College Updated for Fall 2017 Mathematics 0989: Foundations for College Algebra MATH 0989

More information

Precalculus Workshop - Equations and Inequalities

Precalculus Workshop - Equations and Inequalities Linear Equations To solve a linear equation, we may apply the rules below. The values a, b and c are real numbers, unless otherwise stated. 1. Addition and subtraction rules: (a) If a = b, then a + c =

More information

Chem400. General Chemistry. Introduction. Class Syllabus. Introduction. Instructor: Prof. Maddox. Welcome to Chem 400!

Chem400. General Chemistry. Introduction. Class Syllabus. Introduction. Instructor: Prof. Maddox. Welcome to Chem 400! Chem400 General Chemistry Instructor: Prof. Maddox Note: Students will not be added to the class during lecture You must wait for your specified lab session to inquire about adding the class Wait-list

More information

Title Quantitative Analysis of a Solution Containing Cobalt and Copper

Title Quantitative Analysis of a Solution Containing Cobalt and Copper Title Quantitative Analysis of a Solution Containing Cobalt and Copper Name Manraj Gill (Lab partner: Tanner Adams) Abstract In this series of experiments, we determine the concentrations of two metal

More information

Scientific Measurement

Scientific Measurement Scientific Measurement A quantity is anything having a measurable size or amount For Example: 5 But 5 what? A unit assigns value to a measured quantity For Example: 5 ft, 5 gal, 5 sec, 5 m, 5 g. Base Units

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

Notes: Measurement and Calculation

Notes: Measurement and Calculation Name Chemistry-PAP Per. I. The Basics of Measurement Notes: Measurement and Calculation A. Measurement Most provide quantitative information, but because they are obtained experimentally, they are inexact.

More information

Name: Class: Date: individually OFFICIAL USE ONLY Total Grade

Name: Class: Date: individually OFFICIAL USE ONLY Total Grade Name: Class: Date: Welcome to AP Physics 1! It is a college level Physics course that is fun, interesting and challenging on a level you ve not yet experienced. This summer assignment will review all of

More information

Measurement and Uncertainty

Measurement and Uncertainty Physics 1020 Laboratory #1 Measurement and Uncertainty 1 Measurement and Uncertainty Any experimental measurement or result has an uncertainty associated with it. In todays lab you will perform a set of

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Properties of Solutions Section 12 1: The Nature of Aqueous Solutions 1) Sec 12 1.1 Mixtures of Two Liquids When two liquids

More information

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p).

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p). Sampling distributions and estimation. 1) A brief review of distributions: We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation,

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

The formal lab reports should use the format given below.

The formal lab reports should use the format given below. Lab Reports - First Four Experiments General comments on the lab reports. You will do formal lab reports for the first four experiments (lattice energy of argon, chain length in polyvinyl alcohol polymer,

More information

Uncertainty in numbers

Uncertainty in numbers 1.03 Accuracy, Precision and Significant Figures Uncertainty in numbers Story: Taxi driver (13 years experience) points to a pyramid "...this here pyramid is exactly 4511 years old". After a quick calculation,

More information

Chem 222 #3 Ch3 Aug 31, 2004

Chem 222 #3 Ch3 Aug 31, 2004 Chem 222 #3 Ch3 Aug 31, 2004 Announcement Please work in the lab session you registered for. If you are found to work in any other lab without my permission, no points will be given for the lab. Please

More information

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 Remember, consult the Homework Guidelines for general instructions. GRADED HOMEWORK: 1. Give direct proofs for the two following its. Do not use

More information

HIGH SCHOOL CHEMISTRY REVIEW LECTURE 2: REACTION STOICHIOMETRY

HIGH SCHOOL CHEMISTRY REVIEW LECTURE 2: REACTION STOICHIOMETRY HIGH SCHOOL CHEMISTRY REVIEW LECTURE : REACTION STOICHIOMETRY Chapter summary. We just learned that simple quantitative relationships based upon the idea of the law of simple proportions could be combined

More information

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) EXPERIMENT 21 Molarity of a Hydrochloric Acid Solution by Titration INTRODUCTION Volumetric analysis is a general term meaning any method in which a volume measurement is the critical operation; however,

More information

General Chemistry I Office: Chem

General Chemistry I Office: Chem General Chemistry I Office: Chem 122 Fall 2009 email: pdoucette@elcamino.edu Office Hours: Tu & Th: 1:00 2:00, W: 12:00 12:30, or by appointment Meeting times and locations: Lectures: T Th 2:00 4:05 Chem

More information

MATH EVALUATION. What will you learn in this Lab?

MATH EVALUATION. What will you learn in this Lab? MATH EVALUATION What will you learn in this Lab? This exercise is designed to assess whether you have been exposed to the mathematical methods and skills necessary to complete the lab exercises you will

More information