APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

Size: px
Start display at page:

Download "APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015."

Transcription

1 APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions. Text books, class notes, and calculators are NOT permitted. A one-page two-sided crib sheet is allowed. In acknowledgment of attending the final exam, please sign and return your exam paper in your BLUEBOOK. Problem 3 points): i) 5 points) Solve the following ODE ty = t + 2)y + t 3 e t ii) 5 points) Consider the nonlinear ODE y = y2 t 2 yt Using the v-substitution v = y/t) find the first order ODE satisfied by v. DO NOT solve the ODE. i) Normalize y + 2 ) y = t 2 e t t Integrating factors µ = exp + 2/t) = t 2 e t. Thus d t 2 e t yt) ) = yt) = t 2 e t C + t) ii) v = y/t implies y = vt and y = v t + v Thus v t + v = v v = v tv. Problem 2 3 points): Alice is a graduate student in chemistry. In her lab she finds a tank that contains gallons of chemical solution, which she labels as solution A. The chemical concentration of solution A is measured to be 2 pounds per gallon. She also finds plenty of chemical solution with chemical concentration 4 pounds per gallon, which she labels as solution B. To achieve the chemical concentration that she desires, she injects solution B into solution A at a flow rate of 3 gallons per hour, stirs the mixture uniformly, and drains the mixture out at a flow rate of 3 gallons per hour. i) 8 points) Set up the initial value problem for the mass of the chemical in the mixture as a function of time. ii) 2 points) Solve the initial value problem. iii) points) Suppose that instead of draining the mixture at 3 gallons per hour, Alice evaporates the mixture at 3 gallons per hour. In this process, water escapes from the mixture while the chemical remains. In this case, what is the mass of the chemical in the mixture as a function of time? iv) 4 points) To reach a chemical concentration of 3 pounds per gallon, is it more efficient to evaporate the mixture or to drain the mixture? You do not need to justify your answer.

2 i) Let the chemical mass as a function of time be xt). Then the differential equation is x t) = rate in) rate out) = 4lb/gal) 3gal/hr) x lb/gal) 3gal/hr) = 2 3xt) lb/hr). The initial condition is x) = 2lb/gal) gal) = 2lb). ii) To solve the differential equation, we rewrite it in standard form The homogeneous solution is x t) + 3 xt) = 2. x h t) + 3 x ht) = x h t) = ce 3 t. A particular solution is, by inspection Therefore the general solution is Using the initial condition, we have x p t) = 4. xt) = x h t) + x p t) = ce 3 t + 4. c + 4 = 2 c = 2. Hence the solution to the initial value problem is xt) = 2e 3 t + 4. iii) In this case the concentration of the outgoing flow is, so the initial value problem becomes x t) = 2, x) = 2. The solution is then xt) = 2 + 2t. iv) It is more efficient to evaporate the mixture. This is because the rate at which the chemical mass increases is always greater for evaporation than drainage. Problem 3 3 points): Consider the second order non-homogeneous differential equation: x )y xy + y = x ) 2. Two solutions to the corresponding homogeneous problem are y x) = x and y 2 x) = e x. a) 4 pts) Write the corresponding homogeneous equation. Verify that y x) and y 2 x) solve the homogeneous equation. b) 4 pts) Show that y x) and y 2 x) are linearly independent functions on x R. c) 2 pts) Using the method of variation of parameters, find a particular solution to the non-homogeneous equation. d) 5 pts) Write the general solution to the non-homogeneous equation. e) 5 pts) Obtain the solution to the non-homogeneous equation with the initial condition y) =, y ) =.

3 a) The homogeneous equation is: ) x )y xy + y =. For the first solution: y x) = x, y =, y =. Plugging into??), we get x + x =. For the second solution, y 2 x) = e x, y 2 = ex, y 2 = ex. Plugging into??), we get x )e x xe x + e x = x )e x + x)e x =. b) To show y x) = x and y 2 x) = e x are linearly independent we compute their Wronskian. Both functions are defined and have continuous derivatives for all x R. It is enough to show that the Wronksian determinant is nonzero at one particular value of x. We take x =. Then: W y, y 2 ) = x ex e x = xex e x = = c) We assume y p x) = v x)y x)+v 2 x)y 2 x). We rewrite ) in standard form assume x, can check at end that x = works in solution): 2) y x x y + y = x ) x Hence, fx) = x ). We already have the Wronskian of y and y 2 which is e x x ). The equations for v and v 2 give using integration by parts for v 2): v = y 2f W y, y 2 ) = ex x ) e x x ) = = v x) = x v 2 = y f xx ) = W y, y 2 ) e x x ) = xe x Hence, the particular solution is: d) The general solution is: = v 2 x) = x + )e x y p x) = x) x x + )e x ) e x = x 2 x 3) yx) = y h x) + y p x) = C x + C 2 e x x 2 x e) We have y x) = C + C 2 e x 2x. The first IC gives y) = C 2 = = C 2 = 2. The second IC gives y ) = C + C 2 = = C = C 2 = 2 =. So the solution is: 4) yx) = x + 2e x x 2 x = 2e x x 2 2x Problem 4 3 points) i) Write down the form of the particular solution for the following differential equations using the method of undetermined coefficients. Do not solve for the coefficients explicitly. i) 5 points) y 3y = 3e 2t ; ii) 5 points) y 2y + y = te t + t; iii) 5 points) y + y = 2 sin t. ii) For certain linear inhomogeneous differential equations in applications, as time goes to infinity, the homogeneous solution decays to zero, and what remains is the particular solution known as the steady state. Determine the steady states of the following problems. i) 5 points) Cooling: T = 2T 5); ii) points) Forced oscillation: 2x + 4x + 2x = 2 cos t.

4 i) i) Ae 2t ; ii) t 2 At + B)e t + Ct + D iii) ta cos t + B sin t). ii) i) Rewrite in standard form: 5) T + 2T =. MUC guess: ) T p = A. Solve for coefficients: 7) 2A = A = 5. Steady state: 8) T p = 5. ii) Rewrite in standard form: 9) x + 2x + x = cos t. MUC guess: ) x p = A cos t + B sin t. Solve for coefficients: ) A + 2B + A =, B 2A + B = B = 2, A =. Steady state: 2) x p = sin t. 2 Problem 5 35 points): Answer the following questions. Each question is worth 5 points. Only your final answers will be considered no partial credit will be awarded for work. a) For the system of differential equations dx = +y 2 dy ye+x2 = +y 2 xe+x2, i) Find all equilibrium points. ii) Find an implicit representation of the phase-plane trajectories. iii) What do you think your answer to part ii) says about the non-equilibrium solutions of the system? b) The system of differential equations dx = y xx2 + y 2 2) x 2 + y 2 dy = x yx2 + y 2 2) x 2 + y 2 has one equilibrium point at, ) it s unstable) and an attracting limit cycle x 2 + y 2 = 2 you do not have to verify any of this take it as given). i) What is the direction of motion of solution trajectories as they spiral into the limit cycle? ii) Make a rough sketch of the phase plane that includes only the limit cycle and two solution trajectories one that starts inside the limit cycle but not at the origin) and one that starts

5 outside the limit cycle. You do not have to find nullclines or a direction field. c) i) Find a solution of the IVP y = t y 2, y) = other than equilibrium solution d yt) =. HINT: Recall that du [arcsinu)] = u 2 ii) Does your answer violate Picard s Theorem? Answer YES or NO. iii) Briefly explain your answer to part ii). d) For m a positive constant, find the general solution of y my + m 2 y m 3 y = HINT: factor by grouping. e) TRUE or FALSE? A figure 8 that is, a curve that looks like the infinity symbol ) could be a phase-plane solution trajectory of a system of differential equations dx = fx, y) dy = gx, y) where f and g have continuous partial derivatives with respect to x and y. f) TRUE or FALSE? Every homogeneous linear differential equation with constant coefficients and purely imaginary roots of its characteristic equation must have periodic solutions. g) TRUE OR FALSE? For every k >, the equilibrium solution xt) = of the nonlinear van der Pol equation ẍ + kx 2 )ẋ + x = is unstable. a) i) e +x2 +y 2 is never zero, so, ) is the only equilibrium point. ii) Use dy dx = dy/ dx/ = x/y separable) = x2 + y 2 = C, C >. iii) They re probably periodic since solution trajectories are circles. b) i) Set y = in dy dy and note that for x > we have >. So COUNTERCLOCKWISE since x >, y = is on the positive x-axis in the phase plane and trajectories must be heading roughly upwards there. ii)

6 c) i) It s separable, so... yt) = sint 2 /2). ii) NO iii) With ft, y) = t y 2, f y is not continuous in any rectangle including y =, so unique solutions aren t guaranteed by Picard s. d) The characteristic equation is r 3 mr 2 + m 2 r m 3 = r 2 r m) + m 2 r m) = r 2 + m 2 )r m) = when r = m, ±im. So the general solution is for c, c 2, c 3 R. yt) = c e mt + c 2 cosmt) + c 3 sinmt) e) FALSE this would violate an existence/uniqueness theorem. f) FALSE consider y 4) + 2y + y =. The characteristic equation is r 2 + ) 2 = which has repeated roots ±i, so the general solution is yt) = c + c 2 t) cost) + c 3 + c 4 t) sint), which will, in general, increase in amplitude as t. g) TRUE. Convert to the system note the Jacobian is ẋ = y ẏ = x kx 2 )y, [ ] J, ) = k with characteristic polynomial λ 2 kλ + and hence eigenvalues λ = k ± k 2 4. When 2 < k < 2 we have complex eigenvalues with positive real part k/2, when k = 2 we have a repeated real eigenvalue k/2, and when k > 2 we have distinct real eigenvalues at least one of which is definitely positive. In all cases the linearized system predicts an unstable equilibrium point for the original system. Problem 35 points): Answer TRUE or FALSE. You do NOT need to justify your answer. Only write TRUE if the statement is always true.

7 i) Consider the two 5 5 real valued matrices A and B. If the vector v is an eigenvector of A with eigenvalue λ A, as well as an eigenvector of B with eigenvalue λ B. Then matrix C = A + B has an eigenvalue λ A + λ B ) and matrix D = AB has an eigenvalue λ A λ B. ii) Consider the vectors v, v 2, v 3 R 3 and the square matrix A formed by using the vectors as columns. If det A) =, then dim span {v, v 2, v 3 }) < 3 iii) Consider a 4 4 matrix A. If {v, v 2, v 3, v 4 } forms a basis of ColA, then the matrix A is invertible. iv) Consider the two invertible n n matrices A and B. If B A C = I and CB A = I, then the n n matrix C is also invertible. v) Consider the three invertible n n matrices A, B and C, then AB) C) T = C A ) T B ) T. vi) The set of all solutions yt) to the second order differential equation y + sint)y + t 3 y = forms a vector space. vii) Consider the n n real valued upper triangular matrix A, if deta, then all eigenvalues are nonzero. viii) The set of functions {, x, 2x 2, 4x 3 3x } is linearly independent. i) True ii) True iii) True iv) True v) True vi) True vii) True viii) True Problem 7 points): Consider the following system of differential equations: ẋt) = 2 2 xt) i) Find three linearly independent solutions x t), x 2 t), x 3 t) ii) Find the general solution xt) iii) Find the particular solution for the initial condition x) = i) We start by computing the eigenvalues. The characteristic polynomial is given by λ 2 λ 2 5 λ = λ ) λ 2 2 λ = λ )λ2 +2λ 3) = λ ) 2 λ+3) = We obtain a repeated eigenvalue λ,2 = and λ 3 = 3.

8 We compute the eigenvector for λ,2 : We get a single eigenvector v,2 =. We compute the eigenvector for λ 3 : We get an eigenvector v 3 = To get the third linearly independent eigenvalue, we need to compute a generalized eigenvalue u for λ, We get a generalized eigenvector u = s + We can now write the three solutions: x t) = e t v,2 = e t x 2 t) = e t tv,2 + u) = e t t + x 3 t) = e 3t v 3 = e 3t c ii) The general solution is xt) = c x t) + c 2 x 2 t) + c 3 x 3 t) iii) To find the particular solution, we need to solve the linear system + c 2 = We compute the RREF: 2 + c 3 2

9 We get the three coefficients: c =, c 2 =, c 3 = and the particular solution is given by: xt) = x 2 t) = e t t + Problem 8 points): Consider the following system of differential equations: ẋ = y ẏ = y + x x 2 i) Find all equilibrium points. ii) Determine the type of all equilibrium points. iii) Sketch the local behavior about the point, ). iv) Using the knowledge gained from ii) and iii). Sketch the phase plane. Vector field is given as [y, y + x x 2 ]. i) Equlibrium points, ),, ) ii) Classify using Jacobian matrix 2x ) ),) ), ) is a saddle node it has T r =, Det = given λ 2 + λ =, ) is a spiral sink it has T r =, Det = given λ 2 + λ + = iii) local vector field about,) is given by [v, u v] along the line v = this this [, u] for a clockwise spiral sink. iv) Spiral sink contains all information required to sketch the phase portrait.,)

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm

APPM 2360 Exam 2 Solutions Wednesday, March 9, 2016, 7:00pm 8:30pm APPM 2360 Exam 2 Solutions Wednesday, March 9, 206, 7:00pm 8:30pm ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5)

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

Solutions to Final Exam Sample Problems, Math 246, Spring 2011

Solutions to Final Exam Sample Problems, Math 246, Spring 2011 Solutions to Final Exam Sample Problems, Math 246, Spring 2 () Consider the differential equation dy dt = (9 y2 )y 2 (a) Identify its equilibrium (stationary) points and classify their stability (b) Sketch

More information

APPM 2360: Midterm exam 1 February 15, 2017

APPM 2360: Midterm exam 1 February 15, 2017 APPM 36: Midterm exam 1 February 15, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your recitation section number and () a grading table. Text books, class notes,

More information

APPM 2360: Section exam 1 7:00pm 8:30pm, February 12, 2014.

APPM 2360: Section exam 1 7:00pm 8:30pm, February 12, 2014. APPM 2360: Section exam 1 7:00pm 8:30pm, February 12, 2014. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) recitation section (4) your instructor s name, and (5) a

More information

APPM 2360: Midterm 3 July 12, 2013.

APPM 2360: Midterm 3 July 12, 2013. APPM 2360: Midterm 3 July 12, 2013. ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your instructor s name, (3) your recitation section number and (4) a grading table. Text books, class notes,

More information

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 25, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination I February 25, 2016 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

Math 266, Midterm Exam 1

Math 266, Midterm Exam 1 Math 266, Midterm Exam 1 February 19th 2016 Name: Ground Rules: 1. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use

More information

Solutions of Spring 2008 Final Exam

Solutions of Spring 2008 Final Exam Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source of preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Differential equations

Differential equations Differential equations Math 27 Spring 2008 In-term exam February 5th. Solutions This exam contains fourteen problems numbered through 4. Problems 3 are multiple choice problems, which each count 6% of

More information

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations June 20 PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 262) Linear Algebra and Differential Equations The topics covered in this exam can be found in An introduction to differential equations

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

Do not write below here. Question Score Question Score Question Score

Do not write below here. Question Score Question Score Question Score MATH-2240 Friday, May 4, 2012, FINAL EXAMINATION 8:00AM-12:00NOON Your Instructor: Your Name: 1. Do not open this exam until you are told to do so. 2. This exam has 30 problems and 18 pages including this

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination I October 8, 2015 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

APPM 2360 Spring 2012 Exam 2 March 14,

APPM 2360 Spring 2012 Exam 2 March 14, APPM 6 Spring Exam March 4, ON THE FRONT OF YOUR BLUEBOOK write: () your name, () your student ID number, () lecture section (4) your instructor s name, and (5) a grading table. You must work all of the

More information

Even-Numbered Homework Solutions

Even-Numbered Homework Solutions -6 Even-Numbered Homework Solutions Suppose that the matric B has λ = + 5i as an eigenvalue with eigenvector Y 0 = solution to dy = BY Using Euler s formula, we can write the complex-valued solution Y

More information

Q1 Q2 Q3 Q4 Tot Letr Xtra

Q1 Q2 Q3 Q4 Tot Letr Xtra Mathematics 54.1 Final Exam, 12 May 2011 180 minutes, 90 points NAME: ID: GSI: INSTRUCTIONS: You must justify your answers, except when told otherwise. All the work for a question should be on the respective

More information

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I October 10, 2013 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

Do not write in this space. Problem Possible Score Number Points Total 48

Do not write in this space. Problem Possible Score Number Points Total 48 MTH 337. Name MTH 337. Differential Equations Exam II March 15, 2019 T. Judson Do not write in this space. Problem Possible Score Number Points 1 8 2 10 3 15 4 15 Total 48 Directions Please Read Carefully!

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix Third In-Class Exam Solutions Math 26, Professor David Levermore Thursday, December 2009 ) [6] Given that 2 is an eigenvalue of the matrix A 2, 0 find all the eigenvectors of A associated with 2. Solution.

More information

Math 2410Q - 10 Elementary Differential Equations Summer 2017 Midterm Exam Review Guide

Math 2410Q - 10 Elementary Differential Equations Summer 2017 Midterm Exam Review Guide Math 410Q - 10 Elementary Differential Equations Summer 017 Mierm Exam Review Guide Math 410Q Mierm Exam Info: Covers Sections 1.1 3.3 7 questions in total Some questions will have multiple parts. 1 of

More information

Form A. 1. Which of the following is a second-order, linear, homogenous differential equation? 2

Form A. 1. Which of the following is a second-order, linear, homogenous differential equation? 2 Form A Math 4 Common Part of Final Exam December 6, 996 INSTRUCTIONS: Please enter your NAME, ID NUMBER, FORM designation, and INDEX NUMBER on your op scan sheet. The index number should be written in

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 5, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I October 5, 2017 FORM A Name: Student Number: Section: This exam has 13 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet). MA266 FINAL EXAM INSTRUCTIONS December 3, 2 NAME INSTRUCTOR. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. On the mark-sense sheet, fill in the instructor s name (if you do not know,

More information

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section:

MATH 251 Examination I July 1, 2013 FORM A. Name: Student Number: Section: MATH 251 Examination I July 1, 2013 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all your work! In order to obtain full credit for partial credit problems,

More information

You may use a calculator, but you must show all your work in order to receive credit.

You may use a calculator, but you must show all your work in order to receive credit. Math 2410-010/015 Exam II April 7 th, 2017 Name: Instructions: Key Answer each question to the best of your ability. All answers must be written clearly. Be sure to erase or cross out any work that you

More information

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid.

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid. Final 09/4/207 Name: Problems -5 are each worth 8 points. Problem 6 is a bonus for up to 4 points. So a full score is 40 points and the max score is 44 points. The exam has 6 pages; make sure you have

More information

MATH 24 EXAM 3 SOLUTIONS

MATH 24 EXAM 3 SOLUTIONS MATH 4 EXAM 3 S Consider the equation y + ω y = cosω t (a) Find the general solution of the homogeneous equation (b) Find the particular solution of the non-homogeneous equation using the method of Undetermined

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

FINAL EXAM MAY 20, 2004

FINAL EXAM MAY 20, 2004 18.034 FINAL EXAM MAY 20, 2004 Name: Problem 1: /10 Problem 2: /20 Problem 3: /25 Problem 4: /15 Problem 5: /20 Problem 6: /25 Problem 7: /10 Problem 8: /35 Problem 9: /40 Problem 10: /10 Extra credit

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

Section 9.3 Phase Plane Portraits (for Planar Systems)

Section 9.3 Phase Plane Portraits (for Planar Systems) Section 9.3 Phase Plane Portraits (for Planar Systems) Key Terms: Equilibrium point of planer system yꞌ = Ay o Equilibrium solution Exponential solutions o Half-line solutions Unstable solution Stable

More information

MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM

MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM Date and place: Saturday, December 16, 2017. Section 001: 3:30-5:30 pm at MONT 225 Section 012: 8:00-10:00am at WSRH 112. Material covered: Lectures, quizzes,

More information

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t) Math 380 Practice Final Solutions This is longer than the actual exam, which will be 8 to 0 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,

More information

dy dt = ty, y(0) = 3. (1)

dy dt = ty, y(0) = 3. (1) 2. (10pts) Solve the given intial value problem (IVP): dy dt = ty, y(0) = 3. (1) 3. (10pts) A plot of f(y) =y(1 y)(2 y) of the right hand side of the differential equation dy/dt = f(y) is shown below.

More information

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10

Midterm 1 NAME: QUESTION 1 / 10 QUESTION 2 / 10 QUESTION 3 / 10 QUESTION 4 / 10 QUESTION 5 / 10 QUESTION 6 / 10 QUESTION 7 / 10 QUESTION 8 / 10 Midterm 1 NAME: RULES: You will be given the entire period (1PM-3:10PM) to complete the test. You can use one 3x5 notecard for formulas. There are no calculators nor those fancy cellular phones nor groupwork

More information

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class ODE Homework Due Wed. 9 August 2009; At the beginning of the class. (a) Solve Lẏ + Ry = E sin(ωt) with y(0) = k () L, R, E, ω are positive constants. (b) What is the limit of the solution as ω 0? (c) Is

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Final Exam Exam date: 12/14/17 Time Limit: 170 Minutes Name: Student ID: GSI or Section: This exam contains 9 pages (including this cover page) and 10 problems. Problems are

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm Math 50 Lab 1 Name: Due Date : 4/5/017 at 6:00pm 1. In the previous lab you considered the input-output model below with pure water flowing into the system, C 1 = C 5 =0. r 1, C 1 r 5, C 5 r r V 1 V r

More information

MA 262 Spring 1993 FINAL EXAM INSTRUCTIONS. 1. You must use a #2 pencil on the mark sense sheet (answer sheet).

MA 262 Spring 1993 FINAL EXAM INSTRUCTIONS. 1. You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6 Spring 993 FINAL EXAM INSTRUCTIONS NAME. You must use a # pencil on the mark sense sheet (answer sheet).. On the mark sense sheet, fill in the instructor s name and the course number. 3. Fill in your

More information

Problem Points Problem Points Problem Points

Problem Points Problem Points Problem Points Name Signature Student ID# ------------------------------------------------------------------ Left Neighbor Right Neighbor 1) Please do not turn this page until instructed to do so. 2) Your name and signature

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Review Problems for Exam 2

Review Problems for Exam 2 Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems

More information

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide GENERAL INFORMATION AND FINAL EXAM RULES The exam will have a duration of 3 hours. No extra time will be given. Failing to submit your solutions

More information

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded.

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. NAME: MA 300 Sample Final Exam PUID: INSTRUCTIONS There are 5 problems on 4 pages. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. No books

More information

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det Math D Final Exam 8 December 9. ( points) Show that the matrix 4 has eigenvalues 3, 3, and find the eigenvectors associated with 3. 4 λ det λ λ λ = (4 λ) det λ ( ) det + det λ = (4 λ)(( λ) 4) + ( λ + )

More information

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1 Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Solutions to Final Exam Sample Problems, Math 246, Spring 2018

Solutions to Final Exam Sample Problems, Math 246, Spring 2018 Solutions to Final Exam Sample Problems, Math 46, Spring 08 () Consider the differential equation dy dt = (9 y )y. (a) Find all of its stationary points and classify their stability. (b) Sketch its phase-line

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal

1. Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal . Diagonalize the matrix A if possible, that is, find an invertible matrix P and a diagonal 3 9 matrix D such that A = P DP, for A =. 3 4 3 (a) P = 4, D =. 3 (b) P = 4, D =. (c) P = 4 8 4, D =. 3 (d) P

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

MA26600 FINAL EXAM INSTRUCTIONS Fall 2015

MA26600 FINAL EXAM INSTRUCTIONS Fall 2015 MA266 FINAL EXAM INSTRUCTIONS Fall 25 NAME INSTRUCTOR. You must use a #2 pencil on the mark sense sheet (answer sheet. 2. On the mark sense sheet, fill in the instructor s name (if you do not know, write

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

I have read and understood the instructions regarding academic dishonesty:

I have read and understood the instructions regarding academic dishonesty: Name Final Exam MATH 6600 SPRING 08 MARK TEST 0 ON YOUR SCANTRON! Student ID Section Number (see list below 03 UNIV 03 0:30am TR Alper, Onur 04 REC 3:30pm MWF Luo, Tao 05 UNIV 03 :30pm TR Hora, Raphael

More information

MA 262, Fall 2017, Final Version 01(Green)

MA 262, Fall 2017, Final Version 01(Green) INSTRUCTIONS MA 262, Fall 2017, Final Version 01(Green) (1) Switch off your phone upon entering the exam room. (2) Do not open the exam booklet until you are instructed to do so. (3) Before you open the

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

Question: Total. Points:

Question: Total. Points: MATH 308 May 23, 2011 Final Exam Name: ID: Question: 1 2 3 4 5 6 7 8 9 Total Points: 0 20 20 20 20 20 20 20 20 160 Score: There are 9 problems on 9 pages in this exam (not counting the cover sheet). Make

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

Math 215/255 Final Exam, December 2013

Math 215/255 Final Exam, December 2013 Math 215/255 Final Exam, December 2013 Last Name: Student Number: First Name: Signature: Instructions. The exam lasts 2.5 hours. No calculators or electronic devices of any kind are permitted. A formula

More information

MATH 251 Examination I July 5, 2011 FORM A. Name: Student Number: Section:

MATH 251 Examination I July 5, 2011 FORM A. Name: Student Number: Section: MATH 251 Examination I July 5, 2011 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

Math 216 Second Midterm 28 March, 2013

Math 216 Second Midterm 28 March, 2013 Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MA 266 FINAL EXAM INSTRUCTIONS May 8, 2010

MA 266 FINAL EXAM INSTRUCTIONS May 8, 2010 MA 266 FINAL EXAM INSTRUCTIONS May 8, 200 NAME INSTRUCTOR. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. On the mark-sense sheet, fill in the instructor s name (if you do not know,

More information