Formulating structural matrices of equations of electric circuits containing dependent sources, with the use of the Maple program

Size: px
Start display at page:

Download "Formulating structural matrices of equations of electric circuits containing dependent sources, with the use of the Maple program"

Transcription

1 1 st World Conerence on echnology and Engineering Education 2010 WIEE Kraków, Poland, Septemer 2010 Formulating structural matrices o equations o electric circuits containing dependent sources, with the use o the Maple program A.M. Dąrowski, S.A. Mitkowski, A. Poręska & E. Kurgan AGH University o Science and echnology Kraków, Poland ABSRAC: he method o deriving loop matrix impedances BZB and the loop voltage vector B(E-ZJ) in electric linear circuits containing dependent sources, is descried in this paper. Primary equations o the electric circuit were ormulated, using the classical method, or the loop current method o network analysis. he transormation o them was derived within the mathematics sotware program, Maple. he method o analysis o the electric circuit presented in this paper was illustrated with an example. IRODUCIO Circuit theory is a undamental engineering discipline that pervades all electrical engineering, thereore learning electric circuit theory in electrical engineering education, is important. he goal o circuit theory is to make quantitative and qualitative calculations o the electrical ehaviour o circuits [3]. For electrical engineers not only is it important to know elementary circuit theory, it is also important to understand the methods or handling more complex circuit theory. Students who specialise in electrical engineering or electronics typically need to study not only DC and AC circuits with techniques such as Kirchho s voltage law, Kirchho s current law and Ohm s law, ut also topology methods with matrix or handling more complex networks. hey are usually required to learn how to apply various transorm methods (phasor, Fourier and Laplace) and Fourier-series, in circuit analysis. Understanding concepts rom circuit theory, especially DC and AC electricity, periodic signals and transients, is essential to understanding sujects such as electronics, telecommunication, power engineering, system theory and automated technology. Studies into the teaching o electricity and circuit theory have shown that students, even at university or college level, have diiculties in acquiring a unctional understanding o, and distinguishing etween, undamental concepts such as current, voltage, energy and power. Students lack o qualitative understanding is the reason why diiculties arise in correctly solving quantitative prolems [1]. Insuicient mathematical knowledge is oten a arrier or students in the understanding o the theory o circuits. he way one thinks aout mathematics in circuit theory diers rom what is taught in the suject o mathematics. his process is not transparent or students. Mathematical computer programs can e helpul as a solution to this prolem [4][5]. EWORK AALYSIS he goal o network analysis is to determine the voltages and currents associated with the elements o an electrical network so as to predict the electrical ehaviour o real physical circuits. he purpose o these predictions is to improve their design; particularly to decrease their cost and improve their perormance under all conditions o operation. Kirchho laws are undamental postulates o circuit theory. hey are valid regardless o the nature o circuit elements. hereore, the separation etween the equations o Kirchho's laws and that o elements characteristics is natural. Kirchho s equations are prescried y the topology o the circuit, that is, the way circuit elements are interconnected. he element characteristic is prescried y the voltage-current (v-i) relations given y the laws o physics. However, these equations involve a large quantity o variales. Using graph theory diminishes the numer o unknowns. he theory o graphs plays a undamental role in exploring the structural properties o electrical circuits [7].

2 he graphs are good pictorial representations o circuits and capture all their structural characteristics. In circuit analysis using graph theory, there is compliance with three transormations: loop transormations, cutest transormations and node transormations. Only the method o analysis o electric circuits ased on loop transormation is applied in this paper. Given solutions can e applied in the manner o methods o analysis ased on extant transormations. LOOP RASFORMAIOS AD LOOP SYSEM OF EQUAIOS An electrical circuit is an interconnection o electrical network elements, such as resistances, capacitances, inductances, independent and dependent voltages and current sources. Each network element is associated with two variales: the voltage variale v(t ) and the current variale i(t ). he electrical network can e represented y corresponding with its directed graph G. Let e a spanning tree o an electrical network. Let I c e the column vectors o chord currents and I e the column vectors o ranch currents with respect to. he sumatrix o circuit matrix B c corresponding to the undamental circuits deined y the chords o a spanning tree is called undamental circuit matrix B o G with respect to the spanning tree. he equation elow presents the loop transormation. I = B I (1) c As can e seen rom the loop transormations, not all these variales are independent. Furthermore, in place o Kirchho s voltage law equations, the loop transormation, which involves only chord currents as variales, can e used. Kirchho s voltage law is given elow: B V 0 (2) = he voltage-current relations or every ranch o the electric network are: V = Z I (3) where Z is the ranch impedance matrix. he advantage o these transormations is that it enales dierent systems o network equations known as loop systems to e estalished. In deriving the loop system, the loop transormation is used, and loop variales (chord currents) serve as independent variales. Partition o the chord currents vector I c and element voltage vector V is: I c I = J c_nsc V_nsv and V = (4) E where I c_nsc is the vector o currents in the non-current source chords o G, J is the current sources vector, V _nsv is the vector o ranches voltage in the non-voltage source and E is the voltage sources vector. Using the aove-dependencies, this equation is derived: B Z B I c _ ns ( E Z J ) = B (5) Equation 5 is called the loop system o equations and matrix B Z B is the loop impedance matrix. Since presenting examples is a undamental element o the didactic process, a computational example is introduced elow that illustrates the prolems aove. he ormulation o structural matrices o the electric circuit, with the help o the Maple sotware program, is given elow. HE MAHEMAICAL PROGRAM, MAPLE here are a ew very good commercial programmer environments or mathematical computations and one o them is Maple. Maple is useul technical computing sotware or engineers, mathematicians, scientists and educators [2][]. aking into consideration a large quantity o literature and, especially, the availaility o ree examples on the Internet, the authors o this paper decided to use this program to solve prolems connected with circuit theory. Maple is a complete mathematical prolem-solving environment that supports a wide variety o mathematical operations, such as numerical analysis, symolic algera and graphics. It allows a choice o more than 4,000 commands ranging rom perorming asic 7

3 arithmetic and algera, to computations involving advanced topics such as tensor analysis, group theory, and more. Maple oers interactive mathematical visualisation, a user interace with typeset mathematics, word processing acilities, and a modern programming language, making it powerul and lexile or users in education, research and industry. Maple is a large and complicated program. But despite that, thanks to the examples, it is relatively easy to use to solve dierent assignments in the ield o circuit theory. Using Maple makes it possile to work in interactive mode. o carry out calculations, develop design sheets, teach undamental concepts or create complicated simulation models, Maple s computation engine can handle every type o mathematics. With Maple, interactive documents can e created. he sotware has two modes: Document mode and Worksheet mode. Document mode is designed or perorming calculations quickly. Worksheet mode is designed or interactive use through commands and programming using the Maple language. he example elow was derived y exploiting the Worksheet mode using ext mode (1-D Math). ILLUSRAIVE EXAMPLE Shown elow in Figure 1 is the variety o symols o the graphic elements o the electric circuit. Figure 1: a) Impedance Z k with current I k and voltage V k, ) Independent voltage source, c) Dependent voltage source, d) Independent current source, e) Dependent current source. ow consider linear circuit impedances, as well as independent and dependent voltage source and current sources. he schema o the electrical network and graph G representation o are shown in Figure 1. Branch circuits correspond to graph edges. Figure 2: a) he electrical network, ) Graph G representation o. Consider also the connected graph and its spanning tree. A su-graph o G is a spanning tree o G i the su-graph is a tree and contains all the vertices o G. he spanning tree o the graph o Figure 2) is shown in Figure 3). Edges o a spanning tree are called the ranches o. he ranches o the tree are marked with doule lines. For the given spanning tree o connected graph G, the co-spanning tree relative to is the su-graph o G induced y the edges that are not present in. he edges o a co-spanning tree are called chords. he co-spanning tree relative to the spanning tree o Figure 3) consists o these chords: c 1, c 2, c, c 8, c 9. he spanning tree was chosen so as to make voltages and currents - which control dependent voltage sources and current - to e in chords. Figure 3: he electrical network and its graph with a spanning tree and directed co-spanning tree. 8

4 Because only current chords are o interest to the method discussed here, only those signals were marked. he chord currents vector Ic is as ollows: I1 I 2 I c_nsc I c = = I () J J8 J9 Wanted unknown chord currents are: c_nsc [ I I I ] I = (7) 1 2 he voltages and currents which control dependent sources are expressed respectively y means o chord currents and independent voltages and current sources. In the case o the electric circuit here, there is: V = Z + (8) 5I5 ZI Because the currents o the ranches o the spanning tree are linear, the (8) equation can e changed to: V = Z ( α + Z I (9) 5 I 2 I 2) Shown elow is how Maple is used to perorm mathematical transormations. he linalg packages (Maple lirary) contain unctions that help users to work with matrix and linear system equations. An equation can e created in Maple y any method which leads to the construction o algeraic (or any other) equations. he restart command causes the Maple kernel to clear internal memory so that it then acts (almost) as i it has just egun. > restart;with(linalg): Equations o the relations o voltage-current or dependent sources. > E[10]:=k*V; E 10 := k V > J[9]:=alpha*Ic[2]; J 9 := α Ic 2 > V:=Z[5]*(Ic[2]-J[9])-Z[]*Ic[]; V := Z 5 Kirchho s voltage law equation around loop with chord c 1 is written as: > KVL1:=Z[1]*Ic[1] = E[1]-k*V; KVL1 := Z 1 Ic 1 = E 1 k ( Z 5 ) Kirchho's voltage law equation around loop with chord c 2 is written as: > KVL2:=(Z[2]+Z[4]+Z[5]+Z[7])*Ic[2]+Z[7]*Ic[]+(Z[4]+Z[7])*J[8]-(Z[5]+Z[7])*J[9] =E2+k*V; KVL2 := ( Z 2 + Z 4 + Z 5 ) Ic 2 + ( Z 4 ) J 8 ( Z 5 ) α Ic 2 = E2 + k ( Z 5 ) Kirchho's voltage law equation around loop with chord c is written as: > KVL3:=Z[7]*Ic[2]+(Z[3]+Z[7]+Z[])*Ic[]-Z[7]*J[8]+(Z[3]+Z[7])*J[9] = -E[3]; KVL3 := Z 7 Ic 2 + ( Z 3 + Z ) Z 7 J 8 + ( Z 3 ) α Ic 2 = E 3 Loop system o equations: > set_eqn:= [KVL1,KVL2,KVL3]: 9

5 Determining loop impedance matrix B Z B and matrix B ( E Z J ) > BZB:=genmatrix(set_eqn,[Ic[1],Ic[2],Ic[]],''); uses the ollowing: Z 1 k Z 5 ( 1 α ) k Z BZB := 0 ( Z 5 ) α + Z 2 + Z 4 + Z 5 k Z 5 ( 1 α ) Z 7 + k Z 0 ( Z 3 ) α Z 3 + Z > B:=eval():BE_ZJ:=matrix(3,1,B);Icns:=matrix(3,1,[Ic[1],Ic[2],Ic[]]); E 1 Ic 1 BE_ZJ := E2 ( Z 4 ) J 8 Icns := Ic 2 E + 3 Z 7 J 8 hen, explore the properties o the loop impedance matrix and ind vector o currents I c_nsc in the non-source chords. Remaining currents and voltages in the electric circuit can e calculated rom equations (1) and (3). COCLUSIOS he authors have shown in this paper how the mathematics sotware program, Maple, can e used eectively to ormulate structural matrices o the loop system o electric circuit equations. Without perorming many intermediate computations, and with the help o Maple, the loop impedance matrix or linear circuits was ound. Similarly, using the Maple program, an elegant system o equations and node equations can e ormulated. he Maple code demonstrated aove is relatively simple. It is easy to draw and animate the solution, too. he symolic, numerical and graphical eatures o mathematical programs allow students to carry out mathematical analysis o circuits without time-consuming calculations and to explore easily the ehaviour o a system. REFERECES 1. Bernhard, J., Activity-ased education in asic electricity and circuit theory, 2. Char, B.W., Maple User Manual. Waterloo, Canada: Maple Inc. (2009). 3. Chua, L., Desoer, C. and Kuh, E., Linear and onlinear Circuits. USA: McGraw-Hill Book Company (1987). 4. Dąrowski, A.M., Mathematical programmes in teaching o circuit theory. Proc. XVI BSE 2002, Gliwice, Poland, (2002). 5. Dąrowski, A.M., Computer programmes in teaching o electrical engineering. Proc. XVII BSE2003, Istena- Zaolzie, Poland, (2003).. Monagan, M., Geddes, K. and Heal, K., Maple Introductory Programming Guide. Waterloo, Canada: Maple Inc. (2009). 7. Swamy, M..S. and hulasiraman, K., Graphs, networks, and algorithms. ew York: Wiley Interscience (1981). 70

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Mathematics with Maple

Mathematics with Maple Mathematics with Maple A Comprehensive E-Book Harald Pleym Preface The main objective of these Maple worksheets, organized for use with all Maple versions from Maple 14, is to show how the computer algebra

More information

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley.

References Ideal Nyquist Channel and Raised Cosine Spectrum Chapter 4.5, 4.11, S. Haykin, Communication Systems, Wiley. Baseand Data Transmission III Reerences Ideal yquist Channel and Raised Cosine Spectrum Chapter 4.5, 4., S. Haykin, Communication Systems, iley. Equalization Chapter 9., F. G. Stremler, Communication Systems,

More information

Improvement of Sparse Computation Application in Power System Short Circuit Study

Improvement of Sparse Computation Application in Power System Short Circuit Study Volume 44, Number 1, 2003 3 Improvement o Sparse Computation Application in Power System Short Circuit Study A. MEGA *, M. BELKACEMI * and J.M. KAUFFMANN ** * Research Laboratory LEB, L2ES Department o

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

DOWNLOAD PDF AC CIRCUIT ANALYSIS PROBLEMS AND SOLUTIONS

DOWNLOAD PDF AC CIRCUIT ANALYSIS PROBLEMS AND SOLUTIONS Chapter 1 : Resistors in Circuits - Practice â The Physics Hypertextbook In AC circuit analysis, if the circuit has sources operating at different frequencies, Superposition theorem can be used to solve

More information

Driving Point Impedance Computation Applying Parallel Processing Techniques

Driving Point Impedance Computation Applying Parallel Processing Techniques 7th WSEAS Int. Con. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Soia, 27-29/10/05 (pp229-234) Driving Point Impedance Computation Applying Parallel Processing Techniques

More information

Chapter 3. Loop and Cut-set Analysis

Chapter 3. Loop and Cut-set Analysis Chapter 3. Loop and Cut-set Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits2.htm References:

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Luis Manuel Santana Gallego 100 Investigation and simulation of the clock skew in modern integrated circuits. Clock Skew Model

Luis Manuel Santana Gallego 100 Investigation and simulation of the clock skew in modern integrated circuits. Clock Skew Model Luis Manuel Santana Gallego 100 Appendix 3 Clock Skew Model Xiaohong Jiang and Susumu Horiguchi [JIA-01] 1. Introduction The evolution of VLSI chips toward larger die sizes and faster clock speeds makes

More information

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge

AH 2700A. Attenuator Pair Ratio for C vs Frequency. Option-E 50 Hz-20 khz Ultra-precision Capacitance/Loss Bridge 0 E ttenuator Pair Ratio or vs requency NEEN-ERLN 700 Option-E 0-0 k Ultra-precision apacitance/loss ridge ttenuator Ratio Pair Uncertainty o in ppm or ll Usable Pairs o Taps 0 0 0. 0. 0. 07/08/0 E E E

More information

Inverse Functions Attachment

Inverse Functions Attachment Inverse Functions Attachment It is essential to understand the dierence etween an inverse operation and an inverse unction. In the simplest terms, inverse operations in mathematics are two operations that

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

FeynCalc Tutorial 1 (Dated: September 8, 2015)

FeynCalc Tutorial 1 (Dated: September 8, 2015) FeynCalc Tutorial 1 (Dated: Septemer 8, 2015) In this tutorial, we will learn to use Mathematica and FeynCalc to contract Lorentz indices. After some practice to get familiar with FeynCalc, we will do

More information

OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION

OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION OPTIMAL PLACEMENT AND UTILIZATION OF PHASOR MEASUREMENTS FOR STATE ESTIMATION Xu Bei, Yeo Jun Yoon and Ali Abur Teas A&M University College Station, Teas, U.S.A. abur@ee.tamu.edu Abstract This paper presents

More information

Solutions For the problem setup, please refer to the student worksheet that follows this section.

Solutions For the problem setup, please refer to the student worksheet that follows this section. 1 TASK 3.3.3: SHOCKING NUMBERS Solutions For the problem setup, please refer to the student worksheet that follows this section. 1. The impedance in part 1 of an AC circuit is Z 1 = 2 + j8 ohms, and the

More information

Solving Systems of Linear Equations Symbolically

Solving Systems of Linear Equations Symbolically " Solving Systems of Linear Equations Symolically Every day of the year, thousands of airline flights crisscross the United States to connect large and small cities. Each flight follows a plan filed with

More information

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators.

A Systematic Approach to Frequency Compensation of the Voltage Loop in Boost PFC Pre- regulators. A Systematic Approach to Frequency Compensation o the Voltage Loop in oost PFC Pre- regulators. Claudio Adragna, STMicroelectronics, Italy Abstract Venable s -actor method is a systematic procedure that

More information

Analysis of the regularity, pointwise completeness and pointwise generacy of descriptor linear electrical circuits

Analysis of the regularity, pointwise completeness and pointwise generacy of descriptor linear electrical circuits Computer Applications in Electrical Engineering Vol. 4 Analysis o the regularity pointwise completeness pointwise generacy o descriptor linear electrical circuits Tadeusz Kaczorek Białystok University

More information

transformation of the reactants through highly reactive intermediates (active centers) to final products.

transformation of the reactants through highly reactive intermediates (active centers) to final products. LETUE. ETIN MEHNISMS ND EVLUTIN F TE FMS We have already seen that single reactions, in general, do not occur in one step; ut that it is a particular sequence o elementary reactions (reaction mechanism)

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

IMVI ISSN (p) , ISSN Open Mathematical Education Notes Vol. 3 (2013), / JOURNALS / IMVI OMEN

IMVI ISSN (p) , ISSN Open Mathematical Education Notes Vol. 3 (2013), / JOURNALS / IMVI OMEN IMVI ISSN (p) 2303-4882 ISSN 1840-4383 Open Mathematical Education Notes Vol. 3 (2013) 17-29 www.imvil.org / JOURNALS / IMVI OMEN FROM PASCAL S TRIANGLE TO A MATHEMATICAL FRONTIER: UNCOVERING HIDDEN PATTERNS

More information

Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP. 27 April - 3 May, 2011

Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP. 27 April - 3 May, 2011 2234-13 Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP 27 April - 3 May, 2011 Computer based tools for active learning in the introductory physics course David

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

arxiv:physics/ v1 [physics.soc-ph] 22 Feb 2005

arxiv:physics/ v1 [physics.soc-ph] 22 Feb 2005 Bonabeau model on a ully connected graph K. Malarz,, D. Stauer 2, and K. Ku lakowski, arxiv:physics/05028v [physics.soc-ph] 22 Feb 2005 Faculty o Physics and Applied Computer Science, AGH University o

More information

Module 9: Further Numbers and Equations. Numbers and Indices. The aim of this lesson is to enable you to: work with rational and irrational numbers

Module 9: Further Numbers and Equations. Numbers and Indices. The aim of this lesson is to enable you to: work with rational and irrational numbers Module 9: Further Numers and Equations Lesson Aims The aim of this lesson is to enale you to: wor with rational and irrational numers wor with surds to rationalise the denominator when calculating interest,

More information

Minimum Energy Control of Fractional Positive Electrical Circuits with Bounded Inputs

Minimum Energy Control of Fractional Positive Electrical Circuits with Bounded Inputs Circuits Syst Signal Process (26) 35:85 829 DOI.7/s34-5-8-7 Minimum Energy Control o Fractional Positive Electrical Circuits with Bounded Inputs Tadeusz Kaczorek Received: 24 April 25 / Revised: 5 October

More information

Math Analysis CP WS 4.X- Section Review A

Math Analysis CP WS 4.X- Section Review A Math Analysis CP WS 4.X- Section 4.-4.4 Review Complete each question without the use of a graphing calculator.. Compare the meaning of the words: roots, zeros and factors.. Determine whether - is a root

More information

Analog Computing Technique

Analog Computing Technique Analog Computing Technique by obert Paz Chapter Programming Principles and Techniques. Analog Computers and Simulation An analog computer can be used to solve various types o problems. It solves them in

More information

Lecture 12: Grover s Algorithm

Lecture 12: Grover s Algorithm CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 12: Grover s Algorithm March 7, 2006 We have completed our study of Shor s factoring algorithm. The asic technique ehind Shor

More information

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends

Parasitics in Power Electronics Avoid them or Turn Enemies into Friends ECPE Workshop Future Trends or Power Semiconductors ETH Zürich, 27.1.212 Parasitics in Power Electronics Avoid them or Turn Enemies into Friends Fraunhoer Institute or Integrated Systems and Device Technology

More information

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS 1Numer systems: real and complex 1.1 Kick off with CAS 1. Review of set notation 1.3 Properties of surds 1. The set of complex numers 1.5 Multiplication and division of complex numers 1.6 Representing

More information

MAPLE for CIRCUITS and SYSTEMS

MAPLE for CIRCUITS and SYSTEMS 2520 MAPLE for CIRCUITS and SYSTEMS E. L. Gerber, Ph.D Drexel University ABSTRACT There are three popular software programs used to solve circuits problems: Maple, MATLAB, and Spice. Each one has a different

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

GF(4) Based Synthesis of Quaternary Reversible/Quantum Logic Circuits

GF(4) Based Synthesis of Quaternary Reversible/Quantum Logic Circuits GF(4) ased Synthesis o Quaternary Reversible/Quantum Logic Circuits MOZAMMEL H. A. KHAN AND MAREK A. PERKOWSKI Department o Computer Science and Engineering, East West University 4 Mohakhali, Dhaka, ANGLADESH,

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Physical Science/Math/Engineering

Physical Science/Math/Engineering Course Course Title Order Student Learning Outcome Number Number ASTR 4 Solar System Astronomy 1 Appraise the benefits to society of planetary research and exploration. ASTR 4 Solar System Astronomy 2

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

Laboratory manual : RC circuit

Laboratory manual : RC circuit THE UNIVESITY OF HONG KONG Department of Physics PHYS55 Introductory electricity and magnetism Laboratory manual 55-: C circuit In this laboratory session, CO is used to investigate various properties

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Transient Analysis of First-Order Circuits: Approaches and Recommendations

Transient Analysis of First-Order Circuits: Approaches and Recommendations Transient Analysis of First-Order Circuits: Approaches and Recommendations Khalid Al-Olimat Heath LeBlanc ECCS Department ECCS Department Ohio Northern University Ohio Northern University Ada, OH 45810

More information

Grade 6 Math Circles. Circuits

Grade 6 Math Circles. Circuits Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with

More information

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS

AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS Progress In Electromagnetics Research M, Vol. 23, 53 63, 2012 AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS T.-S. Nguyen *, J.-M. Guichon, O. Chadebec, G. Meunier, and

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does

CHAPTER 1: INTRODUCTION. 1.1 Inverse Theory: What It Is and What It Does Geosciences 567: CHAPTER (RR/GZ) CHAPTER : INTRODUCTION Inverse Theory: What It Is and What It Does Inverse theory, at least as I choose to deine it, is the ine art o estimating model parameters rom data

More information

Simplifying a Rational Expression. Factor the numerator and the denominator. = 1(x 2 6)(x 2 1) Divide out the common factor x 6. Simplify.

Simplifying a Rational Expression. Factor the numerator and the denominator. = 1(x 2 6)(x 2 1) Divide out the common factor x 6. Simplify. - Plan Lesson Preview Check Skills You ll Need Factoring ± ± c Lesson -5: Eamples Eercises Etra Practice, p 70 Lesson Preview What You ll Learn BJECTIVE - To simplify rational epressions And Why To find

More information

Essential Maths 1. Macquarie University MAFC_Essential_Maths Page 1 of These notes were prepared by Anne Cooper and Catriona March.

Essential Maths 1. Macquarie University MAFC_Essential_Maths Page 1 of These notes were prepared by Anne Cooper and Catriona March. Essential Maths 1 The information in this document is the minimum assumed knowledge for students undertaking the Macquarie University Masters of Applied Finance, Graduate Diploma of Applied Finance, and

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Department of Mathematics The Ohio State University

Department of Mathematics The Ohio State University Department of Mathematics The Ohio State University 2004-2005 Mathematics Courses Course Number Course Title 50 Pre-College Mathematics I 75 Pre-College Mathematics II 76 Reentry Precollege Math 103 Enrichment

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better. Prepared by: P. Blake Reviewed by: M. Mayfield Date prepared: March 13, 2017 C&GE approved: April 17, 2017 Board approved: May 10, 2017 Semester effective: Spring 2018 Engineering (ENGR) 2000 Circuit Analysis

More information

The Role of the Graphing Calculator in the Qualitative Analysis of Function

The Role of the Graphing Calculator in the Qualitative Analysis of Function The Role of the Graphing Calculator in the Qualitative Analysis of Function Li Hong lihong2209@sina.com Beijing No.22 High School China Astract: This paper focuses on several cases of student s qualitative

More information

Poor presentation resulting in mark deduction:

Poor presentation resulting in mark deduction: Eam Strategies 1. Rememer to write down your school code, class and class numer at the ottom of the first page of the eam paper. 2. There are aout 0 questions in an eam paper and the time allowed is 6

More information

arxiv: v1 [cs.oh] 18 Jan 2016

arxiv: v1 [cs.oh] 18 Jan 2016 SUPERPOSITION PRINCIPLE IN LINEAR NETWORKS WITH CONTROLLED SOURCES arxiv:64563v [csoh] 8 Jan 26 CIRO VISONE Abstract The manuscript discusses a well-known issue that, despite its fundamental role in basic

More information

Physics 1c practical, 2015 Homework 5 Solutions

Physics 1c practical, 2015 Homework 5 Solutions Physics c practical, 05 Homework 5 Solutions Serway 33.4 0.0 mh, = 0 7 F, = 0Ω, V max = 00V a The resonant frequency for a series L circuit is f = π L = 3.56 khz At resonance I max = V max = 5 A c Q =

More information

Focusing Learning on Concepts of Introductory Linear Algebra using MAPLE Interactive Tutors

Focusing Learning on Concepts of Introductory Linear Algebra using MAPLE Interactive Tutors Focusing Learning on Concepts of Introductory Linear Algebra using MAPLE Interactive Tutors Leonard Louis Raj leonard.raj@zu.ac.ae Department of Mathematics and Statistics Zayed University United Arab

More information

Distributed control of "ball on beam" system

Distributed control of ball on beam system XI International PhD Workshop OWD 29, 17 2 Octoer 29 Distriuted control of "all on eam" system Michał Ganois, University of Science and Technology AGH Astract This paper presents possiilities of control

More information

Graphs and polynomials

Graphs and polynomials 1 1A The inomial theorem 1B Polnomials 1C Division of polnomials 1D Linear graphs 1E Quadratic graphs 1F Cuic graphs 1G Quartic graphs Graphs and polnomials AreAS of STud Graphs of polnomial functions

More information

Higher National Unit specification: general information

Higher National Unit specification: general information Higher National Unit specification: general information Unit code: FY9E 34 Superclass: XJ Publication date: November 2011 Source: Scottish Qualifications Authority Version: 01 Unit purpose This Unit is

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Kirchhoff Laws against Node-Voltage nalysis and Millman's Theorem Marcela Niculae and C. M. Niculae 2 on arbu theoretical high school, ucharest 2 University of ucharest, Faculty of physics, tomistilor

More information

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E

) t 0(q+ t ) dt n t( t) dt ( rre i dq t 0 u = = t l C t) t) a i( ( q tric c le E EE70 eview Electrical Current i ( t ) dq ( t ) dt t q ( t ) i ( t ) dt + t 0 q ( t 0 ) Circuit Elements An electrical circuit consists o circuit elements such as voltage sources, resistances, inductances

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

Lecture 6 January 15, 2014

Lecture 6 January 15, 2014 Advanced Graph Algorithms Jan-Apr 2014 Lecture 6 January 15, 2014 Lecturer: Saket Sourah Scrie: Prafullkumar P Tale 1 Overview In the last lecture we defined simple tree decomposition and stated that for

More information

General Purpose Road Traffic Simulation System with a Cell Automaton Model

General Purpose Road Traffic Simulation System with a Cell Automaton Model General Purpose Road Traic Simulation System with a Cell Automaton Model Namekawa, M., 2 F. Ueda, 2 Y. Hioki, 2 Y. Ueda and 2 A. Satoh Kaetsu University, 2 Toyo University, E-Mail: mitsuhiro@namekawa.com

More information

Lecture # 2 Basic Circuit Laws

Lecture # 2 Basic Circuit Laws CPEN 206 Linear Circuits Lecture # 2 Basic Circuit Laws Dr. Godfrey A. Mills Email: gmills@ug.edu.gh Phone: 026907363 February 5, 206 Course TA David S. Tamakloe CPEN 206 Lecture 2 205_206 What is Electrical

More information

Using Excel to Implement the Finite Difference Method for 2-D Heat Transfer in a Mechanical Engineering Technology Course

Using Excel to Implement the Finite Difference Method for 2-D Heat Transfer in a Mechanical Engineering Technology Course Paper ID #9196 Using Excel to Implement the Finite Difference Method for -D Heat ransfer in a Mechanical Engineering echnology Course Mr. Robert Edwards, Pennsylvania State University, Erie Bob Edwards

More information

Program Transformations in the POLCA Project

Program Transformations in the POLCA Project Program Transormations in the POLCA Project Jan Kuper 1, Lutz Schubert 2, Kilian Kemp 2, Colin Glass 3, Daniel Rubio Bonilla 3, and Manuel Carro 4 1 University o Twente, Enschede, The Netherlands 2 Ulm

More information

On the symmetry features of some electrical circuits

On the symmetry features of some electrical circuits INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS Int. J. Circ. Theor. Appl. 2006; 34:637 644 Published online 26 September 2006 in Wiley InterScience (www.interscience.wiley.com)..377 On the symmetry

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION Steven Ball Science Applications International Corporation Columbia, MD email: sball@nmtedu Steve Schaer Department o Mathematics

More information

Mathematical Models with Maple

Mathematical Models with Maple Algebraic Biology 005 151 Mathematical Models with Maple Tetsu YAMAGUCHI Applied System nd Division, Cybernet Systems Co., Ltd., Otsuka -9-3, Bunkyo-ku, Tokyo 11-001, Japan tetsuy@cybernet.co.jp Abstract

More information

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Maximum Flow Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Flow Network A low network G ( V, E) is a directed graph with a source node sv, a sink node tv, a capacity unction c. Each edge ( u,

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Full-Graph Solution of Switched Capacitors Circuits by Means of Two- Graphs

Full-Graph Solution of Switched Capacitors Circuits by Means of Two- Graphs WSS TRNSTINS on IRUITS and SYSTMS ohumil rtnik Full-Graph Solution of Switched apacitors ircuits by Means of Two- Graphs HUMIL RTNÍK Department of lectronics and Informatics ollege of Polytechnics Jihlava

More information

EE1003 ANALYSIS OF ELECTRIC CIRCUITS

EE1003 ANALYSIS OF ELECTRIC CIRCUITS L T P C EE1003 ANALYSIS OF ELECTIC CICUITS 3 1 0 4 Total Contact Hours - 60 Prerequisite EE1001-Basic al Engineering PUPOSE To enrich the students to acquire knowledge about the basics of circuit analysis,

More information

This Unit may form part of a National Qualifications Group Award or may be offered on a freestanding

This Unit may form part of a National Qualifications Group Award or may be offered on a freestanding National Unit Specification: general information CODE F5HL 12 SUMMARY This Unit has been designed to introduce candidates to Electrical Principles and provide opportunities to develop their knowledge and

More information

DEFINITE INTEGRALS & NUMERIC INTEGRATION

DEFINITE INTEGRALS & NUMERIC INTEGRATION DEFINITE INTEGRALS & NUMERIC INTEGRATION Calculus answers two very important questions. The first, how to find the instantaneous rate of change, we answered with our study of the derivative. We are now

More information

Electric Power * OpenStax HS Physics. : By the end of this section, you will be able to:

Electric Power * OpenStax HS Physics. : By the end of this section, you will be able to: OpenStax-CNX module: m54446 1 Electric Power * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA Faculty of Engineering and Computing School of Engineering

UNIVERSITY OF TECHNOLOGY, JAMAICA Faculty of Engineering and Computing School of Engineering UNIVERSITY OF TECHNOLOGY, JAMAICA Faculty of Engineering and Computing School of Engineering SYLLABUS OUTLINE FACULTY: SCHOOL/DEPT: COURSE OF STUDY: Engineering and Computing Engineering Diploma in Electrical

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

Equivalent Circuits. Henna Tahvanainen. November 4, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 3

Equivalent Circuits. Henna Tahvanainen. November 4, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 3 Equivalent Circuits ELEC-E5610 Acoustics and the Physics of Sound, Lecture 3 Henna Tahvanainen Department of Signal Processing and Acoustics Aalto University School of Science and Technology November 4,

More information

ATP-EMTP evaluation of relaying algorithms for series-compensated line

ATP-EMTP evaluation of relaying algorithms for series-compensated line AP-EMP evaluation o relaying algorithms or series-compensated line M. M. Saha, E. osolowski, J. Izykowski, P. Pierz Abstract A group o the algorithms aimed at measuring a ault-loop impedance or digital

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Decibels, Filters, and Bode Plots

Decibels, Filters, and Bode Plots 23 db Decibels, Filters, and Bode Plots 23. LOGAITHMS The use o logarithms in industry is so extensive that a clear understanding o their purpose and use is an absolute necessity. At irst exposure, logarithms

More information

Educational Procedure for Designing and Teaching Reflector Antennas in Electrical Engineering Programs. Abstract. Introduction

Educational Procedure for Designing and Teaching Reflector Antennas in Electrical Engineering Programs. Abstract. Introduction Educational Procedure or Designing and Teaching Relector Antennas in Electrical Engineering Programs Marco A.B. Terada Klipsch School o Electrical and Computer Engineering New Mexico State University Las

More information