The Power Series Expansion on a Bulge Heaviside Step Function

Size: px
Start display at page:

Download "The Power Series Expansion on a Bulge Heaviside Step Function"

Transcription

1 Applied Mathematical Science, Vol 9, 05, no 3, 5-9 HIKARI Ltd, wwwm-hikaricom The Power Serie Expanion on a Bulge Heaviide Step Function P Haara and S Pothat Department of Mathematic, Srinakharinwirot Bangkok 00, Thailand Wad Ban-Koh School, Bandara, Amphoe Pichai Uttaradit 530, Thailand Copyright c 04 P Haara and S Pothat Thi i an open acce article ditributed under the Creative Common Attribution Licene, which permit unretricted ue, ditribution, and reproduction in any medium, provided the original work i properly cited Abtract In thi paper, we introduce the Heaviide tep function on a bulge function and formulate the Laplace tranform of the Heaviide tep function of a bulge function by applying the Power erie expanion Mathematic Subject Claification: 44A0, 34A, 30B0 Keyword: Laplace tranform, Bulge function, Heaviide tep function Introduction Phyical problem and mathematical problem can be olved by uing the Laplace tranform In mathematic, the Laplace tranform can be applied to find a olution of the linear ordinary differential equation with contant coefficient and variable coefficient In addition, the Laplace tranform of derivative have been tudied in many way to olve the ODE Ig Cho and Hj Kim 3 howed that the Laplace tranform of derivative can be expreed by an infinite erie or Heaviide function T Lee and H Kim 4 found the repreentation of energy equation by Laplace tranform In thi paper, we introduce the Heaviide tep function on a bulge function and formulate the Laplace tranform of the Heaviide tep function of a bulge function by applying the Power erie expanion

2 P Haara and S Pothat Preliminarie We introduce the tudy by handing out the Laplace tranform, Heaviide tep function and the Power erie expanion which can be ued our tudy Definition The Laplace Tranform Given a function ft) defined for all t 0, the Laplace tranform of f i the function F defined a follow: F ) = L ft) = for all value of for which the improper integral converge 0 e t ft)dt ) The nonhomogeneou differential equation with contant coefficient An equation of the form d n y a n dx a d n y n n dx a d n y n n dx a dy n dx a 0y = fx) ) i called the higher order nonhomogeneou linear differential equation In thi paper, we tudy the nonhomogeneou econd order differential equation with a bulge function in the form y ω y = ft) = ; 0 < t < ξ The t ; t > ξ Laplace tranform of the firt and econd derivative are expreed repectively by L y = F ) y0) and L y = F ) y0) y 0) The Power erie expanion of i derived by = e l e l lt e l ) l t e l ) l3 t 3 3) Lemma The Laplace tranform of the bulge function i expreed by L = e l l l 3 l ) 4) Heaviide tep function of a bulge function of a piecewie continuou function ft) = ; 0 < t < ξ i expreed by t ; t > ξ where l, ξ are contant ft) = tut ξ ) ut ξ ) 5)

3 Power erie expanion 7 Lemma 3 The Laplace tranform of ut ξ ) i expreed by L ut ξ ) where Γ = e l, Γ = e ξ = Γ Γ le ξ ξ Γ Γ e ξ ξ 3 ξ Γ Γ 3 e ξ ) l, and Γ 3 = 4 ξ ) l 3 3 3ξ 3 ξ ) Proof The ditribution of Heaviide tep function and equation 3), we derive ut ξ ) = e l ut ξ ) e l ltut ξ ) ) e l l t ut ξ ) ) e l l 3 3 t 3 ut ξ ) 7) Therefore, by taking the Laplace tranform to equation 7), we obtain L ut ξ ) = Γ L ut ξ ) Γ ll tut ξ ) Γ BL t ut ξ ) Γ CL t 3 ut ξ ) e ξ = Γ Γ le ξ ξ Γ Γ e ξ ξ 3 ξ Γ Γ 3 e ξ ξ 4 3ξ ξ 3 = Ψ 8) ) ) where Γ = e l l, Γ = l, and Γ 3 = Main Reult Lemma 3 The Laplace tranform of Heaviide tep function of a bulge function of a piecewie continuou function ft) = ; 0 < t < ξ t ; t > ξ

4 8 P Haara and S Pothat can be expreed by Γ l )Γ 3 l )lγ e ξ ξ Ψ 9) where l, ξ are contant Proof By taking the Laplace tranform to equation 5) and lemma 3, we obtain L ft) = L L t ut ξ ) = L L tut ξ ) L ut ξ ) Γ = l )Γ 3 l )lγ e ξ ξ Φ Φ Φ 3 Φ 4 ) 0) e where Φ = Γ ξ, Φ = Γ le ξ ξ, Φ3 = Γ Γ e ξ ξ ξ 3 and Φ 4 = Γ Γ 3 e ξ 4 ξ 3ξ 3 ξ Lemma 3 The olution of the nonhomogeneou differential equation with contant coefficient y ω y = ft) = ; 0 < t < ξ where y0) = t ; t > ξ ω 0, y 0) = ω i expreed by yt) = ω 0 co ωt ω ω in ωt K K Γ t l )Γ ltγ lt3 l ) ) where ω, ω 0, ω are contant, K = L e ξ ξ and K = L Ψ Proof By taking the Laplace tranform to the nonhomogeneou differential equation with contant coefficient and the Heaviide tep function and by lemma 3, it yield L y t) ω 0 ω ω L yt) = L Heaviide tep function of ft) Or L yt) = ω e ξ Ψ ω 0 ω ω ξ Γ l )Γ 3 l )lγ )

5 Power erie expanion 9 By applying the invere Laplace tranform to equation ) to derive the olution of the nonhomogeneou differential equation with the Heaviide tep function a follow yt) = ω 0 co ωt ω ω in ωt K K Γ t l )Γ ltγ lt3 l ) where K = L e ξ ξ and K = L Ψ 4 Concluion 3) In thi paper, we introduce the Heaviide tep function on a bulge function and formulate the Laplace tranform of the Heaviide tep function of a bulge function which i denoted by ft) = where l i a poitive contant Ig Cho and Hj Kim 3 tudied the Laplace tranform of derivative expreed by Heaviide function In thi reearch, we dicovered the method to olve the nonhomogeneou econd order differential equation with a bulge function involved the Heaviide tep function The Laplace tranform, the invere Laplace tranform and the Power erie expanion were ued in thi method Reference C Henry Edward and David E Penney, Differential Equation and Boundary Value Problem, Pearon Education, Inc, USA, 004 D Lomen and J Mark, Differential Equation, Prentice-Hall International, Inc, USA, Ig Cho and Hj Kim, The Laplace Tranform of Derivative Expreed by Heaviide Function, AMS,790)03), T Lee and Hj Kim, The Repreentation of Energy Equation by Laplace Tranform, Int Journal of Math Analyi, 8)04), Received: December 5, 04; Publihed: February 5, 05

LAPLACE TRANSFORM REVIEW SOLUTIONS

LAPLACE TRANSFORM REVIEW SOLUTIONS LAPLACE TRANSFORM REVIEW SOLUTIONS. Find the Laplace tranform for the following function. If an image i given, firt write out the function and then take the tranform. a e t inh4t From #8 on the table:

More information

On the Three Dimensional Laplace Problem with Dirichlet Condition

On the Three Dimensional Laplace Problem with Dirichlet Condition Applied Mathematical Sciences, Vol. 8, 2014, no. 83, 4097-4101 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.45356 On the Three Dimensional Laplace Problem with Dirichlet Condition P.

More information

On the Function ω(n)

On the Function ω(n) International Mathematical Forum, Vol. 3, 08, no. 3, 07 - HIKARI Ltd, www.m-hikari.com http://doi.org/0.988/imf.08.708 On the Function ω(n Rafael Jakimczuk Diviión Matemática, Univeridad Nacional de Luján

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no. 5, 9-34 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.411931 On he Inegro-Differenial Equaion wih a Bulge Funcion by Using Laplace Transform P.

More information

L 2 -transforms for boundary value problems

L 2 -transforms for boundary value problems Computational Method for Differential Equation http://cmde.tabrizu.ac.ir Vol. 6, No., 8, pp. 76-85 L -tranform for boundary value problem Arman Aghili Department of applied mathematic, faculty of mathematical

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no., 51-56 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.41196 On Volerra Inegral Equaions of he Firs Kind wih a Bulge Funcion by Using Laplace Transform

More information

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Approximate Analytical Solution for Quadratic Riccati Differential Equation Iranian J. of Numerical Analyi and Optimization Vol 3, No. 2, 2013), pp 21-31 Approximate Analytical Solution for Quadratic Riccati Differential Equation H. Aminikhah Abtract In thi paper, we introduce

More information

On the Unit Groups of a Class of Total Quotient Rings of Characteristic p k with k 3

On the Unit Groups of a Class of Total Quotient Rings of Characteristic p k with k 3 International Journal of Algebra, Vol, 207, no 3, 27-35 HIKARI Ltd, wwwm-hikaricom http://doiorg/02988/ija2076750 On the Unit Group of a Cla of Total Quotient Ring of Characteritic p k with k 3 Wanambii

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 Problem : For each of the following function do the following: (i) Write the function a a piecewie function and ketch it graph, (ii) Write the function a a combination

More information

Research Article Existence for Nonoscillatory Solutions of Higher-Order Nonlinear Differential Equations

Research Article Existence for Nonoscillatory Solutions of Higher-Order Nonlinear Differential Equations International Scholarly Reearch Network ISRN Mathematical Analyi Volume 20, Article ID 85203, 9 page doi:0.502/20/85203 Reearch Article Exitence for Nonocillatory Solution of Higher-Order Nonlinear Differential

More information

TMA4125 Matematikk 4N Spring 2016

TMA4125 Matematikk 4N Spring 2016 Norwegian Univerity of Science and Technology Department of Mathematical Science TMA45 Matematikk 4N Spring 6 Solution to problem et 6 In general, unle ele i noted, if f i a function, then F = L(f denote

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

Math 334 Fall 2011 Homework 10 Solutions

Math 334 Fall 2011 Homework 10 Solutions Nov. 5, Math 334 Fall Homework Solution Baic Problem. Expre the following function uing the unit tep function. And ketch their graph. < t < a g(t = < t < t > t t < b g(t = t Solution. a We

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st Math 46, Profeor David Levermore Anwer to Quetion for Dicuion Friday, 7 October 7 Firt Set of Quetion ( Ue the definition of the Laplace tranform to compute Lf]( for the function f(t = u(t t, where u i

More information

The Shifted Data Problems by Using Transform of Derivatives

The Shifted Data Problems by Using Transform of Derivatives Applied Mathematical Sciences, Vol. 8, 2014, no. 151, 7529-7534 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49784 The Shifted Data Problems by Using Transform of Derivatives Hwajoon

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

ANSWERS TO MA1506 TUTORIAL 7. Question 1. (a) We shall use the following s-shifting property: L(f(t)) = F (s) L(e ct f(t)) = F (s c)

ANSWERS TO MA1506 TUTORIAL 7. Question 1. (a) We shall use the following s-shifting property: L(f(t)) = F (s) L(e ct f(t)) = F (s c) ANSWERS O MA56 UORIAL 7 Quetion. a) We hall ue the following -Shifting property: Lft)) = F ) Le ct ft)) = F c) Lt 2 ) = 2 3 ue Ltn ) = n! Lt 2 e 3t ) = Le 3t t 2 ) = n+ 2 + 3) 3 b) Here u denote the Unit

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Solutions for homework 8

Solutions for homework 8 Solution for homework 8 Section. Baic propertie of the Laplace Tranform. Ue the linearity of the Laplace tranform (Propoition.7) and Table of Laplace tranform on page 04 to find the Laplace tranform of

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

A Note on the Sum of Correlated Gamma Random Variables

A Note on the Sum of Correlated Gamma Random Variables 1 A Note on the Sum of Correlated Gamma Random Variable Joé F Pari Abtract arxiv:11030505v1 [cit] 2 Mar 2011 The um of correlated gamma random variable appear in the analyi of many wirele communication

More information

Research Article Triple Positive Solutions of a Nonlocal Boundary Value Problem for Singular Differential Equations with p-laplacian

Research Article Triple Positive Solutions of a Nonlocal Boundary Value Problem for Singular Differential Equations with p-laplacian Abtract and Applied Analyi Volume 23, Article ID 63672, 7 page http://dx.doi.org/.55/23/63672 Reearch Article Triple Poitive Solution of a Nonlocal Boundary Value Problem for Singular Differential Equation

More information

Research Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation

Research Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation Hindawi Function Space Volume 2017, Article ID 7916730, 8 page http://doi.org/10.1155/2017/7916730 Reearch Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation Huahui Zhan 1 and Bifen Xu

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

On Certain Sums Extended over Prime Factors

On Certain Sums Extended over Prime Factors Iteratioal Mathematical Forum, Vol. 9, 014, o. 17, 797-801 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.014.4478 O Certai Sum Exteded over Prime Factor Rafael Jakimczuk Diviió Matemática,

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Name: Solution Exam Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

The Laplace Transform

The Laplace Transform Chapter 7 The Laplace Tranform 85 In thi chapter we will explore a method for olving linear differential equation with contant coefficient that i widely ued in electrical engineering. It involve the tranformation

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Chapter 7: The Laplace Transform Part 1

Chapter 7: The Laplace Transform Part 1 Chapter 7: The Laplace Tranform Part 1 王奕翔 Department of Electrical Engineering National Taiwan Univerity ihwang@ntu.edu.tw November 26, 213 1 / 34 王奕翔 DE Lecture 1 Solving an initial value problem aociated

More information

CHAPTER 9. Inverse Transform and. Solution to the Initial Value Problem

CHAPTER 9. Inverse Transform and. Solution to the Initial Value Problem A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA

Research Article An Extension of Cross Redundancy of Interval Scale Outputs and Inputs in DEA Hindawi Publihing Corporation pplied Matheatic Volue 2013, rticle ID 658635, 7 page http://dx.doi.org/10.1155/2013/658635 Reearch rticle n Extenion of Cro Redundancy of Interval Scale Output and Input

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

Midterm Test Nov 10, 2010 Student Number:

Midterm Test Nov 10, 2010 Student Number: Mathematic 265 Section: 03 Verion A Full Name: Midterm Tet Nov 0, 200 Student Number: Intruction: There are 6 page in thi tet (including thi cover page).. Caution: There may (or may not) be more than one

More information

On the Pre-Exponential Factor Comparing in Thermoluminescence (TL) Theory

On the Pre-Exponential Factor Comparing in Thermoluminescence (TL) Theory Open Acce Library Journal On the Pre-xponential Factor Comparing in hermoluminecence (L) heory ugenio Chiaravalle 1, ichele angiacotti 1, Claudio Furetta 2, Giuliana archeani 1, ichele omaiulo 1 1 Centro

More information

Representation Formulas of Curves in a Two- and Three-Dimensional Lightlike Cone

Representation Formulas of Curves in a Two- and Three-Dimensional Lightlike Cone Reult. Math. 59 (011), 437 451 c 011 Springer Bael AG 14-6383/11/030437-15 publihed online April, 011 DOI 10.1007/0005-011-0108-y Reult in Mathematic Repreentation Formula of Curve in a Two- and Three-Dimenional

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

Solutions to homework #10

Solutions to homework #10 Solution to homework #0 Problem 7..3 Compute 6 e 3 t t t 8. The firt tep i to ue the linearity of the Laplace tranform to ditribute the tranform over the um and pull the contant factor outide the tranform.

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Chapter 7: The Laplace Transform

Chapter 7: The Laplace Transform Chapter 7: The Laplace Tranform 王奕翔 Department of Electrical Engineering National Taiwan Univerity ihwang@ntu.edu.tw November 2, 213 1 / 25 王奕翔 DE Lecture 1 Solving an initial value problem aociated with

More information

The Riemann Transform

The Riemann Transform The Riemann Tranform By Armando M. Evangelita Jr. armando78973@gmail.com Augut 28, 28 ABSTRACT In hi 859 paper, Bernhard Riemann ued the integral equation f (x ) x dx to develop an explicit formula for

More information

LECTURE 12: LAPLACE TRANSFORM

LECTURE 12: LAPLACE TRANSFORM LECTURE 12: LAPLACE TRANSFORM 1. Definition and Quetion The definition of the Laplace tranform could hardly be impler: For an appropriate function f(t), the Laplace tranform of f(t) i a function F () which

More information

Non-homogeneous time fractional heat equation

Non-homogeneous time fractional heat equation 33 JACM 3, No., 33-4 (8) Journal of Abtract and Computational Mathematic http://www.ntmci.com/jacm Non-homogeneou time fractional heat equation A. Aghili Department of Applied Mathematic, Faculty of Mathematical

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

The Representation of Energy Equation by Laplace Transform

The Representation of Energy Equation by Laplace Transform Int. Journal of Math. Analysis, Vol. 8, 24, no. 22, 93-97 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ijma.24.442 The Representation of Energy Equation by Laplace Transform Taehee Lee and Hwajoon

More information

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15 Definition of the aplace Tranform (A) 2/9/5 Copyright (c) 24 Young W. im. Permiion i granted to copy, ditriute and/or modify thi document under the term of the GNU Free Documentation icene, Verion.2 or

More information

Things to Definitely Know. e iθ = cos θ + i sin θ. cos 2 θ + sin 2 θ = 1. cos(u + v) = cos u cos v sin u sin v sin(u + v) = cos u sin v + sin u cos v

Things to Definitely Know. e iθ = cos θ + i sin θ. cos 2 θ + sin 2 θ = 1. cos(u + v) = cos u cos v sin u sin v sin(u + v) = cos u sin v + sin u cos v Thing to Definitely Know Euler Identity Pythagorean Identity Trigonometric Identitie e iθ co θ + i in θ co 2 θ + in 2 θ I Firt Order Differential Equation co(u + v co u co v in u in v in(u + v co u in

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

On Symmetric Bi-Multipliers of Lattice Implication Algebras

On Symmetric Bi-Multipliers of Lattice Implication Algebras International Mathematical Forum, Vol. 13, 2018, no. 7, 343-350 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8423 On Symmetric Bi-Multipliers of Lattice Implication Algebras Kyung Ho

More information

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs Applied Mathematical Science, Vol. 5, 2011, no. 27, 1307-1315 Application of Laplace Adomian Decompoition Method on Linear and Nonlinear Sytem of PDE Jaem Fadaei Mathematic Department, Shahid Bahonar Univerity

More information

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1. 1 I. CONTINUOUS TIME RANDOM WALK The continuou time random walk (CTRW) wa introduced by Montroll and Wei 1. Unlike dicrete time random walk treated o far, in the CTRW the number of jump n made by the walker

More information

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels Studie in Nonlinear Science (4): 9-4, ISSN -9 IDOSI Publication, Laplace Adomian Decompoition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernel F.A. Hendi Department of Mathematic

More information

Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem

Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem International Journal of Science and Technology Volume 4 No. 4, April, 05 Reformulation of Block Implicit Linear Multitep Method into Runge Kutta Type Method for Initial Value Problem Muhammad R., Y. A

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. f (t) e. e (2 s)t dt + 0. e (2 s)4 1 ] = 1 = 1. te st dt + = t s e st

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. f (t) e. e (2 s)t dt + 0. e (2 s)4 1 ] = 1 = 1. te st dt + = t s e st Worked Solution Chapter : The Laplace Tranform 6 a F L4] 6 c F L f t] 4 4e t dt e t dt 4 e t 4 ] e t e 4 if > 6 e F L f t] 6 g Uing integration by part, f te t dt f t e t dt + e t dt + e t + 4 4 4 f te

More information

Modeling in the Frequency Domain

Modeling in the Frequency Domain T W O Modeling in the Frequency Domain SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Tranfer Function Finding each tranfer function: Pot: V i θ i 0 π ; Pre-Amp: V p V i K; Power Amp: E a V p 50

More information

Singular Value Inequalities for Compact Normal Operators

Singular Value Inequalities for Compact Normal Operators dvance in Linear lgebra & Matrix Theory, 3, 3, 34-38 Publihed Online December 3 (http://www.cirp.org/ournal/alamt) http://dx.doi.org/.436/alamt.3.347 Singular Value Inequalitie for Compact Normal Operator

More information

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st

4e st dt. 0 e st dt. lim. f (t)e st dt. f (t) e st dt + 0. e (2 s)t dt + 0. e (2 s)4 1 = 1. = t s e st Worked Solution 8 Chapter : The Laplace Tranform 6 a F L] e t dt e t dt e t ] lim t e t e if > for > 6 c F L f t] f te t dt f t e t dt + e t dt + e t + f t e t dt e t dt ] e e ] 6 e F L f t] f te t dt

More information

A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces

A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces Zhang and Li Journal of Inequalitie and Application 016) 016:88 DOI 10.1186/13660-016-13-8 R E S E A R C H Open Acce A characterization of nonhomogeneou wavelet dual frame in Sobolev pace Jian-Ping Zhang

More information

EXERCISES FOR SECTION 6.3

EXERCISES FOR SECTION 6.3 y 6. Secon-Orer Equation 499.58 4 t EXERCISES FOR SECTION 6.. We ue integration by part twice to compute Lin ωt Firt, letting u in ωt an v e t t,weget Lin ωt in ωt e t e t lim b in ωt e t t. in ωt ω e

More information

(2) Classify the critical points of linear systems and almost linear systems.

(2) Classify the critical points of linear systems and almost linear systems. Review for Exam 3 Three type of prolem: () Solve the firt order homogeneou linear ytem x Ax () Claify the critical point of linear ytem and almot linear ytem (3) Solve the high order linear equation uing

More information

where F (x) (called the Similarity Factor (SF)) denotes the function

where F (x) (called the Similarity Factor (SF)) denotes the function italian journal of pure and applied mathematic n. 33 014 15 34) 15 GENERALIZED EXPONENTIAL OPERATORS AND DIFFERENCE EQUATIONS Mohammad Aif 1 Anju Gupta Department of Mathematic Kalindi College Univerity

More information

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2 803SC Final Exam Thi problem concern the differential equation dy = x y ( ) dx Let y = f (x) be the olution with f ( ) = 0 (a) Sketch the iocline for lope, 0, and, and ketch the direction field along them

More information

Traveling wave solutions of the time delayed generalized Burgers type equations

Traveling wave solutions of the time delayed generalized Burgers type equations Tang et al. SpringerPlu 06 5:094 DOI 0.86/40064-06-3765- RESEARCH Traveling wave olution of the time delayed generalized Burger type equation Open Acce Bo Tang * Yingzhe Fan 3 Xuemin Wang 4 Jixiu Wang

More information

The combined Laplace-homotopy analysis method for partial differential equations

The combined Laplace-homotopy analysis method for partial differential equations Available online at wwwir-publicationcom/jmc J Math Computer Sci 6 (26), 88 2 Reearch Article The combined Laplace-homotopy analyi method for partial differential equation Javad Vahidi Department of Mathematic,

More information

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 57, No. 1, 2016, Page 71 83 Publihed online: March 3, 2016 NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 JINHUA QIAN AND YOUNG HO KIM Abtract. We tudy

More information

KKM-Type Theorems for Best Proximal Points in Normed Linear Space

KKM-Type Theorems for Best Proximal Points in Normed Linear Space International Journal of Mathematical Analysis Vol. 12, 2018, no. 12, 603-609 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.81069 KKM-Type Theorems for Best Proximal Points in Normed

More information

Research Article A Method to Construct Generalized Fibonacci Sequences

Research Article A Method to Construct Generalized Fibonacci Sequences Applied Mathematic Volume 6, Article ID 497594, 6 page http://dxdoiorg/55/6/497594 Reearch Article A Method to Contruct Generalized Fibonacci Sequence Adalberto García-Máynez and Adolfo Pimienta Acota

More information

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM Journal of Inequalitie Special Function ISSN: 7-433, URL: http://www.iliria.com Volume 6 Iue 5, Page 5-3. AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE

More information

Chapter 4 Interconnection of LTI Systems

Chapter 4 Interconnection of LTI Systems Chapter 4 Interconnection of LTI Sytem 4. INTRODUCTION Block diagram and ignal flow graph are commonly ued to decribe a large feedback control ytem. Each block in the ytem i repreented by a tranfer function,

More information

Sobolev-Il in Inequality for a Class of Generalized Shift Subadditive Operators

Sobolev-Il in Inequality for a Class of Generalized Shift Subadditive Operators Nonlinear Analyi and Differential Equation, Vol. 5, 217, no. 2, 75-88 HIKAI Ltd, www.m-hikari.com http://doi.org/1.12988/nade.217.61299 Sobolev-Il in Inequality for a Cla of Generalized Shift Subadditive

More information

Periodic Solutions for Rotational Motion of. an Axially Symmetric Charged Satellite

Periodic Solutions for Rotational Motion of. an Axially Symmetric Charged Satellite Applied Mathematical Science Vol. 9 15 no. 1551-156 HIKARI Ltd www.m-hikari.com http://dx.doi.org/1.1988/am.15.4641 Periodic Solution for Rotational Motion of an Axially Symmetric Charged Satellite Yehia

More information

Pythagorean Triple Updated 08--5 Drlnoordzij@leennoordzijnl wwwleennoordzijme Content A Roadmap for generating Pythagorean Triple Pythagorean Triple 3 Dicuion Concluion 5 A Roadmap for generating Pythagorean

More information

Manprit Kaur and Arun Kumar

Manprit Kaur and Arun Kumar CUBIC X-SPLINE INTERPOLATORY FUNCTIONS Manprit Kaur and Arun Kumar manpreet2410@gmail.com, arun04@rediffmail.com Department of Mathematic and Computer Science, R. D. Univerity, Jabalpur, INDIA. Abtract:

More information

An Approach for Solving Multi-Objective Linear Fractional Programming Problem and It s Comparison with Other Techniques

An Approach for Solving Multi-Objective Linear Fractional Programming Problem and It s Comparison with Other Techniques International Journal of Scientific and Innovative Mathematical Reearch (IJSIMR) Volume 5, Iue 11, 2017, PP 1-5 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) DOI: http://dxdoiorg/1020431/2347-31420511001

More information

Fuzzy Sequences in Metric Spaces

Fuzzy Sequences in Metric Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 15, 699-706 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4262 Fuzzy Sequences in Metric Spaces M. Muthukumari Research scholar, V.O.C.

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Unbounded solutions of second order discrete BVPs on infinite intervals

Unbounded solutions of second order discrete BVPs on infinite intervals Available online at www.tjna.com J. Nonlinear Sci. Appl. 9 206), 357 369 Reearch Article Unbounded olution of econd order dicrete BVP on infinite interval Hairong Lian a,, Jingwu Li a, Ravi P Agarwal b

More information

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL GLASNIK MATEMATIČKI Vol. 38583, 73 84 TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL p-laplacian Haihen Lü, Donal O Regan and Ravi P. Agarwal Academy of Mathematic and Sytem Science, Beijing, China, National

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

online learning Unit Workbook 4 RLC Transients

online learning Unit Workbook 4 RLC Transients online learning Pearon BTC Higher National in lectrical and lectronic ngineering (QCF) Unit 5: lectrical & lectronic Principle Unit Workbook 4 in a erie of 4 for thi unit Learning Outcome: RLC Tranient

More information

8. [12 Points] Find a particular solution of the differential equation. t 2 y + ty 4y = t 3, y h = c 1 t 2 + c 2 t 2.

8. [12 Points] Find a particular solution of the differential equation. t 2 y + ty 4y = t 3, y h = c 1 t 2 + c 2 t 2. Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems P00 Queueing theory and teletraffic ytem Lecture 9 M/G/ ytem Vitoria Fodor KTH S/LCN The M/G/ queue Arrival proce memoryle (Poion( Service time general, identical, independent, f(x Single erver M/ r /

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES. Sanghyun Cho

A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES. Sanghyun Cho A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES Sanghyun Cho Abtract. We prove a implified verion of the Nah-Moer implicit function theorem in weighted Banach pace. We relax the

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

Simultaneous Quadruple Series Equations Involving Lagueree Polynomials

Simultaneous Quadruple Series Equations Involving Lagueree Polynomials Global Journal of Pure and pplied Mathematic. ISSN 973-1768 Volume 13, Number 7 (217), pp. 3773-3778 Reearch India Publication http://www.ripublication.com Simultaneou Quadruple Serie Equation Involving

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...4

More information

INITIAL VALUE PROBLEMS OF FRACTIONAL ORDER HADAMARD-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS

INITIAL VALUE PROBLEMS OF FRACTIONAL ORDER HADAMARD-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equation, Vol. 205 205), No. 77, pp. 9. ISSN: 072-669. URL: http://ejde.math.txtate.edu or http://ejde.math.unt.edu ftp ejde.math.txtate.edu INITIAL VALUE PROBLEMS OF

More information