where F (x) (called the Similarity Factor (SF)) denotes the function

Size: px
Start display at page:

Download "where F (x) (called the Similarity Factor (SF)) denotes the function"

Transcription

1 italian journal of pure and applied mathematic n ) 15 GENERALIZED EXPONENTIAL OPERATORS AND DIFFERENCE EQUATIONS Mohammad Aif 1 Anju Gupta Department of Mathematic Kalindi College Univerity of Delhi New Delhi India Abtract. The preent paper deal with the generalization of exponential operator ued by Dattoli and Levi for tranlation and diffuive operator which were utilized to etablih analytical olution of difference and integral equation. The generalization of their technique i expected to cover wide range of uch utilization. Keyword: Kampé de Feriét polynomial, exponential operator, group theory, Lie algebra of Lie group. PACS number: 0.0, 0.0.Sv. 1. Introduction In 000, Dattoli and Levi 1 dicued general method for the olution of difference equation, ariing in phyical and biological problem.their technique play crucial role in unifying the generalized familie of the difference equation. The preent paper deal with the generalization of exponential operator ued in 1 to operator of the type a λqx) d dx, where bae a a > 0, a 1) i a real number. In particular when a e, the operator reduce to the operator ued by Dattoli et al. 1. The action of the generalized exponential operator on a generic function fx) i defined a 1.1) d a λqx) d dx λ lna))qx) fx) e dx fx) ff 1 λ lna) + F x))). where F x) called the Similarity Factor SF)) denote the function 1 Correponding author. mohdaiff@gmail.com. Director, NCWEB, Univerity of Delhi.

2 16 mohammad aif, anju gupta F x) x q), and F 1 σ) i it invere. For qx) 1, the SF i given by x 1.) F x) x, therefore F 1 x) x, then operator 1.1) reduce to the ordinary tranlation or hift operator a follow: 1.3) a λ d dx fx) ff 1 λ lna) + x)) fλ lna) + x). Another example of application of operator 1.1), for qx) x, the SF i given by x 1.4) F x) lnx), o that F 1 x) e x, and hence operator 1.1) reduce to the dilatation operator 1.5) a λx d dx fx) ff 1 λ lna) + lnx))) fe λ lna)+lnx) ) fa λ x). The ordinary hift operator and their propertie play a central role within the context of the theory of difference equation 3. One can, therefore, upect that the above generalized exponential operator and the wealth of their propertie can be exploited to develop tool which allow the olution of different form of difference equation. 1a). Particular cae: The ubtitution of a e, into equation 1.1), 1.3) and 1.5) reduce to equation 1), ) and 3) of Dattoli et al. 1. A imple example of how the exponential operator can help u to olve difference equation may be illuminating. Let u conider the linear dilatation difference equation of the type 1.6) b 1 fa x) + b fax) + b 3 fx) 0, which, according to equation 1.5), equation 1.6) can be written in the following form 1.7) b 1 a x d dx + b a x d dx + b3 fx) 0. Suppoe fx) R lnx), we have a λx d dx R lnx) e λ lna)x d dx R lnx), where qx) x, o that F x) lnx) and F 1 x) e x or F 1 λ lna) + lnx)) e λ lna)+lnx) xa λ. Therefore, 1.8) a λx d dx R ln x R lnxaλ) R λ lna) R ln x.

3 generalized exponential operator and difference equation 17 Hence we can aociate with equation 1.7) the characteritic equation 1.9) b 1 R lna) + b R lna) + b 3 R lnx) 0, or b 1 R lna) + b R lna) + b 3 0, whoe root R lna) 1 and R lna) allow to write fx) in term of the following linear combination of independent olution: 1.10) fx) c 1 R lnx) 1 + c R lnx) α1 c α R lnx) α. The above example indicate that we can extend well-etablihed method of olution of difference equation to other type of equation reducible to ordinary difference equation, after a proper change of variable implicit in equation 1.1), 1.3). 1b). Particular cae: The replacement of a with e in equation 1.6), 1.7), 1.8) and 1.9) give raie to equation 5), 6), 7), and 8) of Dattoli et al. 1. To give a further example of the flexibility of the formalim aociated with exponential operator, let u conider the generalized Heat Equation of the following type 1.11) Qx, λ lna)) lna) qx) Qx, λ lna)), λ x Qx, 0) gx), which can formally be olved by rewriting equation 1.11) a Qx, λ lna)) lna) qx) Qx, λ lna)) 0, λ x which can formally be olved by conidering thi a ordinary linear differential equation of order one, whoe I.F. i determined a e lna)qx) x dλ e lna) qx) x λ a λ qx) x, we can, therefore, find it general olution a Qx, λ lna))a λ qx) x C, where C in any contant and uing the given initial condition, we get Qx, 0) gx) C, and, finally, we obtain the olution of the Heat equation 1.11) a 1.1) Qx, λ lna)) a λqx) x gx).

4 18 mohammad aif, anju gupta Uing the identity e b 1 + e +b, π and replacing b by λ lna)qx) x, we have 1.13) e λ lna)qx) x a λqx) x 1 + π e + λ lna). Uing equation 1.1), finally yield the olution of equation 1.11) in the form of an integral tranform, which can be viewed a a generalized Gau tranform 1.14) a λqx) x gx) 1 + π or, in other word, we have e gf 1 λ lna) + F x))). 1.14) Qx, λ lna)) 1 + e gf 1 λ lna) + F x))). π It i evident that the formalim aociated with generalized exponential operator can be exploited in many flexible way in finding the general olution of a large number of problem. Thi paper i devoted to the dicuion of method which provide the olution of the clae of difference and generalized Heat equation and we hall ee that the technique we propoe offer reliable analytical tool and efficient numerical algorithm. 1c). Particular cae: To put a e, in the equation 1.11), 1.1), and 1.14) give raie the ame form of the equation 10), 11) and 13) repectively of Dattoli et al. 1.. Generalized difference equation Before dicuing the problem in it generality, let u conider the equation of the following type, a a further example, which reduce to 1; p )) when we conider a e, we have.1) b α fx coα lna)) + 1 x inα lna))) 0, which belong to the familie of generalized difference equation. Thi equation can be obtained by the action of the generalized exponential operator on the function fx).

5 generalized exponential operator and difference equation 19 b α finin 1 x) coα lna)) + coco 1 1 x ) inα lna))) 0, b α finin 1 x) coα lna)) + coin 1 x) inα lna))) 0, b α finin 1 x) + α lna)) 0, b α a α 1 x fx) 0. According to the dicuion of the previou ection, the ue of the exponential operator b α Â α fx) 0, where.) Â a 1 x d dx allow to cat.1) in the operator form where ΨÂ)fx) 0, N.3) ΨÂ) b α Â α. In thi cae, the SF aociated with.) i.4) F x) in 1 x). Independent olution of.1) can, therefore, be contructed in term of the function R in 1 x), which atifie the identity.5) Â α R in 1 x) R α lna) R in 1 x), the general olution of.1) can finally be written a.6) fx) c α R in 1 x) α. Similarly, if we conider the following example, we have N.1) b α fx coα lna)) 1 x inα lna))) 0,

6 0 mohammad aif, anju gupta which belong to the familie of generalized difference equation. According to the dicuion of the previou ection, the ue of the exponential operator.) Â a 1 x d dx allow to cat.1) in the operator form.3). In thi cae the SF aociated with.) i.4) F x) co 1 x). Independent olution of.1) can be therefore contructed in term of the function R co 1 x), which atifie the identity.5) Â α R co 1 x) R α lna) R co 1 x). The general olution of.1) can finally be written a.6) fx) c α R co 1 x) α, where R lna) α are the root of the characteritic equation.7) ΨR lna) ) 0. From the above dicuion it i now clear that, whenever one deal with equation of the type.8) b α ff 1 α lna) + F x))) 0, one can aociate it with the generalized exponential operator.9) Â a qx) d dx, which allow to cat.8) in the operator form.3) and we get the relevant olution in the form.10) fx) x c α R q) α. a). Particular cae: when we ubtitute a e in equation.1),.),.3),.5),.7),.8) and.9) then thee equation lead to equation 14), 15), 16), 18), 0), 1) and ) repectively due to Dattoli et al. 1.

7 generalized exponential operator and difference equation 1.11) A ueful example i given by the equation ) x b α f 0, 1 α lna)x by making ue of the hift operator a x d dx, which allow to cat.11) in the operator form.3), i.e., ) 1 b α f α lna) 1 0, x b α a αx d dx fx) 0, b α Â α fx) 0, where N Â a x d dx, ΨÂ)fx) 0 and ΨA) b α A)α. In thi cae, the SF aociated with.11) i F x) 1. It olution can thu x be written a.1) fx) α1 c α R 1 x α. The validity of the above olution i limited to the cae in which Rα lna) i not a multiple root of the characteritic equation; thi point will be dicued in the concluding ection. b). Particular cae: Replacing a with e in equation.11) reduce to Dattoli et al. 1; p.6564)). In the tune of Dattoli et al. 1; p. 6566)), let u introduce the following operational identitie: Â ±α x b q) b ±α lna) x b q),.13) Â ±α x b x q) φx)) b q) b lna) Â) ±α φx). valid for exponential operator of the form.9). We note that, according to the firt of.13), the non-homogeneou equation.14) ΨÂ)fx) Cb x q),

8 mohammad aif, anju gupta where C i a contant and b lna) i not a root of the characteritic equation, admit the particular olution.15) fx) Cb x q) Ψb lna) ). In the lightly more complicated cae.16) ΨÂ)fx) Cb x q) φx), the econd of.13) yield x.17) fx) Cb q) 1 Ψb lna)â)φx). Further comment hall be dicued in the concluding ection. c). Particular cae: When a e, equation.14),.15),.16) and.17) convert into equation 7), 8), 9) and 30) of Dattoli et al Generalized hift operator and Jackon derivative In the previou ection, we have conidered linear equation involving dicrete power of the generalized exponential operator. Here, we hall dicu example in which the exponent are not necearily integer. The introductory example i 3.1) fa λ x) fx) λ lna) gx), where fx) i unknown, λ C, and gx) i an analytical function. The ue of the dilatation operator allow to cat equation.17) in the form of a the Jackon derivative 4, namely 3.) a λ d 1 fx) gx). λ lna) The operator on the left hand ide can formally be inverted and by writing the differentiation variable in term of the invere of the SF we find 3.3) fe ) λ lna) a λ d 1 ge ). The operator on the r.h.. of 3.3) can be expanded a

9 generalized exponential operator and difference equation 3 λ lna) a λ d 1 λ lna) λ lna) d + 1! λ lna) d ) + 1 3! λ lna) d )3 + 1 ) ) d λ lna) d + 1 λ lna) d! 3! + D 1 D ! λ lna) d + 1 3! 1 1! λ lna) d + 1 3! λ lna) d ) ) 1 + λ lna) d ) ) + 1 +! λ lna) d + 1 λ lna) d ) ) + + 3! D 1 D 1 D λ lna) d λ lna) d B 0 + B 1 1! λ lna) d + B! ) λ lna) d ) ) λ lna) d ) λ lna) d λ lna) d ) 1 λ lna) d ) ) + B 3 λ lna) d ) 3 + 3! or 3.4) λ lna) D 1 1 a λ d n0 ) n B n d λ lna))n, n! where 3.5) B 0 1, B 1 1, B 1 6, B 3 1,... are Bernoulli number ee 9; p.3009)) and D 1 i the invere of the derivative operator. Since gx) ha a Taylor expanion gx) b m x m ), we get from equation 3.3), 3.4) m0

10 4 mohammad aif, anju gupta fe ) D 1 D 1 D 1 D 1 n0 ) n ) B n d λ lna))n b m e m n! m0 B 0 + B 1 1! λ lna) d + B! b λ lna) d b 0 + λ lna) d λ lna) d ) + B 3 3! b m e m 1 λ lna) b m me m m1 + 1 λ lna)) 1 m0 b m m) e m 1 λ lna))3 6 m0 b m m em 1 λ lna) b m e m m1 + 1 λ lna)) 1 b λ lna) m0 b m m)e m 1 λ lna))3 6 m0 λ lna) d ) 3 + ) 1 λ lna) d ) m0 b m e m b m e m m0 b m m) 3 e m + m0 b m m) e m + m0 ) b 1 e λ lna)) λ lna)) λ lna) λ lna)) λ lna)) ) 1 λ lna) b 0 + b 1 e 1 λ lna)) + + +! 3! ) 1 λ lna) +b e 1 λ lna)) ! 3! b 0 + b 0 + b 1 e 1 + λ lna) λ lna)) +! + ) + b e λ lna) !! λ lna)b 1 e λ lna) λ lna)) λ lna)) !! 3! b 0 + λ lna)b 1e e λ lna) 1 + λ lna)b e e λ lna) 1 + λ lna)b 3e 3 e 3λ lna) 1 + ) b e + λ lna)) 3! + ) + λ lna)b e λ lna) λ lna)) λ lna)) !! 3! or fe ) m1 b m λ lna)e m e λm lna) 1 + b 0,

11 generalized exponential operator and difference equation 5 or 3.6) fe ) m1 Going back to the original variable, we get 3.7) fx) m1 b m λ lna)e m a λm 1 + b 0. b m λ lna)x m a λm 1 + b 0 lnx). The erie on the right hand ide of equation 3.6) provide the olution of our problem. 1) m x m+1 Taking another example, gx) inx), we find m + 1)! fe ) D 1 D 1 D 1 D B n λ lna)) n n0 n! B 0 + B 1 1! λ lna) d + B! m0 ) n d 1) m e m+1) m + 1)! m0 λ lna) d ) + B 3 λ lna) d ) 3 + 3! 1 1 λ lna) d + 1 λ lna) d ) 1 1 λ lna) d ) m0 1) m e m+1) m + 1)! λ lna) d ) m0 m0 1 1) m e m+1) m + 1)! m0 m0 1) m e m+1) m + 1)! λ lna) d ) 1) m e m+1) m + 1)! m0 ) λ lna) d m0 1) m m + 1)m + 1)! em+1) 1 λ lna) 1) m m + 1)! em+1) + 1 λ lna)) 1 m0 1) m m + 1) m + 1)! 1 6 λ lna))3 e m+1) m0 m0 1) m e m+1) m + 1)! 1) m e m+1) m + 1)! 1) m m + 1) e m+1) m + 1)!

12 6 mohammad aif, anju gupta 1) m e m+1) λ lna)m + 1) 1 m + 1)m + 1)! m0 + λ lna)) m + 1) λ lna))3 m + 1) 3 + m0 1 1) m e m+1) m + 1)m + 1)! 6 λ lna)m + 1) λ lna)) m + 1) +! 3! 1 or or fe ) λ lna) 1) m a λm+1) 1 m + 1)! em+1) 3.8) fx) λ lna) 1) m a λm+1) 1 m + 1)! xm+1. It i eentially the erie defining gx), provided that b m i replaced by If, e.g., we take gx) cox), we find b m λ ln a a λm 1 3.8) fx) λ lna) 1) m a λm) 1 m)! xm, and for gx) e xq, we get 3.9) fx) m1 λ lna) x qm a λqm 1 m! + lnx). We can, therefore, conclude that the primitive of a Jackon derivative can be contructed according to the above-quoted recipe. Thi method can alo be generalized and the concept of Jackon derivative extended to other form of exponential operator. In thi cae we conider equation of the type 3.10) fx) coλ lna)) + 1 x inλ lna)) λ lna) gx), with the aitance of equation.), we write equation 3.10) a follow: 3.11) a λ 1 x fx) fx) λ lna) gx) or a λ 1 x 1) fx) gx), λ lna)

13 generalized exponential operator and difference equation 7 by auming gx) i an odd function there taking x in, we have d d dx dx co d dx, 3.1) a λ d 1) fin ) gin ), λ lna) fin ) λ lna) a λ d 1 gin ), or let u find out the expanion of the firt factor of the r.h.. of equation 3.1) with the help of equation 3.4), we have 3.13) fin ) D 1 n0 ) n B n d λ lna))n gin ), n! ince gx) in an odd and analytic function, then gin ), can be expanded by Taylor expanion uch a gin ) b m+1 in ) m+1, we have from 3.13), fin ) D 1 D 1 D 1 D 1 n0 n0 m0 ) n B n d λ lna))n b m+1 in ) m+1 n! n0 m0 ) n B n d e i e i m+1 λ lna))n b m+1 n! i m0 ) n B n d b m+1 i) m+1 λ lna))n e i ) m+1 1 e i m+1 n! m+1 m0 B 0 + B ) 1λ lna)) d + B ) λ lna)) d + B ) 3λ lna)) 3 d 3 1!! 3! b m+1 i) m+1 e i ) m+1 m+1 m0 m+1 0 m+1 ) 1) m+1 e m+1 )i. Subtituting the value of Bernoulli number from equation 3.5), we have ) ) ) ) D 1 λ lna)) d λ lna)) d λ lna))3 d b m+1 i) m+1 m1 m1 m+1 m+1 0 b m+1 i) m+1 D 1 m+1 m+1 m+1 0 ) 1) e im )+1 ) ) m+1 1) e im )+1 λ lna)) d

14 8 mohammad aif, anju gupta m+1 0 m+1 0 m1 λ lna)) ) m+1 1) e im )+1 λ lna)) + 1 λ lna)) + 1 ) m+1 1) e im )+1 b m+1 i) m+1 D 1 m+1 m+1 0 m+1 0 m+1 0 ) d ) m+1 1) e im )+1 ) m+1 1) i{m ) + 1}e im )+1 m+1 b m+1 i) m+1 m1 λ lna)) λ lna)) + 1 m+1 m+1 0 m+1 0 m+1 m+1 ) 1) i{m ) + 1} e im )+1 0 m+1 b m+1 i) m+1 m1 { 1 m+1 b m+1 i) m+1 m1 m+1 ) m+1 1) e im )+1 im ) + 1 ) 1) e im )+1 m+1 ) 1) i{m ) + 1}e im )+1 0 ) m+1 1) e im )+1 im ) + 1 λ lna)) λ lna)) i{m ) + 1} + i{m ) + 1} 1 } λ lna))3 i{m ) + 1} b m+1 i) m+1 m+1 ) m+1 m+1 m1 0 1) e im )+1 im )+1 { 1+ 1 i{m )+1}λ lna)+ 1 i{m )+1}λ! 3! lna) + } m+1 0 ) m+1 1) λ lna)e i ) m )+1 i{m )+1}λ lna)+ 1 i{m )+1}λ! lna) + 1 i{m )+1}λ 3! lna)3 + b m+1 i) m+1 m+1 ) m+1 1) λ lna)co + i in ) m )+1 m+1 e im )+1λ lna) 1 m1 0

15 generalized exponential operator and difference equation 9 or fin ) b m+1 λ lna) i) m+1 m+1 m1 m+1 m+1 1) 1 in + i in ) m )+1 e im )+1λ lna). 1 0 Finally, 3.15) fx) b m+1 λ lna) i) m+1 m+1 m1 m+1 m+1 1) 1 x + ix) m )+1 a im )+1λ 1 0 It i intereting to note that, in thi cae too, the criterion to evaluate the primitive of the Jackon derivative, aociated with the operator.), can eaily be inferred. Let u note that the procedure we have dicued can alo be extended to the cae involving the generalized Gau tranform. In fact the olution of or in other word, we have let u uppoe x e, then a λx d Now, from equation 3.17), we have dx ) 1 fx) gx) 3.16) λ lna) λ lna) gx) fx), 3.17) a λx d dx ) 1 d d dx dx d e dx x d dx 3.18) λ lna) a λ d ) 1 ge ) fe ). Further, after following the tep a we followed in getting the reult 3.4), we obtain the expanion of firt factor of l.h.. a 3.19) λ lna) a λ d ) 1 D n0 ) n B n d λ lna))n. n!

16 30 mohammad aif, anju gupta Now by the virtue of the analyticity of gx), we expand gx), by Taylor erie, i.e., ) n fe ) D B n d λ lna))n b m e mx, n! n0 m0 proceeding of the tep a proceeded in finding the reult 3.7), we obtain fe ) m1 b m or in other word, if we take b 0 0, then 3.0) fx) λ lna) e λ lna)m 1 em + b 0 m1 b m λ lna) a λm 1 xm. Further comment on the reult of thi ection will be dicued in the forthcoming concluding ection. 3a). Particular cae: If we ubtitute a e, in equation 3.1), 3.), 3.3), 3.4), 3.7), 3.8), 3.9), 3.10), 3.15), 3.16) and 3.0), then we obtain the equation 31), 3), 33), 34), 36), 37), 38), 39), 40), 41) and 4) on page number due to Dattoli et al Remark In the previou ection we have conidered linear difference equation, a trivial) non-linear example, imilar to Riccati equation, i given blow 4.1) fax) fx) + b lnx) fax)fx) 0, which can be olved uing the auxiliary function gx) 1 and thu getting fx) 4.) 1 fx) 1 fax) + blnx) 0, gax) gx) b lnx). or From operator 1.5), we have 4.3) a x d dx gx) gx) b lnx),

17 generalized exponential operator and difference equation 31 or, in other word, we write the above equation 4.3) a blnx) gx) a x d dx 1 1 a x d dx 1 b lnx) 1 + a x d dx + a x d dx + a 3x d dx + b lnx) b lnx) + a x d dx b lnx) + a x d dx b lnx) + a 3x d dx b lnx) + b lnx) + b lna) b lnx) + b lna) b lnx) + b 3 lna) b lnx) b lna) + b lna) + b 3 lna) + b lnx) 1 blnx) 1 blna) blnx) b lna) 1 thu finding a a particular olution 4.4) fx) 1 gx) blna) 1 b lnx). Moreover, in general, equation of the type 4.5) b α ff 1 α lna) + F x))) ɛfx) n, tandard perturbation method can be ued. At the lowet order in ɛf f 0 +ɛf 1 ), we find 4.6) b α f 0 F 1 α lna) + F x))) 0 and 4.7) b α f 1 F 1 α lna) + F x))) R n x q), where R lna) i one of the root of the characteritic equation aociated with 4.5). The firt-order contribution f 1 can therefore be evaluated by uing equation.15), which hould be modified a follow: 4.8) fx) C x q) )b x Ψ b lna) ) Ψ b lna) ) d dr ΨRlna) ) if b lna) i a imple root of the characteritic equation. q) 1,, Rb

18 3 mohammad aif, anju gupta 4a). Particular cae: The replacement of a with e in the equation 4.1), 4.4) and 4.8) reduce to the equation 43), 45) and 49) of Dattoli et al. 1. Let u now go back to the problem of treating exponential operator of the type 4.9) Â m,λ a λqx) d dx )m. We have een that, for m and λ > 0, they can be viewed a generalized Gau tranform. Before dicuing the problem more deeply, we recall the following important relation : a λ d dx )m x n H n m) x, λ lna)), 4.10) n H n m) m λ lna)) r x n mr x, λ lna)) n!. r!n mr)! which hold for negative or poitive λ and H n m) x, λ lna)) are Kampé de Feriét polynomial, and atify the identity ) m 4.11) λ Hm) n x, λ lna)) lna) H n m) x, λ lna)). x According to equation 4.8) we alo find 4.1) r0 a λ d dx )m gx) a λ d dx )m Therefore, it i eay to realize that 4.13) A m,λ x n0 n0 n0 b n x n b n H n m) x, λ lna)). φ n H n m) F x), λ lna)), where we have aumed that the function F 1 can be expanded in power erie 4.14) F 1 ζ) φ n ζ n. It i clear that equation 4.1) can be further handled to extend the action of operator 4.8) to any function gx). It i worth conidering the poibility of extending the definition of operator 4.8) to the cae of not necearily integer m. In the cae of m 1, equation 4.9) hould be replaced by a λ d dx ) 1 x n H 1 ) n x, λ lna)), 4.15) n H 1 ) λ lna)) r x n r n x, λ lna)) n! r!γn r + 1). n0 r0

19 generalized exponential operator and difference equation 33 It i evident that in thi cae H 1 ) n x, λ lna)) i a relation analogou to 4.10) hold, namely 4.16) 1 λ H ) n or involving emi derivative ) 1 λ H ) n ) x, λ lna)) lna)) x x, λ lna)) lna) H 1 ) n x, λ lna)). ) 1 H 1 ) n x, λ lna)). x Thi definition can be extended to any m 1 p p, integer). 4b). Particular cae: Equation 4.9), 4.10), 4.11), 4.1), 4.13), 4.15) and 4.16) lead to Dattoli et al. 1 equation 50), 51), 5), 53), 54), 56) and 57). Concluding remark. It i hope that for the value other than e ome more ue of the generalized exponential operator can be obtained. Reference 1 Dattoli, G., Levi, D., Exponential Oprator and Generalized Difference Equation, Riv. Nuovo Cimento, B, ), Dattoli, G., Ottaviani, P.L., Torre, A., Vazquez, L., Evolution operator equation: Integration with algebraic and finite difference method. Application to phyical problem in claical and quantum field theory, Riv. Nuovo Cimento, ), Jordan, Ch., Calculu of Finite Difference, Rotting and Romwalter, Sopron, Hungary, Jackon, F.H., Q.J. Math. Oxford Ser., 1951). 5 Khan, M.A., Aif, M., Generalized Operational Method, Fractional Operator and Special Polynomial, Math. Sci. Re. J., 15 7) 011), Khan, M.A., Aif, M., Shift Operator On the Bae aa > 0, 1, ) and Peudo-Polynomial of Fractional Order, Int. J. of Math. Analyi, 5 3) 011),

20 34 mohammad aif, anju gupta 7 Khan, M.A., Aif, M., Shift Operator On the Bae aa > 0, 1, ) and Monomial Type Function, Int. Tran. in Math. Sci. and Comp., ) 009), Olver, P.J., Application of Lie Group to Differential Equation, Springer- Verlag, New York, Rainville, E.D., Special Function, Macmillan, New York, Accepted:

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim Quantization of electromagnetic eld in a circular cylindrical cavity K. Kakazu Department of Phyic, Univerity of the Ryukyu, Okinawa 903-0, Japan Y. S. Kim Department of Phyic, Univerity of Maryland, College

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document.

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document. SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU CİHAN BAHRAN I will collect my olution to ome of the exercie in thi book in thi document. Section 2.1 1. Let A = k[[t ]] be the ring of

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

1. Preliminaries. In [8] the following odd looking integral evaluation is obtained.

1. Preliminaries. In [8] the following odd looking integral evaluation is obtained. June, 5. Revied Augut 8th, 5. VA DER POL EXPASIOS OF L-SERIES David Borwein* and Jonathan Borwein Abtract. We provide concie erie repreentation for variou L-erie integral. Different technique are needed

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

SOME RESULTS ON INFINITE POWER TOWERS

SOME RESULTS ON INFINITE POWER TOWERS NNTDM 16 2010) 3, 18-24 SOME RESULTS ON INFINITE POWER TOWERS Mladen Vailev - Miana 5, V. Hugo Str., Sofia 1124, Bulgaria E-mail:miana@abv.bg Abtract To my friend Kratyu Gumnerov In the paper the infinite

More information

An Inequality for Nonnegative Matrices and the Inverse Eigenvalue Problem

An Inequality for Nonnegative Matrices and the Inverse Eigenvalue Problem An Inequality for Nonnegative Matrice and the Invere Eigenvalue Problem Robert Ream Program in Mathematical Science The Univerity of Texa at Dalla Box 83688, Richardon, Texa 7583-688 Abtract We preent

More information

One Class of Splitting Iterative Schemes

One Class of Splitting Iterative Schemes One Cla of Splitting Iterative Scheme v Ciegi and V. Pakalnytė Vilniu Gedimina Technical Univerity Saulėtekio al. 11, 2054, Vilniu, Lithuania rc@fm.vtu.lt Abtract. Thi paper deal with the tability analyi

More information

Manprit Kaur and Arun Kumar

Manprit Kaur and Arun Kumar CUBIC X-SPLINE INTERPOLATORY FUNCTIONS Manprit Kaur and Arun Kumar manpreet2410@gmail.com, arun04@rediffmail.com Department of Mathematic and Computer Science, R. D. Univerity, Jabalpur, INDIA. Abtract:

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

The Riemann Transform

The Riemann Transform The Riemann Tranform By Armando M. Evangelita Jr. armando78973@gmail.com Augut 28, 28 ABSTRACT In hi 859 paper, Bernhard Riemann ued the integral equation f (x ) x dx to develop an explicit formula for

More information

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Approximate Analytical Solution for Quadratic Riccati Differential Equation Iranian J. of Numerical Analyi and Optimization Vol 3, No. 2, 2013), pp 21-31 Approximate Analytical Solution for Quadratic Riccati Differential Equation H. Aminikhah Abtract In thi paper, we introduce

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES. Sanghyun Cho

A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES. Sanghyun Cho A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM IN WEIGHTED BANACH SPACES Sanghyun Cho Abtract. We prove a implified verion of the Nah-Moer implicit function theorem in weighted Banach pace. We relax the

More information

The Secret Life of the ax + b Group

The Secret Life of the ax + b Group The Secret Life of the ax + b Group Linear function x ax + b are prominent if not ubiquitou in high chool mathematic, beginning in, or now before, Algebra I. In particular, they are prime exhibit in any

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Computers and Mathematics with Applications. Sharp algebraic periodicity conditions for linear higher order

Computers and Mathematics with Applications. Sharp algebraic periodicity conditions for linear higher order Computer and Mathematic with Application 64 (2012) 2262 2274 Content lit available at SciVere ScienceDirect Computer and Mathematic with Application journal homepage: wwweleviercom/locate/camwa Sharp algebraic

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Unbounded solutions of second order discrete BVPs on infinite intervals

Unbounded solutions of second order discrete BVPs on infinite intervals Available online at www.tjna.com J. Nonlinear Sci. Appl. 9 206), 357 369 Reearch Article Unbounded olution of econd order dicrete BVP on infinite interval Hairong Lian a,, Jingwu Li a, Ravi P Agarwal b

More information

arxiv: v2 [math.nt] 30 Apr 2015

arxiv: v2 [math.nt] 30 Apr 2015 A THEOREM FOR DISTINCT ZEROS OF L-FUNCTIONS École Normale Supérieure arxiv:54.6556v [math.nt] 3 Apr 5 943 Cachan November 9, 7 Abtract In thi paper, we etablih a imple criterion for two L-function L and

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES

TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES DOUGLAS R. ANDERSON Abtract. We are concerned with the repreentation of polynomial for nabla dynamic equation on time cale. Once etablihed,

More information

SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR

SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR Kragujevac Journal of Mathematic Volume 4 08 Page 87 97. SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR THE p k-gamma FUNCTION KWARA NANTOMAH FATON MEROVCI AND SULEMAN NASIRU 3 Abtract. In thi paper

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs Applied Mathematical Science, Vol. 5, 2011, no. 27, 1307-1315 Application of Laplace Adomian Decompoition Method on Linear and Nonlinear Sytem of PDE Jaem Fadaei Mathematic Department, Shahid Bahonar Univerity

More information

TMA4125 Matematikk 4N Spring 2016

TMA4125 Matematikk 4N Spring 2016 Norwegian Univerity of Science and Technology Department of Mathematical Science TMA45 Matematikk 4N Spring 6 Solution to problem et 6 In general, unle ele i noted, if f i a function, then F = L(f denote

More information

On the Unit Groups of a Class of Total Quotient Rings of Characteristic p k with k 3

On the Unit Groups of a Class of Total Quotient Rings of Characteristic p k with k 3 International Journal of Algebra, Vol, 207, no 3, 27-35 HIKARI Ltd, wwwm-hikaricom http://doiorg/02988/ija2076750 On the Unit Group of a Cla of Total Quotient Ring of Characteritic p k with k 3 Wanambii

More information

THE SPLITTING SUBSPACE CONJECTURE

THE SPLITTING SUBSPACE CONJECTURE THE SPLITTING SUBSPAE ONJETURE ERI HEN AND DENNIS TSENG Abtract We anwer a uetion by Niederreiter concerning the enumeration of a cla of ubpace of finite dimenional vector pace over finite field by proving

More information

L 2 -transforms for boundary value problems

L 2 -transforms for boundary value problems Computational Method for Differential Equation http://cmde.tabrizu.ac.ir Vol. 6, No., 8, pp. 76-85 L -tranform for boundary value problem Arman Aghili Department of applied mathematic, faculty of mathematical

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels Studie in Nonlinear Science (4): 9-4, ISSN -9 IDOSI Publication, Laplace Adomian Decompoition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernel F.A. Hendi Department of Mathematic

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematic OSCILLAION AND NONOSCILLAION OF FORCED SECOND ORDER DYNAMIC EQUAIONS MARIN BOHNER AND CHRISOPHER C. ISDELL Volume 230 No. March 2007 PACIFIC JOURNAL OF MAHEMAICS Vol. 230,

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 8197 1998 ARTICLE NO AY986078 Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Tranformation Evelyn

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS SMILE MARKOVSKI Faculty of Computer Science and Engineering, S Ciryl and Methodiu Univerity in Skopje, MACEDONIA mile.markovki@gmail.com Logic

More information

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL GLASNIK MATEMATIČKI Vol. 38583, 73 84 TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL p-laplacian Haihen Lü, Donal O Regan and Ravi P. Agarwal Academy of Mathematic and Sytem Science, Beijing, China, National

More information

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 57, No. 1, 2016, Page 71 83 Publihed online: March 3, 2016 NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 JINHUA QIAN AND YOUNG HO KIM Abtract. We tudy

More information

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem Chapter 5 Conitency, Zero Stability, and the Dahlquit Equivalence Theorem In Chapter 2 we dicued convergence of numerical method and gave an experimental method for finding the rate of convergence (aka,

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations

Beta Burr XII OR Five Parameter Beta Lomax Distribution: Remarks and Characterizations Marquette Univerity e-publication@marquette Mathematic, Statitic and Computer Science Faculty Reearch and Publication Mathematic, Statitic and Computer Science, Department of 6-1-2014 Beta Burr XII OR

More information

arxiv:math/ v2 [math.ca] 2 May 2006

arxiv:math/ v2 [math.ca] 2 May 2006 arxiv:math/0601703v2 [math.ca] 2 May 2006 (1) HIGHER LAME EQUATIONS AND CRITICAL POINTS OF MASTER FUNCTIONS E. MUKHIN, V. TARASOV,,1, AND A. VARCHENKO,2 Department of Mathematical Science, Indiana Univerity

More information

Factor Analysis with Poisson Output

Factor Analysis with Poisson Output Factor Analyi with Poion Output Gopal Santhanam Byron Yu Krihna V. Shenoy, Department of Electrical Engineering, Neurocience Program Stanford Univerity Stanford, CA 94305, USA {gopal,byronyu,henoy}@tanford.edu

More information

Some Sets of GCF ϵ Expansions Whose Parameter ϵ Fetch the Marginal Value

Some Sets of GCF ϵ Expansions Whose Parameter ϵ Fetch the Marginal Value Journal of Mathematical Reearch with Application May, 205, Vol 35, No 3, pp 256 262 DOI:03770/jin:2095-26520503002 Http://jmredluteducn Some Set of GCF ϵ Expanion Whoe Parameter ϵ Fetch the Marginal Value

More information

The Power Series Expansion on a Bulge Heaviside Step Function

The Power Series Expansion on a Bulge Heaviside Step Function Applied Mathematical Science, Vol 9, 05, no 3, 5-9 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/0988/am054009 The Power Serie Expanion on a Bulge Heaviide Step Function P Haara and S Pothat Department of

More information

LAPLACE TRANSFORM REVIEW SOLUTIONS

LAPLACE TRANSFORM REVIEW SOLUTIONS LAPLACE TRANSFORM REVIEW SOLUTIONS. Find the Laplace tranform for the following function. If an image i given, firt write out the function and then take the tranform. a e t inh4t From #8 on the table:

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Name: Solution Exam Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will

More information

Research Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation

Research Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation Hindawi Function Space Volume 2017, Article ID 7916730, 8 page http://doi.org/10.1155/2017/7916730 Reearch Article A New Kind of Weak Solution of Non-Newtonian Fluid Equation Huahui Zhan 1 and Bifen Xu

More information

Flag-transitive non-symmetric 2-designs with (r, λ) = 1 and alternating socle

Flag-transitive non-symmetric 2-designs with (r, λ) = 1 and alternating socle Flag-tranitive non-ymmetric -deign with (r, λ = 1 and alternating ocle Shenglin Zhou, Yajie Wang School of Mathematic South China Univerity of Technology Guangzhou, Guangdong 510640, P. R. China lzhou@cut.edu.cn

More information

ON THE MELLIN TRANSFORM OF A PRODUCT OF HYPERGEOMETRIC FUNCTIONS

ON THE MELLIN TRANSFORM OF A PRODUCT OF HYPERGEOMETRIC FUNCTIONS J. Autral. Math. Soc. Ser. B 40(998), 37 ON THE MELLIN TRANSFORM OF A PRODUCT OF HYPERGEOMETRIC FUNCTIONS ALLEN R. MILLER H. M. SRIVASTAVA (Received 7 June 996) Abtract We obtain repreentation for the

More information

Lecture 9: Shor s Algorithm

Lecture 9: Shor s Algorithm Quantum Computation (CMU 8-859BB, Fall 05) Lecture 9: Shor Algorithm October 7, 05 Lecturer: Ryan O Donnell Scribe: Sidhanth Mohanty Overview Let u recall the period finding problem that wa et up a a function

More information

Lie series An old concept going back to Sophus Lie, but already used by Newton and made rigorous by Cauchy. Widely exploited, e.g.

Lie series An old concept going back to Sophus Lie, but already used by Newton and made rigorous by Cauchy. Widely exploited, e.g. ÄÁ Ë ÊÁ Ë Æ ÄÁ ÌÊ ÆË ÇÊÅË Lie erie An old concept going back to Sophu Lie, but already ued by Newton and made rigorou by Cauchy Widely exploited, eg, in differential geometry Ued a a method for numerical

More information

Name: Solutions Exam 2

Name: Solutions Exam 2 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

ON THE DETERMINATION OF NUMBERS BY THEIR SUMS OF A FIXED ORDER J. L. SELFRIDGE AND E. G. STRAUS

ON THE DETERMINATION OF NUMBERS BY THEIR SUMS OF A FIXED ORDER J. L. SELFRIDGE AND E. G. STRAUS ON THE DETERMINATION OF NUMBERS BY THEIR SUMS OF A FIXED ORDER J. L. SELFRIDGE AND E. G. STRAUS 1. Introduction. We wih to treat the following problem (uggeted by a problem of L. Moer [2]): Let {x} = {x

More information

NUMBERS. := p n 1 + p n 2 q + p n 3 q pq n 2 + q n 1 = pn q n p q. We can write easily that [n] p,q. , where [n] q/p

NUMBERS. := p n 1 + p n 2 q + p n 3 q pq n 2 + q n 1 = pn q n p q. We can write easily that [n] p,q. , where [n] q/p Kragujevac Journal of Mathematic Volume 424) 2018), Page 555 567 APOSTOL TYPE p, q)-frobenius-euler POLYNOMIALS AND NUMBERS UGUR DURAN 1 AND MEHMET ACIKGOZ 2 Abtract In the preent paper, we introduce p,

More information

Electronic Theses and Dissertations

Electronic Theses and Dissertations Eat Tenneee State Univerity Digital Common @ Eat Tenneee State Univerity Electronic Thee and Diertation Student Work 5-208 Vector Partition Jennifer French Eat Tenneee State Univerity Follow thi and additional

More information

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that Stochatic Calculu Example heet 4 - Lent 5 Michael Tehranchi Problem. Contruct a filtered probability pace on which a Brownian motion W and an adapted proce X are defined and uch that dx t = X t t dt +

More information

Multi-dimensional Fuzzy Euler Approximation

Multi-dimensional Fuzzy Euler Approximation Mathematica Aeterna, Vol 7, 2017, no 2, 163-176 Multi-dimenional Fuzzy Euler Approximation Yangyang Hao College of Mathematic and Information Science Hebei Univerity, Baoding 071002, China hdhyywa@163com

More information

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM Journal of Inequalitie Special Function ISSN: 7-433, URL: http://www.iliria.com Volume 6 Iue 5, Page 5-3. AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

Weighted Tribonacci sums

Weighted Tribonacci sums Weighted Tribonacci um Kunle Adegoke arxiv:1804.06449v1 [math.ca] 16 Apr 018 Department of Phyic Engineering Phyic, Obafemi Awolowo Univerity, 0005 Ile-Ife, Nigeria Abtract We derive variou weighted ummation

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

Primitive Digraphs with the Largest Scrambling Index

Primitive Digraphs with the Largest Scrambling Index Primitive Digraph with the Larget Scrambling Index Mahmud Akelbek, Steve Kirkl 1 Department of Mathematic Statitic, Univerity of Regina, Regina, Sakatchewan, Canada S4S 0A Abtract The crambling index of

More information

A CATEGORICAL CONSTRUCTION OF MINIMAL MODEL

A CATEGORICAL CONSTRUCTION OF MINIMAL MODEL A ATEGORIAL ONSTRUTION OF MINIMAL MODEL A. Behera, S. B. houdhury M. Routaray Department of Mathematic National Intitute of Technology ROURKELA - 769008 (India) abehera@nitrkl.ac.in 512ma6009@nitrkl.ac.in

More information

Explicit formulae for J pectral factor for well-poed linear ytem Ruth F. Curtain Amol J. Saane Department of Mathematic Department of Mathematic Univerity of Groningen Univerity of Twente P.O. Box 800

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Convex Hulls of Curves Sam Burton

Convex Hulls of Curves Sam Burton Convex Hull of Curve Sam Burton 1 Introduction Thi paper will primarily be concerned with determining the face of convex hull of curve of the form C = {(t, t a, t b ) t [ 1, 1]}, a < b N in R 3. We hall

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Thi Online Appendix contain the proof of our reult for the undicounted limit dicued in Section 2 of the paper,

More information

On the Function ω(n)

On the Function ω(n) International Mathematical Forum, Vol. 3, 08, no. 3, 07 - HIKARI Ltd, www.m-hikari.com http://doi.org/0.988/imf.08.708 On the Function ω(n Rafael Jakimczuk Diviión Matemática, Univeridad Nacional de Luján

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

REVERSE HÖLDER INEQUALITIES AND INTERPOLATION

REVERSE HÖLDER INEQUALITIES AND INTERPOLATION REVERSE HÖLDER INEQUALITIES AND INTERPOLATION J. BASTERO, M. MILMAN, AND F. J. RUIZ Abtract. We preent new method to derive end point verion of Gehring Lemma uing interpolation theory. We connect revere

More information

arxiv: v1 [math.ac] 30 Nov 2012

arxiv: v1 [math.ac] 30 Nov 2012 ON MODULAR INVARIANTS OF A VECTOR AND A COVECTOR YIN CHEN arxiv:73v [mathac 3 Nov Abtract Let S L (F q be the pecial linear group over a finite field F q, V be the -dimenional natural repreentation of

More information

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO

THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO THE DIVERGENCE-FREE JACOBIAN CONJECTURE IN DIMENSION TWO J. W. NEUBERGER Abtract. A pecial cae, called the divergence-free cae, of the Jacobian Conjecture in dimenion two i proved. Thi note outline an

More information

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses 5--4 EECS Electric Circuit Chapter 6 R Circuit Natural and Step Repone Objective Determine the repone form of the circuit Natural repone parallel R circuit Natural repone erie R circuit Step repone of

More information

Pythagorean Triple Updated 08--5 Drlnoordzij@leennoordzijnl wwwleennoordzijme Content A Roadmap for generating Pythagorean Triple Pythagorean Triple 3 Dicuion Concluion 5 A Roadmap for generating Pythagorean

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

STABILITY OF A LINEAR INTEGRO-DIFFERENTIAL EQUATION OF FIRST ORDER WITH VARIABLE DELAYS

STABILITY OF A LINEAR INTEGRO-DIFFERENTIAL EQUATION OF FIRST ORDER WITH VARIABLE DELAYS Bulletin of Mathematical Analyi and Application ISSN: 1821-1291, URL: http://bmathaa.org Volume 1 Iue 2(218), Page 19-3. STABILITY OF A LINEAR INTEGRO-DIFFERENTIAL EQUATION OF FIRST ORDER WITH VARIABLE

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world leading publiher of Open Acce book Built by cientit, for cientit 3,5 8,.7 M Open acce book available International author and editor Download Our author are among the 5 Countrie

More information

A note on the bounds of the error of Gauss Turán-type quadratures

A note on the bounds of the error of Gauss Turán-type quadratures Journal of Computational and Applied Mathematic 2 27 276 282 www.elevier.com/locate/cam A note on the bound of the error of Gau Turán-type quadrature Gradimir V. Milovanović a, Miodrag M. Spalević b, a

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY

A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY Volume 8 2007, Iue 3, Article 68, 3 pp. A PROOF OF TWO CONJECTURES RELATED TO THE ERDÖS-DEBRUNNER INEQUALITY C. L. FRENZEN, E. J. IONASCU, AND P. STĂNICĂ DEPARTMENT OF APPLIED MATHEMATICS NAVAL POSTGRADUATE

More information

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0

AMS 212B Perturbation Methods Lecture 20 Part 1 Copyright by Hongyun Wang, UCSC. is the kinematic viscosity and ˆp = p ρ 0 Lecture Part 1 Copyright by Hongyun Wang, UCSC Prandtl boundary layer Navier-Stoke equation: Conervation of ma: ρ t + ( ρ u) = Balance of momentum: u ρ t + u = p+ µδ u + ( λ + µ ) u where µ i the firt

More information