(2) Classify the critical points of linear systems and almost linear systems.

Size: px
Start display at page:

Download "(2) Classify the critical points of linear systems and almost linear systems."

Transcription

1 Review for Exam 3 Three type of prolem: () Solve the firt order homogeneou linear ytem x Ax () Claify the critical point of linear ytem and almot linear ytem (3) Solve the high order linear equation uing Laplace tranform Solve the homogeneou linear ytem: x Ax Step: () Write the linear ytem in the matrix form x Ax for ome matrix A () Finhe eigenvalue of A y olving the characteritic equation A λi (3) Loo at the eigenvalue: Two ditinct real eigenvalue λ, λ : - For each eigenvalue, find one eigenvector y olving (A λi)v - Two independent olution x v e λt, x v e λ t - The general olution i x(t) c x (t) + c x (t) A pair of complex eigenvalue λ p + qi, λ p qi: - Find one complex-valued eigenvector v to λ - The complex-valued olution x(t) ve λt ve pt (co qt + i in qt) - Tae the real part and imaginary part of x(t): x (t) an (t) - General olution i x(t) c x (t) + c x (t) A repeated eigenvalue of multiplicity : - Set v, and calculate v (A λi)v - Two linearly independent olution: x (t) v e λt an (t) (v t + v )e λt - The general olution i x(t) c x (t) + c x (t)

2 Example Solve the linear ytem Solution: x x x x x + x () Write the linear ytem in the matrix form x Ax for ome matrix A x x Ax for the matrix A, ecaue x x x () Finhe eigenvalue of A y olving the characteritic equation A λi Characteritic equation: A λi a λ a a a λ λ λ ( λ)( λ) ( ) λ λ + 5 Then the eigenvalue are λ ± ( ) 4 5 ± 4i ± i (3) Loo at the eigenvalue: We have a pair of complex eigenvalue λ ± i, and A A pair of complex eigenvalue λ + i, λ i: Find one complex-valued eigenvector v to λ For eigenvalue λ + i: a λ a (A λi)v a a λ ( + i) a ( + i) a ( i)a + ( ) Thi correpond to the equation: a + ( i) Thi i equivalent to a + ( i) One olution can e a i and Then v λ + i i The complex-valued olution x(t) ve λt ve pt (co qt + i in qt) i i a i an eigenvector aociateo the eigenvalue x(t) ve pt (co qt + i in qt) i e t (co t + i in t) Tae the real part and imaginary part of x(t): x (t) an (t) e t in t Real part x (t) e t anhe imaginary part x co t (t) General olution i x(t) c x (t) + c x (t) e t in t + i e t co t e t co t + i e t in t e t co t e t in t x(t) c e t in t e t co t e t co t + c e t in t

3 Type and taility of critical point in a ytem ax + y () Linear ytem: c x + Critical point: (,) (unique) Finhe eigenvalue of the matrix A y olving the characteritic equation A λi Loo at the eigenvalue and get the type and taility () Almot linear ytem: f (x, y) g(x, y) f (x, y) Critical point: The olution of equation g(x, y) For each critical point (x, y ): Write the linearized ytem a u fx (x Ju, where J(x, y ), y ) f y (x, y ) g x (x, y ) g y (x, y ) Finhe eigenvalue of J(x, y ) y olving the characteritic equation J λi Loo at the eigenvalue and get the type and taility Eigenvalue Sign Linear ytem Almot linear ytem Ditinct eigenvalue Repeated eigenvalue Complex eigenvalue oth poitive oth negative oppoite ign λ >,λ > improper ource (U) improper ource (U) λ <, λ < improper in (AS) improper in (AS) λ < < λ addle (U) addle (U) poitive λ λ > proper/improper ource (U) negative λ λ < proper/improper in (AS) poitive real part negative real part zero real part proper/improper /piral ource (U) proper/improper /piral in (AS) λ, λ a ± i(a > ) piral ource (U) piral ource (U) λ, λ a ± i(a < ) piral in (AS) piral in (AS) λ, λ ±i center (S) center/ piral point (NA)

4 Example 6 # 3 Finhe linearized ytem for each critical point: y x y Solution: Thi ia an almot linear ytem with f (x, y) y and g(x, y) x y y () Finhe critical point: x y From the firt equation y, we get y Plug in thi reult to the econd equation x y, we, get x That i (x + )(x ) Then we have x an Critical point (, ), (, ) () Linearized ytem of critical point (, ): f x (x, y), f y (x, y), g x (x, y) x, g y (x, y) Jacoian matrix J(, ) f x(, ) f y (, ) g x (, ) g y (, ) a λ a Characteritic equation: J λi a a λ λ ( λ)( λ) λ λ + λ (λ + )(λ ) Eigenvalue λ, λ (Two ditinct real eigenvalue, oppoite ign) Type: Saddle (untale) (3) Linearized ytem at critical point (, ): f x (x, y), f y (x, y), g x (x, y) x, g y (x, y) Jacoian matrix J(, ) f x(, ) f y (, ) g x (, ) g y (, ) a λ a Characteritic equation: J λi a λ λ ( λ)( λ) ( ) λ λ + λ + Eigenvalue λ ± 4 part) a Type: Spiral in (Aymptotically tale) ± 7i (A pair of two complex eigenvalue, negative real

5 Ue Laplace tranform to olve ax (t) + x (t) + cx(t) f (t); x() x, x () x () Laplace tranform of IVP: a (x ) + (x ) + c (x) (f ) (x) X () () Uing the formula to rewrite the tranformed equation (x ) X () x() (x ) X () x() x () (3) Get an algeraic equation of X () of degree Solve for X () (4) Do the invere Laplace tranform of X () to get the olution x(t) (Ue partial fraction) f (t) t t n (n ) F() n! n+ t α (α > ) Γ(a + ) a+ e at a co t + in t + coh t inh t f (t) F() e at t n n! ( a) n+ e at co t e at in t eat t in t 3 e at (in t t co t) a ( a) + ( a) + a [( a) + ] [( a) + ]

MATH 251 Examination II April 6, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 6, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination II April 6, 2015 FORM A Name: Student Number: Section: Thi exam ha 12 quetion for a total of 100 point. In order to obtain full credit for partial credit problem, all work mut be hown.

More information

Def. (a, b) is a critical point of the autonomous system. 1 Proper node (stable or unstable) 2 Improper node (stable or unstable)

Def. (a, b) is a critical point of the autonomous system. 1 Proper node (stable or unstable) 2 Improper node (stable or unstable) Types of critical points Def. (a, b) is a critical point of the autonomous system Math 216 Differential Equations Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan November

More information

MA 266 FINAL EXAM INSTRUCTIONS May 2, 2005

MA 266 FINAL EXAM INSTRUCTIONS May 2, 2005 MA 66 FINAL EXAM INSTRUCTIONS May, 5 NAME INSTRUCTOR. You mut ue a # pencil on the mark ene heet anwer heet.. If the cover of your quetion booklet i GREEN, write in the TEST/QUIZ NUMBER boxe and blacken

More information

Things to Definitely Know. e iθ = cos θ + i sin θ. cos 2 θ + sin 2 θ = 1. cos(u + v) = cos u cos v sin u sin v sin(u + v) = cos u sin v + sin u cos v

Things to Definitely Know. e iθ = cos θ + i sin θ. cos 2 θ + sin 2 θ = 1. cos(u + v) = cos u cos v sin u sin v sin(u + v) = cos u sin v + sin u cos v Thing to Definitely Know Euler Identity Pythagorean Identity Trigonometric Identitie e iθ co θ + i in θ co 2 θ + in 2 θ I Firt Order Differential Equation co(u + v co u co v in u in v in(u + v co u in

More information

Eigenvalues and Eigenvectors - 5.1/ Determine if pairs 1,

Eigenvalues and Eigenvectors - 5.1/ Determine if pairs 1, Eigenvalue and Eigenvector - 5./5.. Definition Definition An eigenvector of an n n matrix A i a nonzero vector x uch that Ax x for ome calar. A calar i called an eigenvalue of A if there i a nontrivial

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

Solutions to homework #10

Solutions to homework #10 Solution to homework #0 Problem 7..3 Compute 6 e 3 t t t 8. The firt tep i to ue the linearity of the Laplace tranform to ditribute the tranform over the um and pull the contant factor outide the tranform.

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2 803SC Final Exam Thi problem concern the differential equation dy = x y ( ) dx Let y = f (x) be the olution with f ( ) = 0 (a) Sketch the iocline for lope, 0, and, and ketch the direction field along them

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Name: Solution Exam Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...4

More information

The Riemann Transform

The Riemann Transform The Riemann Tranform By Armando M. Evangelita Jr. armando78973@gmail.com Augut 28, 28 ABSTRACT In hi 859 paper, Bernhard Riemann ued the integral equation f (x ) x dx to develop an explicit formula for

More information

EXAM 4 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley

EXAM 4 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley EXAM 4 -B MATH 6: Elementary Differential Equation MATH 6 FALL 0 EXAMINATION COVER PAGE Profeor Moeley PRINT NAME ( ) Lat Name, Firt Name MI (What you wih to be called) ID # EXAM DATE Friday, Nov. 9, 0

More information

Math 216 Second Midterm 28 March, 2013

Math 216 Second Midterm 28 March, 2013 Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

LAPLACE TRANSFORM REVIEW SOLUTIONS

LAPLACE TRANSFORM REVIEW SOLUTIONS LAPLACE TRANSFORM REVIEW SOLUTIONS. Find the Laplace tranform for the following function. If an image i given, firt write out the function and then take the tranform. a e t inh4t From #8 on the table:

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

EXAM 4 -A2 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley

EXAM 4 -A2 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley EXAM 4 -A MATH 6: Elementary Differential Equation MATH 6 FALL 00 EXAMINATION COVER PAGE Profeor Moeley PRINT NAME ( ) Lat Name, Firt Name MI (What you wih to be called) ID # EXAM DATE Friday, Nov. 9,

More information

CHAPTER 9. Inverse Transform and. Solution to the Initial Value Problem

CHAPTER 9. Inverse Transform and. Solution to the Initial Value Problem A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...

More information

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 Problem : For each of the following function do the following: (i) Write the function a a piecewie function and ketch it graph, (ii) Write the function a a combination

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Solutions for homework 8

Solutions for homework 8 Solution for homework 8 Section. Baic propertie of the Laplace Tranform. Ue the linearity of the Laplace tranform (Propoition.7) and Table of Laplace tranform on page 04 to find the Laplace tranform of

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Dynamical Systems Solutions to Exercises

Dynamical Systems Solutions to Exercises Dynamical Systems Part 5-6 Dr G Bowtell Dynamical Systems Solutions to Exercises. Figure : Phase diagrams for i, ii and iii respectively. Only fixed point is at the origin since the equations are linear

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Chapter 7: The Laplace Transform Part 1

Chapter 7: The Laplace Transform Part 1 Chapter 7: The Laplace Tranform Part 1 王奕翔 Department of Electrical Engineering National Taiwan Univerity ihwang@ntu.edu.tw November 26, 213 1 / 34 王奕翔 DE Lecture 1 Solving an initial value problem aociated

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

The Power Series Expansion on a Bulge Heaviside Step Function

The Power Series Expansion on a Bulge Heaviside Step Function Applied Mathematical Science, Vol 9, 05, no 3, 5-9 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/am054009 The Power Serie Expanion on a Bulge Heaviide Step Function P Haara and S Pothat Department of

More information

Systems of Linear Differential Equations Chapter 7

Systems of Linear Differential Equations Chapter 7 Systems of Linear Differential Equations Chapter 7 Doreen De Leon Department of Mathematics, California State University, Fresno June 22, 25 Motivating Examples: Applications of Systems of First Order

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Eigenvalue and eigenvector Defining and computing uggeted problem olution For each matri give below, find eigenvalue and eigenvector. Give a bai and the dimenion of the eigenpace for each eigenvalue. P:

More information

Test #2 Math 2250 Summer 2003

Test #2 Math 2250 Summer 2003 Test #2 Math 225 Summer 23 Name: Score: There are six problems on the front and back of the pages. Each subpart is worth 5 points. Show all of your work where appropriate for full credit. ) Show the following

More information

Stability Criterion Routh Hurwitz

Stability Criterion Routh Hurwitz EES404 Fundamental of Control Sytem Stability Criterion Routh Hurwitz DR. Ir. Wahidin Wahab M.Sc. Ir. Arie Subiantoro M.Sc. Stability A ytem i table if for a finite input the output i imilarly finite A

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

MATH 320 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

MATH 320 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS MATH 2 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS W To find a particular solution for a linear inhomogeneous system of differential equations x Ax = ft) or of a mechanical system with external

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Chapter 7: The Laplace Transform

Chapter 7: The Laplace Transform Chapter 7: The Laplace Tranform 王奕翔 Department of Electrical Engineering National Taiwan Univerity ihwang@ntu.edu.tw November 2, 213 1 / 25 王奕翔 DE Lecture 1 Solving an initial value problem aociated with

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

Convex Hulls of Curves Sam Burton

Convex Hulls of Curves Sam Burton Convex Hull of Curve Sam Burton 1 Introduction Thi paper will primarily be concerned with determining the face of convex hull of curve of the form C = {(t, t a, t b ) t [ 1, 1]}, a < b N in R 3. We hall

More information

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS SMILE MARKOVSKI Faculty of Computer Science and Engineering, S Ciryl and Methodiu Univerity in Skopje, MACEDONIA mile.markovki@gmail.com Logic

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS

EXAM. Exam #3. Math 2360, Spring April 24, 2001 ANSWERS EXAM Exam #3 Math 2360, Spring 200 April 24, 200 ANSWERS i 40 pts Problem In this problem, we will work in the vectorspace P 3 = { ax 2 + bx + c a, b, c R }, the space of polynomials of degree less than

More information

EXERCISES FOR SECTION 6.3

EXERCISES FOR SECTION 6.3 y 6. Secon-Orer Equation 499.58 4 t EXERCISES FOR SECTION 6.. We ue integration by part twice to compute Lin ωt Firt, letting u in ωt an v e t t,weget Lin ωt in ωt e t e t lim b in ωt e t t. in ωt ω e

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

You may use a calculator, but you must show all your work in order to receive credit.

You may use a calculator, but you must show all your work in order to receive credit. Math 2410-010/015 Exam II April 7 th, 2017 Name: Instructions: Key Answer each question to the best of your ability. All answers must be written clearly. Be sure to erase or cross out any work that you

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

The Laplace Transform , Haynes Miller and Jeremy Orloff

The Laplace Transform , Haynes Miller and Jeremy Orloff The Laplace Tranform 8.3, Hayne Miller and Jeremy Orloff Laplace tranform baic: introduction An operator take a function a input and output another function. A tranform doe the ame thing with the added

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

MA FINAL EXAM INSTRUCTIONS

MA FINAL EXAM INSTRUCTIONS MA 33 FINAL EXAM INSTRUCTIONS NAME INSTRUCTOR. Intructor nme: Chen, Dong, Howrd, or Lundberg 2. Coure number: MA33. 3. SECTION NUMBERS: 6 for MWF :3AM-:2AM REC 33 cl by Erik Lundberg 7 for MWF :3AM-:2AM

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs Applied Mathematical Science, Vol. 5, 2011, no. 27, 1307-1315 Application of Laplace Adomian Decompoition Method on Linear and Nonlinear Sytem of PDE Jaem Fadaei Mathematic Department, Shahid Bahonar Univerity

More information

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section: MATH 251 Examination II November 5, 2018 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Improving Power System Transient Stability with Static Synchronous Series Compensator

Improving Power System Transient Stability with Static Synchronous Series Compensator American Journal of Applied Science 8 (1): 77-81, 2011 ISSN 1546-9239 2010 Science Pulication Improving Power Sytem Tranient Staility with Static Synchronou Serie Compenator Prechanon Kumkratug Diviion

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Coupling of Three-Phase Sequence Circuits Due to Line and Load Asymmetries

Coupling of Three-Phase Sequence Circuits Due to Line and Load Asymmetries Coupling of Three-Phae Sequence Circuit Due to Line and Load Aymmetrie DEGO BELLAN Department of Electronic nformation and Bioengineering Politecnico di Milano Piazza Leonardo da inci 01 Milano TALY diego.ellan@polimi.it

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms EE 33 Linear Signal & Sytem (Fall 08) Solution Set for Homework #0 on Laplace Tranform By: Mr. Houhang Salimian & Prof. Brian L. Evan Problem. a) xt () = ut () ut ( ) From lecture Lut { ()} = and { } t

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

MIDTERM REVIEW AND SAMPLE EXAM. Contents

MIDTERM REVIEW AND SAMPLE EXAM. Contents MIDTERM REVIEW AND SAMPLE EXAM Abstract These notes outline the material for the upcoming exam Note that the review is divided into the two main topics we have covered thus far, namely, ordinary differential

More information

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu ROOT-LOCUS ANALYSIS Example: Given that G( ) ( + )( + ) Dr. alyana Veluvolu Sketch the root locu of 1 + G() and compute the value of that will yield a dominant econd order behavior with a damping ratio,

More information