Math 216 Second Midterm 28 March, 2013

Size: px
Start display at page:

Download "Math 216 Second Midterm 28 March, 2013"

Transcription

1 Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that will appear on your exam, nor to e of the same length or difficulty. In particular, the sections in the text that were covered on this exam may e slightly different from those covered y your exam. This material is (c26, University of Michigan Department of Mathematics, and released under a Creative Commons By-NC-SA 4. International License. It is explicitly not for distriution on wesites that share course materials.

2 Math 26 / Exam 2 (28 March, 23 page 2. [5 points] For this prolem note that the general solution to y + 5y + 4y is y c e t + c 2 e 4t. (Note that minimal partial credit will e given on this prolem. a. [7 points] Find a real-valued general solution to y + 5y + 4y 3e 4t. Solution: We know the general solution is y y c + y p. We use the Method of Undetermined Coefficients to find y p, guessing y p Ate 4t, after multiplying our first guess (y p Ae 4t y t ecause the forcing term is present in our homogeneous solution. Then y p2 Ae 4t 4Ate 4t and y p2 8Ae 4t + 4Ate 4t, so that on plugging in we get so that 3A 3, and A. Thus the general solution is ( 8A + 5Ae 4t 3e 4t, y c e t + c 2 e 4t te 4t. If we use Variation of Parameters, we have u e t + u 2 e 4t and u e t 4u 2 e 4t 3e 4t. Solving, we find u 2 and u e 3t, so that u 3 e 3t and u 2 t, and y p 3 e 4t te 4t.. [8 points] Find the solution to the y + 5y + 4y 6t, y( 2, y ( 2. Solution: We know the general solution is y y c + y p. We use the Method of Undetermined Coefficients to find y p, guessing y p A + Bt. Plugging in, 5B + 4A + 4Bt 6t, so that B 4 and A 5. Thus the general solution is y c e t + c 2 e 4t 5 + 4t. Applying the initial conditions, we have y( c + c 2 5 2, and y ( c 4c Thus c + c 2 7 and c 4c 2 6. Adding the two, we have 3c 2, so c 2 /3. Then the first gives c 22/3, and our solution is y 22 3 e t 3 e 4t 5 + 4t. We can, of course find y p with Variation of Parameters. Then u e t + u 2 e 4t and u e t 4u 2 e 4t 6t. Solving, we find u te4t, so that u 2 ( te4t and u 6 3 tet, so that u 6 3 ( + tet. Then y p 5 + 4t, as efore.

3 Math 26 / Exam 2 (28 March, 23 page [2 points] The eigenvalues of the matrix A are λ 4 ± 4i. Use the eigenvalue 5 7 method to find a real-valued general solution to the system x Ax. (Note that minimal partial credit will e given on this prolem. Solution: We know that a complex-valued solution to the system is x ve (4+4it, where v is the eigenvector corresponding to λ 4 + 4i, and that the real and imaginary parts of this solution will themselves e linearly independent solutions to the system. The eigenvector v T v v 2 is given y λ 5 3 4i 5 v v 5 7 λ 5 3 4i v 2. We know that the two rows of this algeraic system are equivalent, ecause we are at an eigenvalue. The first gives ( 3 4iv + 5v 2, so we may take v 5 and v i. Then a complex-valued solution to the system is ve (4+4it 5 e 4t (cos(4t + i sin(4t 3 + 4i ( 5 cos(4t + 5i sin(4t (3 cos(4t 4 sin(4t + i(4 cos(4t + 3 sin(4t e 4t. Separating the real and imaginary parts of this, we have the general solution ( ( 5 cos(4t x c e 4t 5 sin(4t + c 3 cos(4t 4 sin(4t 2 e 4t. 4 cos(4t + 3 sin(4t Similarly, if we use the second equation to find v, we have v 3 4i, and 5 3 cos(4t + 4 sin(4t x c e 4t 4 cos(4t + 3 sin(4t + c 5 cos(4t 2 e 4t. 5 sin(4t Using λ 4 4i, we get v as efore. 5 and, reversing the sign of c 3 4i 2, the same general solution

4 Math 26 / Exam 2 (28 March, 23 page 4 3. [6 points] Consider the system x x + 2 x 2 3x a. [8 points] Find a real-valued general solution to this system. Solution: Letting x T x, this is equivalent to x Ax with the coefficient 2 λ 2 matrix A. Eigenvalues of A are given y det λ 3 3 λ 2 λ 6 (λ 3(λ+2, so that eigenvalues are λ 2 and λ 3. Then eigenvectors v satisfy the equation λ 2 v, 3 λ so that if λ 2 we have v ( 2 3 T (, and if λ 3, v T. Thus the general solution is ( x 2 x c e 2t + c 3 2 e 3t 2c e + c 2 e 3t 3c e 2t + c 2 e 3t. This can also e solved y elimination: x 2 3x, so x 2 3x. Then the first equation ecomes 3 x 2 3 x 2 + 2, or x 2 x 2 6. With e rt we have r 2 r 6, so r 2 and 3. Then k e 2t + k 2 e 3t. With x 3 x 2, x 2 3 k e 2t + k 2 e 3t, which is the same as we found aove with k 3c and k 2 c 2.. [4 points] Find the particular solution if x (., (.35. Solution: We have x ( 2c + c 2. and ( 3c + c Sutracting the first from the second we get c.5. Then either equation gives c 2.2, and our particular solution is ( x. e 2t +.2 e 3t.5 e 2t +.2 e 3t. c. [4 points] Briefly explain why the direction field and solution trajectory shown to the right could not match this system and your solution from (. Solution: In the long run the negative exponentials in the solution we found in ( will decay to zero and therefore we expect the solution to look like x (.2e 3t.2e 3t T. Thus the trajectory should end up on the line y x ( x. This is not shown in the figure to the right. Also note that when x the system predicts that trajectories will e horizontal, and when trajectories will have slope 3, neither of which appear to e the case here x

5 Math 26 / Exam 2 (28 March, 23 page 5 4. [2 points] Three linear constant-coefficient homogeneous systems are descried elow. Included in the description is one of the following three charateristics; for each, specify the missing two characteristics y circling the correct answers.. whether it is a node, saddle point or spiral point, and 2. whether the equilirium point (, is asymptotically stale, stale or unstale; 3. the sign of the constant a in the system. No explanation is necessary for your answers. a. [4 points] The system x Ax having direction field and representative trajectories in ( the phase plane shown 2 in the figure to the right, if A and a >. a This is a node saddle point spiral point and is asymptotically stale stale unstale x Solution: From the figure we see that this is a spiral point. We know the eigenvalues of A are given y (λ 2 + 2a, so λ ± 2ai, and trajectories increase away from the equilirium point, indicating that it is unstale.. [4 points] The system x Ax if the equilirium point is a saddle point and the eigenvalues are λ 3 and λ a. The equilirium point is asymptotically stale stale unstale and a is < > Solution: a <. Saddle points are unstale, and have real eigenvalues with opposite signs, so c. [4 points] The system x 2x + a, x 2 x 2 whose solution with the initial conditions x (, ( is shown in the figure to the right, if the equilirium point is asymptotically stale. The equilirium point is a node saddle point spiral point and a is < > x, x 5 t Solution: The solution shown has no oscillatory characteristic, so this must( e a node 2 a with oth eigenvalues real and negative. Then the coefficient matrix A, 2 so that eigenvalues are given y det(a λi (λ a. For real eigenvalues, λ 2 ± a must have a > (and a < 4, for that matter.

6 Math 26 / Exam 2 (28 March, 23 page 6 5. [6 points] Consider a clown on a spring in a oat, as suggested y the figure to the right. At time t we place a large ox in the oat. Then, with some not entirely unreasonale assumptions, the displacement x of the oat and of the clown are given y x 425x x 2 5x 5. Spring Boat Clown Box Water Plan View Box (Here, x and are ( measured in meters and t in seconds. Letting A, the eigenvalues and eigenvectors of A are λ 6 and λ 25 with 3 v and v. 6 Side View a. [6 points] What are the natural frequencies at which the oat and clown will oscillate? Explain. x 3 Solution: Letting x and A, we guess x ve 2 2 rt, so that r 2 v Av, and therefore r 2 λ, the eigenvalues of A. Thus r ±i 6 or r ±i 25, and solutions will look like cosines and sines of 6 t and 25 t. Thus the frequencies are ω 6( 24 and ω 2 25(. (Note that if we were recently indoctrinated y some other field we might also talk aout the ordinary frequency, f ω/2π. x Water. [6 points] Find the general solution to the homogeneous system associated with this system. Solution: Given the eigenvalues and eigenvectors provided, we have ( 3 x c (c cos( 6 t + c 2 sin( 6 t + (c 3 cos( 25 t + c 4 sin( 25 t. 6 c. [4 points] A solution to this system is shown to the right. What initial conditions were applied to x and to otain this solution? Solution: The initial conditions were x (., and x ( ( x 2 (. We see that x starts at., at, and that each solution curve starts at with zero slope. x, x.4.6 t

7 Math 26 / Exam 2 (28 March, 23 page 7 6. [5 points] Consider a mass-spring system modeled y y + cy + ky f(t, where c is the damping coefficient associated with the system and k the spring constant. For each of the following give a short explanation of your answers. a. [5 points] If f(t 3 sin(2t and the system is at resonance, are c and k positive, negative or zero? Give specific values for c and k if possile. Solution: If the system experiences resonance, we know that c. To have resonance with a forcing that has a frequency 2, we know that the natural frequency of the system, which is ω k must e 2, so that k 4.. [5 points] If f(t 3 sin(2t and the system is at resonance, sketch a qualitatively accurate graph of y p, the particular solution to the prolem. Solution: Because the system is at resonance, we know that y A t cos(2t (we may omit the t sin(2t term ecause there are only even derivatives in the prolem. Thus the solution will e something like the following graph. y p t c. [5 points] If c >, k >, and f(t 3 sin(2t, what can you say (without solving the differential equation aout the long-term ehavior of y? Solution: If c > the homogeneous solutions will e decaying. Thus the long-term response will e y p, the particular solution, which will e y p A cos(2t + B sin(2t A 2 + B 2 cos(2t α for some A and B. That is, the long-term response will e purely sinusoidal with period π.

8 Math 26 / Exam 2 (28 March, 23 page 8 7. [4 points] In this prolem we consider the system with the initial condition ( x x ( ( t/2 x 4t 3 t, a (a,. a. [4 points] Find the Euler s method approximation for the solution to the system after one step with a step size h (your answer will involve a, and h. What is the meaning of your result? Solution: After one step we have a x + h ( 2 4 This is the approximation for x at t + h. ( a a + 2 h + h( 4a +.. [4 points] Rewrite your approximation in the form P a. What is P? Solution: The matrix P is the coefficient matrix from the approximation, ( P 2 h. 4h ( + h c. [2 points] Find det(p. Solution: det(p + h + 2h 2. d. [4 points] Is it possile that the Euler step could end at x,? Explain. Solution: Note that det(p 2h 2 + h +. Therefore P is nonsingular (has an a inverse, and the only way that this approximation, P, could equal the zero vector is if a. Because we know that a,, this is therefore not possile. We could also work this out directly: we have the approximations x ( + h a + 2 h and ( + h 4ah + ( + h. Setting oth to zero requires that a + 2h, so that a 2 h, and then that 4ah + ( + h 2h2 + ( + h (2h 2 + h +. We know, and 2h 2 + h +, so this is not possile. Note that this condition is, not surprisingly, the same as the determinant.

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 216 Second Midterm 16 November, 2017

Math 216 Second Midterm 16 November, 2017 Math 216 Second Midterm 16 November, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 216 Second Midterm 19 March, 2018

Math 216 Second Midterm 19 March, 2018 Math 26 Second Midterm 9 March, 28 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 216 Second Midterm 20 March, 2017

Math 216 Second Midterm 20 March, 2017 Math 216 Second Midterm 20 March, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Math 216 Final Exam 14 December, 2017

Math 216 Final Exam 14 December, 2017 Math 216 Final Exam 14 December, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

MATH 24 EXAM 3 SOLUTIONS

MATH 24 EXAM 3 SOLUTIONS MATH 4 EXAM 3 S Consider the equation y + ω y = cosω t (a) Find the general solution of the homogeneous equation (b) Find the particular solution of the non-homogeneous equation using the method of Undetermined

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

1. (10 points) Find the general solution to the following second-order differential equation:

1. (10 points) Find the general solution to the following second-order differential equation: Math 307A, Winter 014 Midterm Solutions Page 1 of 8 1. (10 points) Find the general solution to the following second-order differential equation: 4y 1y + 9y = 9t. To find the general solution to this nonhomogeneous

More information

Math 216 First Midterm 6 February, 2017

Math 216 First Midterm 6 February, 2017 Math 216 First Midterm 6 February, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)).

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)). Difference Equations to Differential Equations Section 8.5 Applications: Pendulums Mass-Spring Systems In this section we will investigate two applications of our work in Section 8.4. First, we will consider

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Math 216 First Midterm 8 October, 2012

Math 216 First Midterm 8 October, 2012 Math 216 First Midterm 8 October, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

Dynamical Systems Solutions to Exercises

Dynamical Systems Solutions to Exercises Dynamical Systems Part 5-6 Dr G Bowtell Dynamical Systems Solutions to Exercises. Figure : Phase diagrams for i, ii and iii respectively. Only fixed point is at the origin since the equations are linear

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

1 Systems of Differential Equations

1 Systems of Differential Equations March, 20 7- Systems of Differential Equations Let U e an open suset of R n, I e an open interval in R and : I R n R n e a function from I R n to R n The equation ẋ = ft, x is called a first order ordinary

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

1 Some general theory for 2nd order linear nonhomogeneous

1 Some general theory for 2nd order linear nonhomogeneous Math 175 Honors ODE I Spring, 013 Notes 5 1 Some general theory for nd order linear nonhomogeneous equations 1.1 General form of the solution Suppose that p; q; and g are continuous on an interval I; and

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

Math 216 First Midterm 18 October, 2018

Math 216 First Midterm 18 October, 2018 Math 16 First Midterm 18 October, 018 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid.

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid. Final 09/4/207 Name: Problems -5 are each worth 8 points. Problem 6 is a bonus for up to 4 points. So a full score is 40 points and the max score is 44 points. The exam has 6 pages; make sure you have

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

Answers and Hints to Review Questions for Test (a) Find the general solution to the linear system of differential equations Y = 2 ± 3i.

Answers and Hints to Review Questions for Test (a) Find the general solution to the linear system of differential equations Y = 2 ± 3i. Answers and Hints to Review Questions for Test 3 (a) Find the general solution to the linear system of differential equations [ dy 3 Y 3 [ (b) Find the specific solution that satisfies Y (0) = (c) What

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

You may use a calculator, but you must show all your work in order to receive credit.

You may use a calculator, but you must show all your work in order to receive credit. Math 2410-010/015 Exam II April 7 th, 2017 Name: Instructions: Key Answer each question to the best of your ability. All answers must be written clearly. Be sure to erase or cross out any work that you

More information

Math 304 Answers to Selected Problems

Math 304 Answers to Selected Problems Math Answers to Selected Problems Section 6.. Find the general solution to each of the following systems. a y y + y y y + y e y y y y y + y f y y + y y y + 6y y y + y Answer: a This is a system of the

More information

20D - Homework Assignment 5

20D - Homework Assignment 5 Brian Bowers TA for Hui Sun MATH D Homework Assignment 5 November 8, 3 D - Homework Assignment 5 First, I present the list of all matrix row operations. We use combinations of these steps to row reduce

More information

REVIEW PROBLEMS FOR MIDTERM II MATH 2373, FALL 2016 ANSWER KEY

REVIEW PROBLEMS FOR MIDTERM II MATH 2373, FALL 2016 ANSWER KEY REVIEW PROBLEMS FOR MIDTERM II MATH 7, FALL 6 ANSWER KEY This list of problems is not guaranteed to be an absolutely complete review. For completeness you must also make sure that you know how to do all

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Math 216 Second Midterm 17 November, 2016

Math 216 Second Midterm 17 November, 2016 Math 216 Second Midterm 17 November, 2016 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10 Midterm 1 NAME: RULES: You will be given the entire period (1PM-3:10PM) to complete the test. You can use one 3x5 notecard for formulas. There are no calculators nor those fancy cellular phones nor groupwork

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

ODE Math 3331 (Summer 2014) June 16, 2014

ODE Math 3331 (Summer 2014) June 16, 2014 Page 1 of 12 Please go to the next page... Sample Midterm 1 ODE Math 3331 (Summer 2014) June 16, 2014 50 points 1. Find the solution of the following initial-value problem 1. Solution (S.O.V) dt = ty2,

More information

MATH 251 Examination II July 28, Name: Student Number: Section:

MATH 251 Examination II July 28, Name: Student Number: Section: MATH 251 Examination II July 28, 2008 Name: Student Number: Section: This exam has 9 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must be shown.

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 7, 2014 FORM A. Name: Student Number: Section: MATH 251 Examination II April 7, 2014 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information

Forced Mechanical Vibrations

Forced Mechanical Vibrations Forced Mechanical Vibrations Today we use methods for solving nonhomogeneous second order linear differential equations to study the behavior of mechanical systems.. Forcing: Transient and Steady State

More information

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES. MAT9 - Calculus III - Fall 4 Solution for Term Test - November 6, 4 Time allotted: 9 minutes. Aids permitted: None. Full Name: Last First Student ID: Email: @mail.utoronto.ca Instructions DO NOT WRITE

More information

Exam II Review: Selected Solutions and Answers

Exam II Review: Selected Solutions and Answers November 9, 2011 Exam II Review: Selected Solutions and Answers NOTE: For additional worked problems see last year s review sheet and answers, the notes from class, and your text. Answers to problems from

More information

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )

More information

Short Solutions to Review Material for Test #2 MATH 3200

Short Solutions to Review Material for Test #2 MATH 3200 Short Solutions to Review Material for Test # MATH 300 Kawai # Newtonian mechanics. Air resistance. a A projectile is launched vertically. Its height is y t, and y 0 = 0 and v 0 = v 0 > 0. The acceleration

More information

MIDTERM REVIEW AND SAMPLE EXAM. Contents

MIDTERM REVIEW AND SAMPLE EXAM. Contents MIDTERM REVIEW AND SAMPLE EXAM Abstract These notes outline the material for the upcoming exam Note that the review is divided into the two main topics we have covered thus far, namely, ordinary differential

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Test #2 Math 2250 Summer 2003

Test #2 Math 2250 Summer 2003 Test #2 Math 225 Summer 23 Name: Score: There are six problems on the front and back of the pages. Each subpart is worth 5 points. Show all of your work where appropriate for full credit. ) Show the following

More information

3.5 Solving Quadratic Equations by the

3.5 Solving Quadratic Equations by the www.ck1.org Chapter 3. Quadratic Equations and Quadratic Functions 3.5 Solving Quadratic Equations y the Quadratic Formula Learning ojectives Solve quadratic equations using the quadratic formula. Identify

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Shawn D. Ryan Spring 2012 1 Repeated Roots of the Characteristic Equation and Reduction of Order Last Time:

More information

Solutions of Spring 2008 Final Exam

Solutions of Spring 2008 Final Exam Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

More information

Section 9.3 Phase Plane Portraits (for Planar Systems)

Section 9.3 Phase Plane Portraits (for Planar Systems) Section 9.3 Phase Plane Portraits (for Planar Systems) Key Terms: Equilibrium point of planer system yꞌ = Ay o Equilibrium solution Exponential solutions o Half-line solutions Unstable solution Stable

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

Find the general solution of the system y = Ay, where

Find the general solution of the system y = Ay, where Math Homework # March, 9..3. Find the general solution of the system y = Ay, where 5 Answer: The matrix A has characteristic polynomial p(λ = λ + 7λ + = λ + 3(λ +. Hence the eigenvalues are λ = 3and λ

More information

Classification of Phase Portraits at Equilibria for u (t) = f( u(t))

Classification of Phase Portraits at Equilibria for u (t) = f( u(t)) Classification of Phase Portraits at Equilibria for u t = f ut Transfer of Local Linearized Phase Portrait Transfer of Local Linearized Stability How to Classify Linear Equilibria Justification of the

More information

REVIEW NOTES FOR MATH 266

REVIEW NOTES FOR MATH 266 REVIEW NOTES FOR MATH 266 MELVIN LEOK 1.1: Some Basic Mathematical Models; Direction Fields 1. You should be able to match direction fields to differential equations. (see, for example, Problems 15-20).

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Math 250B Midterm III Information Fall 2018 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm III Information Fall 2018 SOLUTIONS TO PRACTICE PROBLEMS Math 25B Midterm III Information Fall 28 SOLUTIONS TO PRACTICE PROBLEMS Problem Determine whether the following matrix is diagonalizable or not If it is, find an invertible matrix S and a diagonal matrix

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

FINAL EXAM SOLUTIONS, MATH 123

FINAL EXAM SOLUTIONS, MATH 123 FINAL EXAM SOLUTIONS, MATH 23. Find the eigenvalues of the matrix ( 9 4 3 ) So λ = or 6. = λ 9 4 3 λ = ( λ)( 3 λ) + 36 = λ 2 7λ + 6 = (λ 6)(λ ) 2. Compute the matrix inverse: ( ) 3 3 = 3 4 ( 4/3 ) 3. Let

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

First Midterm Exam Name: Practice Problems September 19, x = ax + sin x.

First Midterm Exam Name: Practice Problems September 19, x = ax + sin x. Math 54 Treibergs First Midterm Exam Name: Practice Problems September 9, 24 Consider the family of differential equations for the parameter a: (a Sketch the phase line when a x ax + sin x (b Use the graphs

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Do not write below here. Question Score Question Score Question Score

Do not write below here. Question Score Question Score Question Score MATH-2240 Friday, May 4, 2012, FINAL EXAMINATION 8:00AM-12:00NOON Your Instructor: Your Name: 1. Do not open this exam until you are told to do so. 2. This exam has 30 problems and 18 pages including this

More information

Solving Systems of Linear Equations Symbolically

Solving Systems of Linear Equations Symbolically " Solving Systems of Linear Equations Symolically Every day of the year, thousands of airline flights crisscross the United States to connect large and small cities. Each flight follows a plan filed with

More information

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1 ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate

More information

FINAL EXAM MAY 20, 2004

FINAL EXAM MAY 20, 2004 18.034 FINAL EXAM MAY 20, 2004 Name: Problem 1: /10 Problem 2: /20 Problem 3: /25 Problem 4: /15 Problem 5: /20 Problem 6: /25 Problem 7: /10 Problem 8: /35 Problem 9: /40 Problem 10: /10 Extra credit

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Spring 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 14 pages (including this title page) for a total of 150 points. The exam has a multiple choice part, and partial

More information

Math53: Ordinary Differential Equations Autumn 2004

Math53: Ordinary Differential Equations Autumn 2004 Math53: Ordinary Differential Equations Autumn 2004 Unit 2 Summary Second- and Higher-Order Ordinary Differential Equations Extremely Important: Euler s formula Very Important: finding solutions to linear

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section: MATH 251 Examination II November 5, 2018 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Practice Problems for the Final Exam Linear Algebra. Matrix multiplication: (a) Problem 3 in Midterm One. (b) Problem 2 in Quiz. 2. Solve the linear system: (a) Problem 4 in Midterm One. (b) Problem in

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

Solution via Laplace transform and matrix exponential

Solution via Laplace transform and matrix exponential EE263 Autumn 2015 S. Boyd and S. Lall Solution via Laplace transform and matrix exponential Laplace transform solving ẋ = Ax via Laplace transform state transition matrix matrix exponential qualitative

More information