Mathematical Models with Maple

Size: px
Start display at page:

Download "Mathematical Models with Maple"

Transcription

1 Algebraic Biology Mathematical Models with Maple Tetsu YAMAGUCHI Applied System nd Division, Cybernet Systems Co., Ltd., Otsuka -9-3, Bunkyo-ku, Tokyo , Japan Abstract In this paper, we introduce the fundamental capability of well-known computer algebra system called Maple. Using with this Maple system, we investigated on how computer algebra system can work for research and development study in the biology. In particular, we present a review of Maple s functional role in the development of mathematical models. 1. Introduction The Maple system has been originally developed on 1980, by SCG (Symbolic Computation Group) in University of Waterloo, Canada. The basic aspect of the system was compact, but powerful computer algebra system with fundamental algebraic computation capabilities []. Throughout many significant contributions from researchers in computer algebra world for the past 5 years, it has recently released the latest version called Maple 10 on 005 from Maplesoft, a division of Waterloo Maple Inc, which has established for the purpose of marketing, supporting and distributing the software. Recent research and development work in designing and modeling requires the stable and the flexible mathematical models which can describe the system. In this purpose, researchers and engineers also requires high-level mathematical knowledge such as transformation of various differential equations and its related analytical operation so that numerical simulation can t handle the problem with unified and coordinated methodology. The computer algebra system can handle to state the system by exact and can convert its expression into an equivalent another form with analytical transformation and simplification by implementing thousands of mathematical formulae. Using with computer algebra system, we can develop the mathematical model which has less amount of calculation, for example. In Section, we introduce the fundamental capability of Maple system. In particular, we reviewed about basic functionality for ordinary and partial differential equations (ODE, PDE) so that Maple is well-known for solving and evaluating of various differential equations. Section 3 discusses a typical model development and its classic flow on Maple system. As a specific understanding of Maple system, we show steps to solve the differential equation for epidemics. Finally, the paper ends with a brief summary referencing some applications of Maple in various area. pp c 005 by Universal Academy Press, Inc. / Tokyo, Japan

2 15 Fig 1. Embedded interactive components in Maple Worksheet. Fundamental Capability of Maple system Recent computer algebra system including Maple has following common capabilities; Symbolic Computation: Polynomial Operations (GCD, Factorization, Root-Finding, Gröbner Base), Symbolic-Differentiation/Integration, Solving Algebraic Equation, Exact Solution for ODEs/PDEs, Formula Conversion, Series Expansion. Numerical Computation: Approximation, Arbitrary Precision Computation, Numerical Integration, Interval Arithmetic, Statistical Computation (Probability Computation, Descriptive Statistics, Tabulation, Data Manipulation/Smoothing, Hypothesis Testing, Regression/ Estimation), Interpolation/Fitting, Integral/Discrete Transformation. Visualization: D/3D Graphics, Animation, Density Plot, Contour Plot, D/3D Implicit Plot, Statistical Plot, Interactive Operation for Graphics, Exporting to other formats. Miscellaneous: Code Conversion (L A TEX, C, Fortran, Visual Basic, Java, MATLAB), API (C, VB, Java), Educational Contents, GUI, Unit Arithmetic, Objective Programming. In addition, Maple has an intuitive Graphical User Interface (GUI) called Worksheet for entering mathematical expression, and also enables us to author a mathematical document and interactive operation with embedded component such as slider, text field, plot area and command button (see Fig. 1). Internal expressions in the worksheet are stored as Maple-based XML format, so we can easily convert any kind of mathematical expression to an appropriate MathML expression or other structured expression. As listed above, Maple also has various functionalities based on symbolic and numeric algorithms for solving of differential equation. Basically, we can use two typical commands implemented in Maple as dsolve for ODE and pdsolve for PDE, respectively. We can select a lot of algorithm for solving ODE(s) symbolically such that Lie symmetries, classification, integration factors, integral transformations and series expansion at given point. Furthermore, optional functions for applying enhanced operation to given ODE as following can be available by loading the DEtools package; Commands for simplifying ODE(s) with integrability condition.

3 153 Commands for constructing closed-form solution. Commands for classifying ODE(s). Commands for Visualization. Commands for Conversion. Using with this DE solver, we discuss a typical mathematical model development and its general flow on Maple system in the next section. On the other hand, Maple can also handle the PDE(s) with both of symbolic and numeric for finding solution. For the symbolic PDE solving, Maple takes a phased procedure automatically for rewriting the system which can simply express in form of polynomial by using an approach with differential algebraic equation. With some verifications such as integrability conditions in the system, it also produces to divide subsystems of given PDE, and then tries to obtain a solution on one variable. After iteration of finding all possible solutions, Maple performs a set of solutions for given PDE system. In addition, we can compute, if exists, a Traveling Wave Solution (TWS) as a power series in tanh function or several (special) mathematical functions. For the numeric computation to solve PDE system, we can take 11 classical methods such as Euler, Backward-Euler, Crank-Nicholson, and so on. The numerically computed result from PDE solver is a form of intermediate expression of the approximate solution. Hence, for example, we can indicate some of step size to construct an approximate value as free and can estimate of errors. For instance, let us consider a simple one-way wave equation as u (x, t) = u (x, t) t x with a boundary condition of {u (x, 0) = sin ( π x), u (0, t) = sin ( π t)}. After constructing an intermediate expression of the solution and its error function, we can see the band difference between each step size in time and space: 1/16 for the left side and 1/3 for right side, respectively, in Fig.. Fig. Error estimations for PDE solution As we introduced the fundamental functionalities in this section, we can analyze the mathematical model described by differential equation using with Maple.

4 Typical Model development on Maple system In this section, we review the typical strategy with respect to mathematical model development using with Maple system by solving differential equation. Let us consider the case in biology with famous mathematical model of epidemics [3]. We use a following first-order ordinary differential equation system which describes on infection model for the number of infected patients denoted by P (t), carrier patients denoted by C(t) and removed patients denoted by R(t). S(t), C(t) and R(t) satisfy Ṡ = r S P, (1) P = r S P γ P, Ṙ = γp. where r and γ are positive constants for infection rate and cull rate, respectively. Note that d(s + P + R)/dt = 0. That is, S(t) + P (t) + R(t) = N () where N is a constant which means a total population in that area. Since equation () and (), we can derive a single differential equation for the number of removed patients as follows; Ṙ = γ(n R S 0 e R/ρ ) (3) where ρ = γ/r and S 0 = S(t 0 ). After this formulation, we can get the following implicit solution by applying dsolve command for given differential equation. R(t) ( ) t + γ 1 N + a + S 0 e a 1 ρ d a + C1 = 0 (4) where a and C1 are generated by Maple automatically as internal variables. To obtain an explicit solution of the differential equation (3), we need to replace e R/ρ to its 3-rd order taylor series in case that R(t) 1. ρ In Maple, we can get taylor series expansion of e x by taylor command with specified order, and can substitute x = R(t)/ρ by subs command. Thus, equation (3) can be expanded as following expression; Ṙ = γ N γ R (t) γ S 0 + γ S 0R (t) ρ 1 γ S 0 (R (t)) (5) ρ Again, we can get the solution of differential equation (5) by dsolve command with an initial condition R(0) = N. ( ( ( ρ 1 S 0 ρ + tan tγ ( )) ) ) ρ φ ρ 1 arctan ρ + 1 S φ ρ ρ φ ρ R (t) = φ (6) S 0 where φ = ρ S 0 ρ + S 0 N S 0. However, we have to mention here that expression of Maple s solution (6) is not automatically collected terms s.t. rhs of φ. User sometimes needs to indicate explicitly each rules to abbreviation or term replacement.

5 155 Theoretically, according to the paper [3], it can be a form of [ S0 ρ 1 + α tanh R(t) = ρ S 0 ( 1 αγ t φ )] (7) where [ (S0 ) ] 1 α = ρ 1 + S 0(N S 0 ), ρ ( ) φ = tanh 1 1 S0 α ρ 1. To summarize of section, we must point out that computer algebra system, however, can specify a determinate transformation which is based on user own strategy and enables us to measure what kind of expression is the most efficient in that context by applying algebraic operations. After obtaining an explicit form of the solution for given differential equation, we can then process to identify specific values in unknown coefficients by taking the linear and/or nonlinear least square fitting or other symbolic-numeric methods. 4. Summary We have reviewed the fundamentals of Maple system in the viewpoint of evaluation for the mathematical model which is expressed by differential equation. Recently, Maple and other computer algebra system are required to identify more comprehensive model so that dynamic simulation by only numerical computation can t handle instability and uncertainty of the system. Meanwhile, it still exists a lot of computation cost in almost computer algebraic algorithms. Hence, we need to develop symbolic-numeric mixed type of algorithm in the application area too. References [1] M. Braun, Differential Equation and Their Applications (1983) Springer-Verlag, New York. [] B.W. Char, K.O. Geddes, W.M. Gentleman and G.H. Gonnet, The design of Maple: A compact, portable, and powerful computer algebra system. (1983) Computer Algebra (Proc. of EUROCAL 83), No.16, Springer-Verlag, Berlin, 101. [3] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Stat. Soc. A, 115 (197) 700. [4] L. Ljung, System Identification: Theory for the User (1987) Prentice-Hall. [5] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn et al., Maple Advanced Programming Guide (005) [6] T. Yabe, F. Xiao and T. Utsumi, The Constrained Interpolation Profile Method for Multiphase Analysis, Journal of Comp. Physics 169 (001) 556.

A Symbolic Numeric Environment for Analyzing Measurement Data in Multi-Model Settings (Extended Abstract)

A Symbolic Numeric Environment for Analyzing Measurement Data in Multi-Model Settings (Extended Abstract) A Symbolic Numeric Environment for Analyzing Measurement Data in Multi-Model Settings (Extended Abstract) Christoph Richard 1 and Andreas Weber 2? 1 Institut für Theoretische Physik, Universität Tübingen,

More information

Lecture 17: Ordinary Differential Equation II. First Order (continued)

Lecture 17: Ordinary Differential Equation II. First Order (continued) Lecture 17: Ordinary Differential Equation II. First Order (continued) 1. Key points Maple commands dsolve dsolve[interactive] dsolve(numeric) 2. Linear first order ODE: y' = q(x) - p(x) y In general,

More information

Mathematics with Maple

Mathematics with Maple Mathematics with Maple A Comprehensive E-Book Harald Pleym Preface The main objective of these Maple worksheets, organized for use with all Maple versions from Maple 14, is to show how the computer algebra

More information

Sparse Polynomial Multiplication and Division in Maple 14

Sparse Polynomial Multiplication and Division in Maple 14 Sparse Polynomial Multiplication and Division in Maple 4 Michael Monagan and Roman Pearce Department of Mathematics, Simon Fraser University Burnaby B.C. V5A S6, Canada October 5, 9 Abstract We report

More information

Classroom Tips and Techniques: Electric Field from Distributed Charge

Classroom Tips and Techniques: Electric Field from Distributed Charge Classroom Tips and Techniques: Electric Field from Distributed Charge Introduction Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft This past summer I was asked if Maple could

More information

Historical Perspective on Numerical Problem Solving

Historical Perspective on Numerical Problem Solving Historical Perspective on Numerical Problem Solving Mordechai Shacham Department of Chemical Engineering Ben Gurion University of the Negev Beer-Sheva, Israel Michael B. Cutlip Department of Chemical Engineering

More information

Excel for Scientists and Engineers Numerical Method s. E. Joseph Billo

Excel for Scientists and Engineers Numerical Method s. E. Joseph Billo Excel for Scientists and Engineers Numerical Method s E. Joseph Billo Detailed Table of Contents Preface Acknowledgments About the Author Chapter 1 Introducing Visual Basic for Applications 1 Chapter

More information

Classroom Tips and Techniques: Series Expansions Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft

Classroom Tips and Techniques: Series Expansions Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction Classroom Tips and Techniques: Series Expansions Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Maple has the ability to provide various series expansions and

More information

ODEs and Redefining the Concept of Elementary Functions

ODEs and Redefining the Concept of Elementary Functions ODEs and Redefining the Concept of Elementary Functions Alexander Gofen The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA 94102, USA galex@ski.org, www.ski.org/gofen Abstract.

More information

The Maple Computer Algebra System

The Maple Computer Algebra System Computer Science Journal of Moldova, vol.1, no.2(2), 1993 The Maple Computer Algebra System Michael Monagan Maple is a comprehensive general purpose computer algebra system. It is used primarily in education

More information

The Tangent Parabola The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp

The Tangent Parabola The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp The Tangent Parabola The AMATYC Review, Vol. 3, No., Fall, pp. 5-3. John H. Mathews California State University Fullerton Fullerton, CA 9834 By Russell W. Howell Westmont College Santa Barbara, CA 938

More information

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package

Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Reactor Design within Excel Enabled by Rigorous Physical Properties and an Advanced Numerical Computation Package Mordechai Shacham Department of Chemical Engineering Ben Gurion University of the Negev

More information

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume Issue ǁ July 206. Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential

More information

Leading Flying Objects

Leading Flying Objects Leading Flying Objects Stephen M. Watt Western University J. W. Graham Medal Seminar 13 June 2012, University of Waterloo Leading adj. 1. guiding, directing or influencing 2. of greatest importance or

More information

Mathematical Visualization Tool GCLC/WinGCLC

Mathematical Visualization Tool GCLC/WinGCLC Mathematical Visualization Predrag Janičić URL: www.matf.bg.ac.rs/ janicic Faculty of Mathematics, University of Belgrade, The Third School in Astronomy: Astroinformatics Virtual Observatory University

More information

A Brief Introduction To. GRTensor. On MAPLE Platform. A write-up for the presentation delivered on the same topic as a part of the course PHYS 601

A Brief Introduction To. GRTensor. On MAPLE Platform. A write-up for the presentation delivered on the same topic as a part of the course PHYS 601 A Brief Introduction To GRTensor On MAPLE Platform A write-up for the presentation delivered on the same topic as a part of the course PHYS 601 March 2012 BY: ARSHDEEP SINGH BHATIA arshdeepsb@gmail.com

More information

Partial Differential Equations

Partial Differential Equations Next: Using Matlab Up: Numerical Analysis for Chemical Previous: Ordinary Differential Equations Subsections Finite Difference: Elliptic Equations The Laplace Equations Solution Techniques Boundary Conditions

More information

Shijun Liao. Homotopy Analysis Method in Nonlinear Differential Equations

Shijun Liao. Homotopy Analysis Method in Nonlinear Differential Equations Shijun Liao Homotopy Analysis Method in Nonlinear Differential Equations Shijun Liao Homotopy Analysis Method in Nonlinear Differential Equations With 127 figures Author Shijun Liao Shanghai Jiao Tong

More information

Computer Aided Design of Thermal Systems (ME648)

Computer Aided Design of Thermal Systems (ME648) Computer Aided Design of Thermal Systems (ME648) PG/Open Elective Credits: 3-0-0-9 Updated Syallabus: Introduction. Basic Considerations in Design. Modelling of Thermal Systems. Numerical Modelling and

More information

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group NUMERICAL METHODS lor CHEMICAL ENGINEERS Using Excel', VBA, and MATLAB* VICTOR J. LAW CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup,

More information

Ordinary differential equations - Initial value problems

Ordinary differential equations - Initial value problems Education has produced a vast population able to read but unable to distinguish what is worth reading. G.M. TREVELYAN Chapter 6 Ordinary differential equations - Initial value problems In this chapter

More information

Chabot College Fall Course Outline for Mathematics 25 COMPUTATIONAL METHODS FOR ENGINEERS AND SCIENTISTS

Chabot College Fall Course Outline for Mathematics 25 COMPUTATIONAL METHODS FOR ENGINEERS AND SCIENTISTS Chabot College Fall 2010 Course Outline for Mathematics 25 COMPUTATIONAL METHODS FOR ENGINEERS AND SCIENTISTS Catalog Description: MTH 25 - Computational Methods for Engineers and Scientists 3.00 units

More information

Computer algebra systems (CAS) have been around for a number of years,

Computer algebra systems (CAS) have been around for a number of years, Problem solving in calculus with symbolic geometry and CAS Philip Todd Saltire Software James Wiechmann Tualatin High School, Tualatin Oregon, USA Computer

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

Modeling & Simulation 2018 Lecture 12. Simulations

Modeling & Simulation 2018 Lecture 12. Simulations Modeling & Simulation 2018 Lecture 12. Simulations Claudio Altafini Automatic Control, ISY Linköping University, Sweden Summary of lecture 7-11 1 / 32 Models of complex systems physical interconnections,

More information

Section 2.1 Differential Equation and Solutions

Section 2.1 Differential Equation and Solutions Section 2.1 Differential Equation and Solutions Key Terms: Ordinary Differential Equation (ODE) Independent Variable Order of a DE Partial Differential Equation (PDE) Normal Form Solution General Solution

More information

Relations in epidemiology-- the need for models

Relations in epidemiology-- the need for models Plant Disease Epidemiology REVIEW: Terminology & history Monitoring epidemics: Disease measurement Disease intensity: severity, incidence,... Types of variables, etc. Measurement (assessment) of severity

More information

A Mathematica Companion for Differential Equations

A Mathematica Companion for Differential Equations iii A Mathematica Companion for Differential Equations Selwyn Hollis PRENTICE HALL, Upper Saddle River, NJ 07458 iv v Contents Preface viii 0. An Introduction to Mathematica 0.1 Getting Started 1 0.2 Functions

More information

1 One-Dimensional, Steady-State Conduction

1 One-Dimensional, Steady-State Conduction 1 One-Dimensional, Steady-State Conduction 1.1 Conduction Heat Transfer 1.1.1 Introduction Thermodynamics defines heat as a transfer of energy across the boundary of a system as a result of a temperature

More information

Appendix F. + 1 Ma 1. 2 Ma Ma Ma ln + K = 0 (4-173)

Appendix F. + 1 Ma 1. 2 Ma Ma Ma ln + K = 0 (4-173) 5:39p.m. Page:949 Trimsize:8.5in 11in Appendix F F.1 MICROSOFT EXCEL SOLVER FOR NON-LINEAR EQUATIONS The Solver is an optimization package that finds a maximum, minimum, or specified value of a target

More information

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population International Mathematical Forum, Vol. 7, 2012, no. 50, 2481-2492 A Note on the Spread of Infectious Diseases in a Large Susceptible Population B. Barnes Department of Mathematics Kwame Nkrumah University

More information

SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA

SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA SPATIAL-TEMPORAL TECHNIQUES FOR PREDICTION AND COMPRESSION OF SOIL FERTILITY DATA D. Pokrajac Center for Information Science and Technology Temple University Philadelphia, Pennsylvania A. Lazarevic Computer

More information

Numerical Methods for Engineers

Numerical Methods for Engineers Numerical Methods for Engineers SEVENTH EDITION Steven C Chopra Berger Chair in Computing and Engineering Tufts University Raymond P. Canal Professor Emeritus of Civil Engineering of Michiaan University

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

Übungsaufgaben zur VU Computermathematik Serie 9

Übungsaufgaben zur VU Computermathematik Serie 9 Winfried Auzinger Sommersemester 214 Dirk Praetorius 4. 6. Juni 214 Übungsaufgaben zur VU Computermathematik Serie 9 Eine Sammlung verschiedener Problemstellungen. Die Angaben zu manchen der Aufgaben sind

More information

Enabling Advanced Problem Solving in Spreadsheets with Access to Physical Property Data

Enabling Advanced Problem Solving in Spreadsheets with Access to Physical Property Data Enabling Advanced Problem Solving in Spreadsheets with Access to Physical Property Data Michael B. Cutlip, Professor of Chemical Engineering, University of Connecticut (speaker) michael.cutlip@uconn.edu

More information

MATHEMATICS (MATH) Calendar

MATHEMATICS (MATH) Calendar MATHEMATICS (MATH) This is a list of the Mathematics (MATH) courses available at KPU. For information about transfer of credit amongst institutions in B.C. and to see how individual courses transfer, go

More information

1.1 Motivation: Why study differential equations?

1.1 Motivation: Why study differential equations? Chapter 1 Introduction Contents 1.1 Motivation: Why stu differential equations?....... 1 1.2 Basics............................... 2 1.3 Growth and decay........................ 3 1.4 Introduction to Ordinary

More information

AN EVALUATION SCHEME FOR THE UNCERTAINTY ANALYSIS OF A CAPTIVE TRAJECTORY SYSTEM

AN EVALUATION SCHEME FOR THE UNCERTAINTY ANALYSIS OF A CAPTIVE TRAJECTORY SYSTEM 24th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN EVALUATION SCHEME FOR THE UNCERTAINTY ANALYSIS OF A CAPTIVE TRAJECTORY SYSTEM Sean Tuling Defencetek, CSIR Keywords: Uncertainty Analysis, CTS

More information

MATHia Unit MATHia Workspace Overview TEKS

MATHia Unit MATHia Workspace Overview TEKS 1 Function Overview Searching for Patterns Exploring and Analyzing Patterns Comparing Familiar Function Representations Students watch a video about a well-known mathematician creating an expression for

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Numerics Michael Bader SCCS Technical University of Munich Summer 018 Recall: Molecular Dynamics System of ODEs resulting force acting on a molecule: F i = j

More information

Solutions Preliminary Examination in Numerical Analysis January, 2017

Solutions Preliminary Examination in Numerical Analysis January, 2017 Solutions Preliminary Examination in Numerical Analysis January, 07 Root Finding The roots are -,0, a) First consider x 0 > Let x n+ = + ε and x n = + δ with δ > 0 The iteration gives 0 < ε δ < 3, which

More information

What are Numerical Methods? (1/3)

What are Numerical Methods? (1/3) What are Numerical Methods? (1/3) Numerical methods are techniques by which mathematical problems are formulated so that they can be solved by arithmetic and logic operations Because computers excel at

More information

1.6 Computing and Existence

1.6 Computing and Existence 1.6 Computing and Existence 57 1.6 Computing and Existence The initial value problem (1) y = f(x,y), y(x 0 ) = y 0 is studied here from a computational viewpoint. Answered are some basic questions about

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

On Newton-type methods with cubic convergence

On Newton-type methods with cubic convergence Journal of Computational and Applied Mathematics 176 (2005) 425 432 www.elsevier.com/locate/cam On Newton-type methods with cubic convergence H.H.H. Homeier a,b, a Science + Computing Ag, IT Services Muenchen,

More information

In this work is used the version of the Mathematica software for Windows environment. The examples which are treated are "generic" and should ex

In this work is used the version of the Mathematica software for Windows environment. The examples which are treated are generic and should ex How to Use Mathematica to Solve Typical Problems in Celestial Mechanics D.C. Lob~ao y Λ y Instituto de Pesquisa e Desenvolvimento IPD Universidade do Vale do Para ba UNIVAP S~ao José dos Campos, SP Brasil

More information

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD Andrzej Skrzat, Rzeszow University of Technology, Powst. Warszawy 8, Rzeszow, Poland Abstract: User-defined material models which can be used

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

A Glimpse at Scipy FOSSEE. June Abstract This document shows a glimpse of the features of Scipy that will be explored during this course.

A Glimpse at Scipy FOSSEE. June Abstract This document shows a glimpse of the features of Scipy that will be explored during this course. A Glimpse at Scipy FOSSEE June 010 Abstract This document shows a glimpse of the features of Scipy that will be explored during this course. 1 Introduction SciPy is open-source software for mathematics,

More information

Predici 11 Quick Overview

Predici 11 Quick Overview Predici 11 Quick Overview PREDICI is the leading simulation package for kinetic, process and property modeling with a major emphasis on macromolecular systems. It has been successfully utilized to model

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Introduction Deng Li Discretization Methods Chunfang Chen, Danny Thorne, Adam Zornes CS521 Feb.,7, 2006 What do You Stand For? A PDE is a Partial Differential Equation This

More information

While using the input and output data fu(t)g and fy(t)g, by the methods in system identification, we can get a black-box model like (In the case where

While using the input and output data fu(t)g and fy(t)g, by the methods in system identification, we can get a black-box model like (In the case where ESTIMATE PHYSICAL PARAMETERS BY BLACK-BOX MODELING Liang-Liang Xie Λ;1 and Lennart Ljung ΛΛ Λ Institute of Systems Science, Chinese Academy of Sciences, 100080, Beijing, China ΛΛ Department of Electrical

More information

Graphical User Interface (GUI) for Torsional Vibration Analysis of Rotor Systems Using Holzer and MatLab Techniques

Graphical User Interface (GUI) for Torsional Vibration Analysis of Rotor Systems Using Holzer and MatLab Techniques Basrah Journal for Engineering Sciences, vol. 14, no. 2, 2014 255 Graphical User Interface (GUI) for Torsional Vibration Analysis of Rotor Systems Using Holzer and MatLab Techniques Dr. Ameen Ahmed Nassar

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

Business Calculus

Business Calculus Business Calculus 978-1-63545-025-5 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Senior Contributing Authors: Gilbert

More information

Computational Modeling for Physical Sciences

Computational Modeling for Physical Sciences Computational Modeling for Physical Sciences Since the invention of computers the use of computational modeling and simulations have revolutionized the way we study physical systems. Their applications

More information

CHAPTER 10: Numerical Methods for DAEs

CHAPTER 10: Numerical Methods for DAEs CHAPTER 10: Numerical Methods for DAEs Numerical approaches for the solution of DAEs divide roughly into two classes: 1. direct discretization 2. reformulation (index reduction) plus discretization Direct

More information

SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES

SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES SYMBOLIC AND NUMERICAL COMPUTING FOR CHEMICAL KINETIC REACTION SCHEMES by Mark H. Holmes Yuklun Au J. W. Stayman Department of Mathematical Sciences Rensselaer Polytechnic Institute, Troy, NY, 12180 Abstract

More information

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems) Engineering Mathematics 8 SUBJECT NAME : Numerical Methods SUBJECT CODE : MA6459 MATERIAL NAME : University Questions REGULATION : R3 UPDATED ON : November 7 (Upto N/D 7 Q.P) (Scan the above Q.R code for

More information

PART II: Research Proposal Algorithms for the Simplification of Algebraic Formulae

PART II: Research Proposal Algorithms for the Simplification of Algebraic Formulae Form 101 Part II 6 Monagan, 195283 PART II: Research Proposal Algorithms for the Simplification of Algebraic Formulae 1 Research Area Computer algebra (CA) or symbolic computation, as my field is known

More information

Athena Visual Software, Inc. 1

Athena Visual Software, Inc. 1 Athena Visual Studio Visual Kinetics Tutorial VisualKinetics is an integrated tool within the Athena Visual Studio software environment, which allows scientists and engineers to simulate the dynamic behavior

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

Fin System, Inc. Company Report. Temperature Profile Calculators. Team 1 J. C. Stewards, Lead A. B. Williams, Documentation M. D.

Fin System, Inc. Company Report. Temperature Profile Calculators. Team 1 J. C. Stewards, Lead A. B. Williams, Documentation M. D. Fin System, Inc. Company Report Temperature Profile Calculators Team 1 J. C. Stewards, Lead A. B. Williams, Documentation M. D. Daily, Programmer Submitted in Fulfillment of Management Requirements August

More information

Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department

Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department Alex Barnett, Scott Pauls, Dan Rockmore August 12, 2011 We aim to touch upon many topics that a professional

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Mathematics for chemical engineers. Numerical solution of ordinary differential equations Mathematics for chemical engineers Drahoslava Janovská Numerical solution of ordinary differential equations Initial value problem Winter Semester 2015-2016 Outline 1 Introduction 2 One step methods Euler

More information

The Solution of Weakly Nonlinear Oscillatory Problems with No Damping Using MAPLE

The Solution of Weakly Nonlinear Oscillatory Problems with No Damping Using MAPLE World Applied Sciences Journal (): 64-69, 0 ISSN 88-495 IDOSI Publications, 0 DOI: 0.589/idosi.wasj.0..0.09 The Solution of Weakly Nonlinear Oscillatory Problems with No Damping Using MAPLE N. Hashim,

More information

Multistep Methods for IVPs. t 0 < t < T

Multistep Methods for IVPs. t 0 < t < T Multistep Methods for IVPs We are still considering the IVP dy dt = f(t,y) t 0 < t < T y(t 0 ) = y 0 So far we have looked at Euler s method, which was a first order method and Runge Kutta (RK) methods

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD April, 4. Vol. 4, No. - 4 EAAS & ARF. All rights reserved ISSN35-869 A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD Ahmed A. M. Hassan, S. H. Hoda Ibrahim, Amr M.

More information

MATLAB for Chemical Engineering

MATLAB for Chemical Engineering MATLAB for Chemical Engineering Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering OMR, Chennai 603110 msubbu.in[at]gmail.com 16

More information

ANIMATION OF LAGRANGE MULTIPLIER METHOD AND MAPLE Pavel Prazak University of Hradec Kralove, Czech Republic

ANIMATION OF LAGRANGE MULTIPLIER METHOD AND MAPLE Pavel Prazak University of Hradec Kralove, Czech Republic ANIMATION OF LAGRANGE MULTIPLIER METHOD AND MAPLE Pavel Prazak University of Hradec Kralove, Czech Republic Experience shows that IT is a powerful tool for visualization of hidden mathematical concepts.

More information

Seymour Public Schools Curriculum

Seymour Public Schools Curriculum Algebra II continues the study of functions. Students learn operations with functions and graphing of different types of functions. Students solve equations and perform operations with exponents, matrices

More information

MATLAB TOOL FOR IDENTIFICATION OF NONLINEAR SYSTEMS

MATLAB TOOL FOR IDENTIFICATION OF NONLINEAR SYSTEMS MATLAB TOOL FOR IDENTIFICATION OF NONLINEAR SYSTEMS M. Kalúz, Ľ. Čirka, M. Fikar Institute of Information Engineering, Automation, and Mathematics, FCFT STU in Bratislava Abstract This contribution describes

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Arches Part 1: Introduction to the Uintah Computational Framework. Charles Reid Scientific Computing Summer Workshop July 14, 2010

Arches Part 1: Introduction to the Uintah Computational Framework. Charles Reid Scientific Computing Summer Workshop July 14, 2010 Arches Part 1: Introduction to the Uintah Computational Framework Charles Reid Scientific Computing Summer Workshop July 14, 2010 Arches Uintah Computational Framework Cluster Node Node Node Node Node

More information

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations The Modified ( /-Expansion Method for Nonlinear Evolution Equations Sheng Zhang, Ying-Na Sun, Jin-Mei Ba, and Ling Dong Department of Mathematics, Bohai University, Jinzhou 11000, P. R. China Reprint requests

More information

Differential Equations Dynamical Systems And An Introduction To Chaos Solutions Manual Pdf

Differential Equations Dynamical Systems And An Introduction To Chaos Solutions Manual Pdf Differential Equations Dynamical Systems And An Introduction To Chaos Solutions Manual Pdf Math 134: Ordinary Differential Equations and Dynamical Systems and an Introduction to Chaos, third edition, Academic

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Theory of Equations. Lesson 5. Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA. bhdayton/theq/

Theory of Equations. Lesson 5. Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA.   bhdayton/theq/ Theory of Equations Lesson 5 by Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA www.neiu.edu/ bhdayton/theq/ These notes are copyrighted by Barry Dayton, 2002. The PDF files are

More information

5.2 - Euler s Method

5.2 - Euler s Method 5. - Euler s Method Consider solving the initial-value problem for ordinary differential equation: (*) y t f t, y, a t b, y a. Let y t be the unique solution of the initial-value problem. In the previous

More information

CURRICULUM GUIDE Algebra II College-Prep Level

CURRICULUM GUIDE Algebra II College-Prep Level CURRICULUM GUIDE Algebra II College-Prep Level Revised Sept 2011 Course Description: This course builds upon the foundational concepts of Algebra I and Geometry, connects them with practical real world

More information

Let's begin by evaluating several limits. sqrt x 2 C4 K2. limit. x 2, x = 0 ; O limit. 1K cos t t. , t = 0 ; 1C 1 n. limit. 6 x 3 C5.

Let's begin by evaluating several limits. sqrt x 2 C4 K2. limit. x 2, x = 0 ; O limit. 1K cos t t. , t = 0 ; 1C 1 n. limit. 6 x 3 C5. Dr. Straight's Maple Examples Example II: Calculus perations and Functions Functions Covered: diff, dsolve, implicitdiff, implicitplot, int, limit, odeplot, piecewise, plot, solve, subs, sum, taylor Let's

More information

Computational Methods for Engineers Programming in Engineering Problem Solving

Computational Methods for Engineers Programming in Engineering Problem Solving Computational Methods for Engineers Programming in Engineering Problem Solving Abu Hasan Abdullah January 6, 2009 Abu Hasan Abdullah 2009 An Engineering Problem Problem Statement: The length of a belt

More information

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman

Solving Nonlinear Wave Equations and Lattices with Mathematica. Willy Hereman Solving Nonlinear Wave Equations and Lattices with Mathematica Willy Hereman Department of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA http://www.mines.edu/fs home/whereman/

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Simplifying integration for logarithmic singularities R.N.L. Smith Department ofapplied Mathematics & OR, Cranfield University, RMCS, Shrivenham, Swindon, Wiltshire SN6 SLA, UK Introduction Any implementation

More information

Mathematical Modelling Using Simulink

Mathematical Modelling Using Simulink Experiment Two Mathematical Modelling Using Simulink Control Systems Laboratory Dr. Zaer Abo Hammour Dr. Zaer Abo Hammour Control Systems Laboratory 1. Mathematical Model Definition A mathematical model

More information

Application demonstration. BifTools. Maple Package for Bifurcation Analysis in Dynamical Systems

Application demonstration. BifTools. Maple Package for Bifurcation Analysis in Dynamical Systems Application demonstration BifTools Maple Package for Bifurcation Analysis in Dynamical Systems Introduction Milen Borisov, Neli Dimitrova Department of Biomathematics Institute of Mathematics and Informatics

More information

Moments of Inertia. Maplesoft, a division of Waterloo Maple Inc., 2008

Moments of Inertia. Maplesoft, a division of Waterloo Maple Inc., 2008 Introduction Moments of Inertia Maplesoft, a division of Waterloo Maple Inc., 2008 This application is one of a collection of educational engineering eamples using Maple. These ever stage of the solution,

More information

1 Introduction to MATLAB

1 Introduction to MATLAB L3 - December 015 Solving PDEs numerically (Reports due Thursday Dec 3rd, carolinemuller13@gmail.com) In this project, we will see various methods for solving Partial Differential Equations (PDEs) using

More information

Solving Parametric Polynomial Systems by RealComprehensiveTriangularize

Solving Parametric Polynomial Systems by RealComprehensiveTriangularize Solving Parametric Polynomial Systems by RealComprehensiveTriangularize Changbo Chen 1 and Marc Moreno Maza 2 1 Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green

More information

STEAMEST: A Software Tool for Estimation of Physical Properties of Water and Steam

STEAMEST: A Software Tool for Estimation of Physical Properties of Water and Steam 226 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 STEAMEST: A Software Tool for Estimation of Physical Properties of Water and Steam Muhammad Faheem Department of Chemical Engineering, University of Engineering

More information

Compute the behavior of reality even if it is impossible to observe the processes (for example a black hole in astrophysics).

Compute the behavior of reality even if it is impossible to observe the processes (for example a black hole in astrophysics). 1 Introduction Read sections 1.1, 1.2.1 1.2.4, 1.2.6, 1.3.8, 1.3.9, 1.4. Review questions 1.1 1.6, 1.12 1.21, 1.37. The subject of Scientific Computing is to simulate the reality. Simulation is the representation

More information

Exact Solutions of Kuramoto-Sivashinsky Equation

Exact Solutions of Kuramoto-Sivashinsky Equation I.J. Education and Management Engineering 01, 6, 61-66 Published Online July 01 in MECS (http://www.mecs-press.ne DOI: 10.5815/ijeme.01.06.11 Available online at http://www.mecs-press.net/ijeme Exact Solutions

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information