ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

Save this PDF as:

Size: px
Start display at page:

Download "ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1"

Transcription

1 ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate of growth (per minute). We want to eliminate this population by killing the bacteria it at a rate h. However, it turns out we cannot sustain the treatment at a constant rate. Instead the treatment s potency decreases exponentially over time according to the formula h(t) =me at. Here m>0 is the initial (and maximal) potency and a>0 is the decay rate of the treatment s potency over time. (a) ( points) The differential equation for x is x 0 = rx me at. This follows immediately from the basic rate balance law x 0 = input rate output rate. (b) (5 points) Suppose the bacterial population has size x 0 > 0 at time t 0 =0when the treatment starts. Find a formula for the solution of this initial value problem. ³ ANSWER: x(t) = x 0 m a+r e rt + m a+r e at The general solution has the form x = x h + x p where x h = ce rt is the general solution of the associated homogeneous equation x 0 = rx. To calculate a particular solution x p we can use the Methods of Undetermined Coefficients and let x p = ke at. Then x 0 = ake at and rx me at = (rk m)e at so that we need to choose k so that ak = rk m. Thus k = m/(a + r) and x p = m a+r e at.thenx(0) = c + m a+r = x 0 so that c = x 0 m a+r. (c) ( points) The treatment succeeds if the bacterial population level x(t) equals 0 at some time t. Show that the treatment will fail if the initial treatment rate m is less than a critical value m, but will succeed if m>m.findaformulaform and show that it is proportional to x 0. ANSWER: The second term in the solution x(t) tends to 0 as t +. The first term is unbounded and tends to + as t + if m<(a + r)x 0. In this case, the treatment fails. If m>(a + r)x 0 then the first term tends to as t +. and as a result x(t) equals zero at some time t. Thus, the critical value for m is m =(a + r)x 0, which is a multiple of x 0.. (5 points) Atumor ssizex grows at a decreasing per unit rate according to the equation x 0 /x = +t. Suppose at time t 0 =0the size of the tumor is x 0 > 0. (a) (6 points) Find a formula for the solution of the initial value problem for t>0 and use it to show that the tumor size grows without bound (and is therefore presumably lethal). ANSWER: x(t) =x 0 (t +) The equation x 0 = +t x is linear homogeneous with a general solution x(t) =cep (t) where P (t) = R +t dt =ln(+t). Simplifying, we have x(t) =celn +t = c +t which equals c(t+).for t>0.the initial condition implies c = x 0.

2 (b) (6 points) Chemotherapy is applied with the result that tumor cells are removed at a constant rate r>0, so that x 0 = +tx r. Find a formula for the solution of this initial value problem. ANSWER: x(t) =(t +)(x 0 r ln (t +)) The solution is given by the Variation of Constants Formula Z t x(t) =x 0 e P (t) + e P (t) e P (s) q(s)ds where P (t) = R p(t)dt = R +t dt =ln(t +) and hence ep (t) = t +: Z t x(t) =x 0 (t +)+(t +) 0 s + ( r)ds = x 0 (t +) (t +)rln (t +) (c) ( points) Does your answer in (b) show that the chemotherapy treatment will cause the tumor to disappear or not? Explain. ANSWER: Yes. The equation predicts the tumor size reduces to 0 at time t = e x0/r We ask: does there exist a time t>0 such that x(t) =(t +)(x 0 r ln (t +)) = 0? In other words, can this equation be solved for t>0? Yes, as the following shows: x 0 r ln (t +)=0= ln (t +)=x 0 /r = t +=e x0/r = t = e x0/r. 0. (5 points) Consider the equation: x 0 = x e x. (a) ( points) Find all equilibria. ANSWER: x e = and x e x =0= x =0 or e x =0 In the first case, x = ± and in the second case x =. (b) ( points) Which equilibria are hyperbolic? Which are non-hyperbolic? ANSWER: hyperbolic: x e = non-hyperbolic: x e = f(x) = x e x = df ½ e.7 6= 0if x = e = dx 0 if x xe e = (c) ( points) Classify each equilibrium (sink, source or shunt). x e Classification Since df dx = e < 0 for x e =, this equilibrium xe sink is a sink (by the derivative test or the linearization principle). shunt x e =is a shunt because f(x) does not change sign as x passes through. Or, because d f(x)/dx = e x xe x + x e x equals and hence f(x) has a local maximum at x =.

3 (d) ( points) Draw the phase line portrait. > < < x. (0 points) Draw a bifurcation diagram for the equation x 0 = p +(x ) (x +).Locate and identify the type of all bifurcations that occur. Plot the quartic polynomial p = (x ) (x +) with roots at ± and then rotate and reflect the graph. The result appears below. There are two saddle node bifurcations at p =0and another saddle-node bifurcation at p =. x - p - PART. (5 points) The following two-dimensional system of differential equations is a model for a predator-prey system, where x is the density of the prey and y thedensityofthepredator. The parameter α>0 represents addition of predators at a constant rate. dx dt = x( y), dy dt = y( +x)+α. () (a) ( points) The point P :(x, y) =( α, ) is an equilibrium (fixed point) of the above system. Find any other equilibria. ANSWER: (x, y) =(0,α) The equilibrium equations are x( y) = 0 y( +x)+α = 0. The first equation implies x =0or y =. In the first case x =0, the second equation implies y( +0)+α =0or y = α. Therefore(x, y) =(0,α) is an equilibrium. In the second case y =, the second equation implies ( +x)+α =0or x = α, which gives the equilibrium P. (b) (8 points) Let α =/ and classify the equilibrium P (e.g. saddle,...). Show all your work. ANSWER: P :(x, y) =(/, ) is a stable spiral The Jacobian y x J(x, y) = y +x

4 evaluated at the equilibrium (x, y) =(/, ) J(/, ) = µ 0 / / has characteristic polynomial is λ + λ +.Sincetherootsλ = 8 ± i i of this polynomial are complex and have negative real part 8, the phase portrait of the linearization is a stable spiral. The Linearization Principle implies that the equilibrium P is also a stable spiral. (c) (8 points) Show that when α =0(i.e. if no predators are added to the system), the linearization at the fixed point P, whose coordinates are now (x =, y =), has a center. In this case (do not try to show this), system () has closed orbits (or trajectories) around P. The Jacobian evaluated at the equilibrium (x, y) =(, ) 0 J(, ) = 0 has characteristic polynomial is λ +. Since the roots λ = ±i of this polynomial are complex with zero real part, the phase portrait of the linearization is a center. (d) (5 points) Basedon(b)above,whichofthestatementsbelowbestdescribeswhathappens when predators are added at the constant rate α =/? Circle your answer. There is no need to explain your reasoning. ANSWER: Both species survive. Since the phase portrait near the equilibrium (x, y) =(/, ) is a stable spiral, nearby orbits (x(t),y(t)), that is to say, as t both species equilibrate at positive (and hence nonzero) values.. (5 points) Find a fundamental solution matrix Φ(t) for the system ˆx 0 = Aˆx where 0 A = and use it to write down the general solution. µ e t e ANSWER: Φ(t) = t x e t e t, y = c e t +c e t c e t +c e t The characteristic polynomial: λ λ 6 has roots λ = and. Associated eigenvectors are λ = ˆv = and λ = ŵ =

5 . (0 points) Calculate the eigenvalues and eigenvectors of the matrices below and use them to identify the type of phase plane portrait associated with the linear system ˆx 0 = Aˆx. Alsosketch the phase portrait (being sure to include orientation arrows and several typical orbits, including any orbits of any relevant eigen-solutions. (Show your work.) (a) ( points) A = y x 5 TYPE: stable node The roots of the characteristic µ polynomial λ +λ + of A are λ =,. Associated eigenvectors are respectively ˆv = and ŵ =. Both eigenvalues λ are negative, which implies the portrait is an stable node. Orbits approach the origin tangentially to the direction of ˆv, since this vector is associated with the eigenvalue of least magnitude. (b) ( points) A = µ 0 TYPE: Saddle The roots of the characteristic polynomial λ + λ µ of the coefficient µ matrix are λ =and. Corresponding eigenvectors are, respectively, ˆv = and ŵ =. The eigenvalues are of opposite sign so the phase portrait is a saddle. 5

6 (c) ( points) Consider the orbit associated with the solution (x(t),y(t)) of the system in (b) with initial condition (x 0,y 0 )=(, ). Sketch the graph of x(t) and the graph of y(t). (Plotboth on the same axes below.) The orbit is the hyperbolic shaped orbit in part (b) running from the th to the st quadrants. Along that orbit x decreases to nearly after which it increases to approximately. y strictly increases, from to a little more than y x t. (0 points) The differential equation for the frictionless mass-spring system studied in class is mx 00 + kx =0where m>0 denotes the mass and k>0denotes the spring constant. By dividing by m we can re-write this equation as x 00 +ω 0x =0where ω 0 = p k/m. The general solution of this equation x(t) =c sin ω 0 t + c cos ω 0 t is periodic with frequency ω 0, which is called the natural frequency of the mass-spring system. If the system is forced with a sinusoidal motion of frequency ω, the differential equation becomes x 00 + ω 0x =sinωt. Resonance is said to occur in this system if there are unbounded solutions. (a) (8 points) Find a formula for the general solution of this equation when the natural frequency ω 0 =. (Use the Method of Undetermined Coefficients twice, once when ω 6= and once when ω =.) ½ c sin t + c ANSWER: x(t) = cos t + ω sin ωt if ω 6= c sin t + c cos t t cos kt if ω = The general solution has the form x(t) =x h (t) +x p (t) where x h (t) =c sin t + c cos t. We use the Method of Undetermined coefficients to find a particular solution of the nonhomogeneous equation of the form x p (t) =k sin ωt + k cos ωt provided ω 6= (because in that case sin ωt and cos ωt are solutions of the homogeneous equation). If ω = wetake,accordingtotherulesofthe Method of Undetermined Coefficients, x p (t) =k t sin t + k t cos t In the fist case ω 6= a calculation shows x 00 p + x p = ω k sin ωt + ω k cos ωt. Therefore, in order to solve the nonhomogeneous equation we must take ω k =and ω k =0. Because ω 6=these equations tells us that k = ω and k =0. In the second case ω =a calculation shows x 00 p + k x p =k cos t k sin t. Therefore, in order to solve the nonhomogeneous equation we must take k =0and k = /. 6

7 (b) ( points) When the natural frequency of the mass-spring system ω 0 =, determine for which values of the external forcing frequency ω resonance will occur and for which values of ω 0 resonance does not occur. What does this mean physically about the mass-spring system? (Explain your answers.) ANSWER: Resonance occurs if ω =and does not occur if ω 6=. The general solution in (a) when ω 6= is a sum of bounded functions and is therefore bounded, no matter what the values of the arbitrary constants c,c are. On the other hand, if ω =the general solution in (a) has an unbounded term (namely, t cos kt) and is therefore unbounded (no matter what the values of the arbitrary constants c,c are). Thus, if a mass-spring system is sinusoidally forced with an external frequency equal to the natural frequency of the system, unbounded oscillations will occur that eventually lead to a break down of the system. Other external frequency do not lead to a collapse of the system. 7

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

Math 215/255 Final Exam (Dec 2005)

Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

+ i. cos(t) + 2 sin(t) + c 2.

MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

MATH 215/255 Solutions to Additional Practice Problems April dy dt

. For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

STABILITY. Phase portraits and local stability

MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

Section 9.3 Phase Plane Portraits (for Planar Systems)

Section 9.3 Phase Plane Portraits (for Planar Systems) Key Terms: Equilibrium point of planer system yꞌ = Ay o Equilibrium solution Exponential solutions o Half-line solutions Unstable solution Stable

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

Question: Total. Points:

MATH 308 May 23, 2011 Final Exam Name: ID: Question: 1 2 3 4 5 6 7 8 9 Total Points: 0 20 20 20 20 20 20 20 20 160 Score: There are 9 problems on 9 pages in this exam (not counting the cover sheet). Make

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

Classification of Phase Portraits at Equilibria for u (t) = f( u(t))

Classification of Phase Portraits at Equilibria for u t = f ut Transfer of Local Linearized Phase Portrait Transfer of Local Linearized Stability How to Classify Linear Equilibria Justification of the

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

1 The pendulum equation

Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid.

Final 09/4/207 Name: Problems -5 are each worth 8 points. Problem 6 is a bonus for up to 4 points. So a full score is 40 points and the max score is 44 points. The exam has 6 pages; make sure you have

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

Nonlinear Autonomous Systems of Differential

Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

3. Identify and find the general solution of each of the following first order differential equations.

Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

Part II Problems and Solutions

Problem 1: [Complex and repeated eigenvalues] (a) The population of long-tailed weasels and meadow voles on Nantucket Island has been studied by biologists They measure the populations relative to a baseline,

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

Department of Mathematics IIT Guwahati

Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

MathQuest: Differential Equations

MathQuest: Differential Equations Geometry of Systems 1. The differential equation d Y dt = A Y has two straight line solutions corresponding to [ ] [ ] 1 1 eigenvectors v 1 = and v 2 2 = that are shown

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

Final Exam Review. Review of Systems of ODE. Differential Equations Lia Vas. 1. Find all the equilibrium points of the following systems.

Differential Equations Lia Vas Review of Systems of ODE Final Exam Review 1. Find all the equilibrium points of the following systems. (a) dx = x x xy (b) dx = x x xy = 0.5y y 0.5xy = 0.5y 0.5y 0.5xy.

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

3. Identify and find the general solution of each of the following first order differential equations.

Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations

June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

Name: MA 226 Exam 2 Show Your Work and JUSTIFY Your Responses. Problem Possible Actual Score TOTAL 100

Name: MA 226 Exam 2 Show Your Work and JUSTIFY Your Responses Problem Possible Actual Score 1 20 2 16 3 18 4 16 5 10 6 20 TOTAL 100 1.) 20 points - Short Answer (4 each) A) Consider the predator-prey system

6.3. Nonlinear Systems of Equations

G. NAGY ODE November,.. Nonlinear Systems of Equations Section Objective(s): Part One: Two-Dimensional Nonlinear Systems. ritical Points and Linearization. The Hartman-Grobman Theorem. Part Two: ompeting

Linear Differential Equations. Problems

Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

Discrete time dynamical systems (Review of rst part of Math 361, Winter 2001)

Discrete time dynamical systems (Review of rst part of Math 36, Winter 2) Basic problem: x (t);; dynamic variables (e.g. population size of age class i at time t); dynamics given by a set of n equations

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

8.1 Bifurcations of Equilibria

1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

Stability of Dynamical systems

Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

You may use a calculator, but you must show all your work in order to receive credit.

Math 2410-010/015 Exam II April 7 th, 2017 Name: Instructions: Key Answer each question to the best of your ability. All answers must be written clearly. Be sure to erase or cross out any work that you

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

Differential Equations

Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

Math 273 (51) - Final

Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

Solutions to Math 53 First Exam April 20, 2010

Solutions to Math 53 First Exam April 0, 00. (5 points) Match the direction fields below with their differential equations. Also indicate which two equations do not have matches. No justification is necessary.

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

Math 312 Lecture Notes Linearization

Math 3 Lecture Notes Linearization Warren Weckesser Department of Mathematics Colgate University 3 March 005 These notes discuss linearization, in which a linear system is used to approximate the behavior

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

A plane autonomous system is a pair of simultaneous first-order differential equations,

Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

Do not write below here. Question Score Question Score Question Score

MATH-2240 Friday, May 4, 2012, FINAL EXAMINATION 8:00AM-12:00NOON Your Instructor: Your Name: 1. Do not open this exam until you are told to do so. 2. This exam has 30 problems and 18 pages including this

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

Linear Planar Systems Math 246, Spring 2009, Professor David Levermore We now consider linear systems of the form

Linear Planar Systems Math 246, Spring 2009, Professor David Levermore We now consider linear systems of the form d x x 1 = A, where A = dt y y a11 a 12 a 21 a 22 Here the entries of the coefficient matrix

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

1. (10 points) Find the general solution to the following second-order differential equation:

Math 307A, Winter 014 Midterm Solutions Page 1 of 8 1. (10 points) Find the general solution to the following second-order differential equation: 4y 1y + 9y = 9t. To find the general solution to this nonhomogeneous

Math 341 Fall 2006 Final Exam December 12th, Name:

Math 341 Fall 2006 Final Exam December 12th, 2006 Name: You may use a calculator, your note card and something to write with. You must attach your notecard to the exam when you turn it in. You cannot use

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

1 Introduction Many natural processes can be viewed as dynamical systems, where the system is represented by a set of state variables and its evolution governed by a set of differential equations. Examples

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

MA 266 Review Topics - Exam # 2 (updated)

MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

7 Planar systems of linear ODE

7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

Def. (a, b) is a critical point of the autonomous system. 1 Proper node (stable or unstable) 2 Improper node (stable or unstable)

Types of critical points Def. (a, b) is a critical point of the autonomous system Math 216 Differential Equations Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan November

MATH 2250 Final Exam Solutions

MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

Half of Final Exam Name: Practice Problems October 28, 2014

Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

Review Problems for Exam 2

Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems

4 Second-Order Systems

4 Second-Order Systems Second-order autonomous systems occupy an important place in the study of nonlinear systems because solution trajectories can be represented in the plane. This allows for easy visualization

FINAL EXAM SOLUTIONS, MATH 123

FINAL EXAM SOLUTIONS, MATH 23. Find the eigenvalues of the matrix ( 9 4 3 ) So λ = or 6. = λ 9 4 3 λ = ( λ)( 3 λ) + 36 = λ 2 7λ + 6 = (λ 6)(λ ) 2. Compute the matrix inverse: ( ) 3 3 = 3 4 ( 4/3 ) 3. Let

Homogeneous Constant Matrix Systems, Part II

4 Homogeneous Constant Matrix Systems, Part II Let us now expand our discussions begun in the previous chapter, and consider homogeneous constant matrix systems whose matrices either have complex eigenvalues

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

Do not write in this space. Problem Possible Score Number Points Total 100

Math 9. Name Mathematical Modeling Exam I Fall 004 T. Judson Do not write in this space. Problem Possible Score Number Points 5 6 3 8 4 0 5 0 6 0 7 8 9 8 Total 00 Directions Please Read Carefully! You

Math Ordinary Differential Equations

Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

MATH 24 EXAM 3 SOLUTIONS

MATH 4 EXAM 3 S Consider the equation y + ω y = cosω t (a) Find the general solution of the homogeneous equation (b) Find the particular solution of the non-homogeneous equation using the method of Undetermined

Math 216 Second Midterm 28 March, 2013

Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers.

Turn off and put away your cell phone. No electronic devices during the exam. No books or other assistance during the exam. Show all of your work. No credit will be given for unsupported answers. Write

Differential Equations and Modeling

Differential Equations and Modeling Preliminary Lecture Notes Adolfo J. Rumbos c Draft date: March 22, 2018 March 22, 2018 2 Contents 1 Preface 5 2 Introduction to Modeling 7 2.1 Constructing Models.........................

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

Math 090 Midterm Exam Spring 07 S o l u t i o n s. Results of this problem will be used in other problems. Therefore do all calculations carefully and double check them. Find the inverse Laplace transform

Math 2410Q - 10 Elementary Differential Equations Summer 2017 Midterm Exam Review Guide

Math 410Q - 10 Elementary Differential Equations Summer 017 Mierm Exam Review Guide Math 410Q Mierm Exam Info: Covers Sections 1.1 3.3 7 questions in total Some questions will have multiple parts. 1 of

Math 216 Final Exam 14 December, 2012

Math 216 Final Exam 14 December, 2012 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

Answers and Hints to Review Questions for Test (a) Find the general solution to the linear system of differential equations Y = 2 ± 3i.

Answers and Hints to Review Questions for Test 3 (a) Find the general solution to the linear system of differential equations [ dy 3 Y 3 [ (b) Find the specific solution that satisfies Y (0) = (c) What

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems Shawn D. Ryan Spring 2012 Last Time: We finished Chapter 9: Nonlinear Differential Equations and Stability. Now

Work sheet / Things to know. Chapter 3

MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

Chapter 9 Global Nonlinear Techniques

Chapter 9 Global Nonlinear Techniques Consider nonlinear dynamical system 0 Nullcline X 0 = F (X) = B @ f 1 (X) f 2 (X). f n (X) x j nullcline = fx : f j (X) = 0g equilibrium solutions = intersection of