( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

Size: px
Start display at page:

Download "( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms"

Transcription

1 EE 33 Linear Signal & Sytem (Fall 08) Solution Set for Homework #0 on Laplace Tranform By: Mr. Houhang Salimian & Prof. Brian L. Evan Problem. a) xt () = ut () ut ( ) From lecture Lut { ()} = and { } t L x( t t ) d d = e X( ) e e = =, for all Thi i a finite-amplitude finite-duration ignal, and hence the region of convergence i the entire plane. At firt glance, it would eem that the region of convergence hould have been Re{} > 0 becaue the ignal i caual and the denominator goe to zero when goe to zero. However, when goe to zero, the numerator alo goe to zero. We can ue L Hôpital rule by letting go to zero. The derivative of the numerator with repect to i exp(-) and the derivative of the denominator with repect to i. The limit of a goe to zero i. b) c) xt e ut 3t () = 3 ( ) = and region of convergence i Re{} > -Re{a}. + a 3t 3( t + ) 6 3( t ) xt () = 3 e ut ( ) = 3 e ut ( ) = 3 e e ut ( ) at From L{ e u() t} X () = 3e 6 e + 3 = 3e e And the region of convergence i Re{} > -3. Writing the exp(-) eparately from the ret of the expreion can help highlight the term, which correpond in the time domain to a delay by econd. xt e ut 3( t ) () = 3 ( ) Thi part i imilar to part b. X () = 3e + 3 = e The region of convergence i Re{} > -3. d) ( π ) xt () = 5in ( t ) ut ( ) 0 { in t u( t) } = From L ( ω ) ω 0 + ω0 X () = 5e π + π = 5π + π e And the region of convergence i Re{} > 0. and region of convergence i Re{} > 0.

2 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin Problem. a) ( π ) xt () = co 0 t ut () { co t u( t) } From L ( ω ) = = + = 0 + ω0 ( 0π ) + 400π The region of convergence i Re{} > 0. for Re{} >0. MATLAB code t = -:/0000:; unittep = zero(ize(t)); unittep (t>= 0) = ; x = co(0*pi*t).*unittep; plot(t,x) xlabel('time()') ylabel('x') Zero are root of nominator and pole are root of denominator. zero : = 0, pole : + ( 0π) = 0 =± j0π, In the figure legend, Re mean Re{}.

3 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin b) xt e ut 8t () = () at From L{ e u() t} = for Re{} > -Re{a}. + a = + 8 The region of convergence i Re{} > -8. t = -:/0000:; unittep = zero(ize(t)); unittep (t>= 0) = ; x = exp(-8*t).*unittep; plot(t,x) xlabel('time()') ylabel('x') pole : + 8= 0 = 8 In the figure legend, Re mean Re{}.

4 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin c) xt e ut ut e ut 8 8 () ( t t = ) () = () () = for Re{} > -Re{a}. + a 8 = = at From L{ e u() t} ( ) The region of convergence i Re{} > 0. t = -:/0000:; unittep = zero(ize(t)); unittep (t>= 0) = ; x = (-exp(-8*t)).*unittep; plot(t,x) xlabel('time()') ylabel('x') pole : ( 8) 0 0, 8 + = = = In the figure legend, Re mean Re{}. Problem 3. Uing the property: L " x t = L x t for zero initial condition, we get: a) Y + Y = X => Y + = X => H = = Becaue the ytem i caual, the region of convergence i Re{} > -.

5 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin b) Uing the Laplace tranform pair L e " u t = all, we obtain + H () = = = t ht () = δ () t e ut () for Re{} > -Re{a}, L δ(t) = for c) H jω = " by ubtituting = jω into H() above. Thi ubtitution i valid becaue " the imaginary axi lie within the region of convergence of Re{} > -. d) w = -0:/0000:0; H= j*w./(j*w+); Hmag=ab(H) ; Hphae=angle(H); plot(w,hmag) title('magnitude Repone'); figure plot(w,hphae) title('phae Repone'); According to magnitude repone, the filter notche out zero frequency. Hence, it i a notch filter. It could alo be called a highpa filter, but a DC notch filter would be more decriptive and a better anwer. Here the plot of the magnitude and phae uing the freq command in Matlab, which will plot the frequency repone on a log cale in frequency. The magnitude will alo be on a log cale.

6 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin freq( [ 0], [ ] ); We ee a highpa repone over the frequencie plotted. Pleae note that freq( [], [ ] ) would mean intead of. e) x t = u t => X = u t e " dt = e " dt = have alo obtained the tranform by uing L e " u t = f) Y () = HX () () = + Uing the Laplace tranform pair L e " u t = y t = e u t, for we get for the tranfer function for Re{} > 0. We could and ubtituting a = 0. Problem 4. a) Uing the Laplace tranform pair L e " u t =, we get h t = e u t b) t { } X () = L 7 e u() t =, for Re{} > + 7 Y () = H()X () = From { } r+ 7,for Re{}> ( + ) r at r Lte ut () =,forre{} > Re{} a ( a+ ) y(t) = 7 t e t u(t) c) Uing convolution:

7 Fall 08 EE 33 Homework 0 olution The Univerity of Texa at Autin d) τ ( t τ) yt () = ht ()* ht () = h( ) ht ( ) d = e u( ) e ut ( ) d t τ τ τ τ τ τ 0, t < 0 t τ ( t τ) t t () τ τ () τ τ t t τ 0 = e u e d = e u d = e d = te, t 0 h(t)*h(t) = t e t u(t) For a dicrete-time verion of thi problem, pleae ee Handout F Convolution of Exponential Sequence at ion%0exp%0sequence.pdf r at r L t e u() t =, for Re{} > Re{} a ( a+ ) From { } r+ t yt () = ht ()* ht () Y() = L{ te ut ()} =, forre{} > ( + ) Pole are the root of the denominator: pole :( + ) = 0, = Thu, Y() ha a double pole at = -.

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

The Laplace Transform

The Laplace Transform The Laplace Tranform Prof. Siripong Potiuk Pierre Simon De Laplace 749-827 French Atronomer and Mathematician Laplace Tranform An extenion of the CT Fourier tranform to allow analyi of broader cla of CT

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

( ) ( ) ω = X x t e dt

( ) ( ) ω = X x t e dt The Laplace Tranform The Laplace Tranform generalize the Fourier Traform for the entire complex plane For an ignal x(t) the pectrum, or it Fourier tranform i (if it exit): t X x t e dt ω = For the ame

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Lecture 5 Frequency Response of FIR Systems (III)

Lecture 5 Frequency Response of FIR Systems (III) EE3054 Signal and Sytem Lecture 5 Frequency Repone of FIR Sytem (III Yao Wang Polytechnic Univerity Mot of the lide included are extracted from lecture preentation prepared by McClellan and Schafer Licene

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley EE C28 / ME C34 Problem Set Solution (Fall 200) Wenjie Chen and Janen Sheng, UC Berkeley. (0 pt) BIBO tability The ytem h(t) = co(t)u(t) i not BIBO table. What i the region of convergence for H()? A bounded

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st

e st t u(t 2) dt = lim t dt = T 2 2 e st = T e st lim + e st Math 46, Profeor David Levermore Anwer to Quetion for Dicuion Friday, 7 October 7 Firt Set of Quetion ( Ue the definition of the Laplace tranform to compute Lf]( for the function f(t = u(t t, where u i

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

The Laplace Transform , Haynes Miller and Jeremy Orloff

The Laplace Transform , Haynes Miller and Jeremy Orloff The Laplace Tranform 8.3, Hayne Miller and Jeremy Orloff Laplace tranform baic: introduction An operator take a function a input and output another function. A tranform doe the ame thing with the added

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Solutions for homework 8

Solutions for homework 8 Solution for homework 8 Section. Baic propertie of the Laplace Tranform. Ue the linearity of the Laplace tranform (Propoition.7) and Table of Laplace tranform on page 04 to find the Laplace tranform of

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S - 6302 Feedback ytem Recitation 6: teadytate Error Prof Joel L Dawon A valid performance metric for any control ytem center around the final error when the ytem reache teadytate That i, after all initial

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

LAPLACE TRANSFORM REVIEW SOLUTIONS

LAPLACE TRANSFORM REVIEW SOLUTIONS LAPLACE TRANSFORM REVIEW SOLUTIONS. Find the Laplace tranform for the following function. If an image i given, firt write out the function and then take the tranform. a e t inh4t From #8 on the table:

More information

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response. EE202 HOMEWORK PROBLEMS SPRING 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on the web. Quote for your Parent' Partie: 1. Only with nodal analyi i the ret of the emeter a poibility. Ray DeCarlo 2. (The need

More information

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu Chapter 4: Application of Fourier Repreentation Chih-Wei Liu Outline Introduction Fourier ranform of Periodic Signal Convolution/Multiplication with Non-Periodic Signal Fourier ranform of Dicrete-ime Signal

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

R L R L L sl C L 1 sc

R L R L L sl C L 1 sc 2260 N. Cotter PRACTICE FINAL EXAM SOLUTION: Prob 3 3. (50 point) u(t) V i(t) L - R v(t) C - The initial energy tored in the circuit i zero. 500 Ω L 200 mh a. Chooe value of R and C to accomplih the following:

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Chapter 3 : Transfer Functions Block Diagrams Signal Flow Graphs

Chapter 3 : Transfer Functions Block Diagrams Signal Flow Graphs Chapter 3 : Tranfer Function Block Diagram Signal Flow Graph 3.. Tranfer Function 3.. Block Diagram of Control Sytem 3.3. Signal Flow Graph 3.4. Maon Gain Formula 3.5. Example 3.6. Block Diagram to Signal

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

1. /25 2. /30 3. /25 4. /20 Total /100

1. /25 2. /30 3. /25 4. /20 Total /100 Circuit Exam 2 Spring 206. /25 2. /30 3. /25 4. /20 Total /00 Name Pleae write your name at the top of every page! Note: ) If you are tuck on one part of the problem, chooe reaonable value on the following

More information

Exercises for lectures 20 Digital Control

Exercises for lectures 20 Digital Control Exercie for lecture 0 Digital Control Micael Šebek Automatic control 06-4- Sampling: and z relationip for complex pole Continuou ignal Laplace tranform wit pole Dicrete ignal z-tranform, t y( t) e in t,

More information

Lecture 2: The z-transform

Lecture 2: The z-transform 5-59- Control Sytem II FS 28 Lecture 2: The -Tranform From the Laplace Tranform to the tranform The Laplace tranform i an integral tranform which take a function of a real variable t to a function of a

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

TMA4125 Matematikk 4N Spring 2016

TMA4125 Matematikk 4N Spring 2016 Norwegian Univerity of Science and Technology Department of Mathematical Science TMA45 Matematikk 4N Spring 6 Solution to problem et 6 In general, unle ele i noted, if f i a function, then F = L(f denote

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Solving Differential Equations by the Laplace Transform and by Numerical Methods 36CH_PHCalter_TechMath_95099 3//007 :8 PM Page Solving Differential Equation by the Laplace Tranform and by Numerical Method OBJECTIVES When you have completed thi chapter, you hould be able to: Find the

More information

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5

SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 SOLUTIONS FOR HOMEWORK SECTION 6.4 AND 6.5 Problem : For each of the following function do the following: (i) Write the function a a piecewie function and ketch it graph, (ii) Write the function a a combination

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

RaneNote BESSEL FILTER CROSSOVER

RaneNote BESSEL FILTER CROSSOVER RaneNote BESSEL FILTER CROSSOVER A Beel Filter Croover, and It Relation to Other Croover Beel Function Phae Shift Group Delay Beel, 3dB Down Introduction One of the way that a croover may be contructed

More information

Midterm Test Nov 10, 2010 Student Number:

Midterm Test Nov 10, 2010 Student Number: Mathematic 265 Section: 03 Verion A Full Name: Midterm Tet Nov 0, 200 Student Number: Intruction: There are 6 page in thi tet (including thi cover page).. Caution: There may (or may not) be more than one

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

Roadmap for Discrete-Time Signal Processing

Roadmap for Discrete-Time Signal Processing EE 4G Note: Chapter 8 Continuou-time Signal co(πf Roadmap for Dicrete-ime Signal Proceing.5 -.5 -..4.6.8..4.6.8 Dicrete-time Signal (Section 8.).5 -.5 -..4.6.8..4.6.8 Sampling Period econd (or ampling

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2 803SC Final Exam Thi problem concern the differential equation dy = x y ( ) dx Let y = f (x) be the olution with f ( ) = 0 (a) Sketch the iocline for lope, 0, and, and ketch the direction field along them

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2018

ECEN620: Network Theory Broadband Circuit Design Fall 2018 ECEN60: Network Theory Broadband Circuit Deign Fall 08 Lecture 6: Loop Filter Circuit Sam Palermo Analog & Mixed-Signal Center Texa A&M Univerity Announcement HW i due Oct Require tranitor-level deign

More information

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION ECE-202 Final, Fall 16 1 ECE-202 FINAL December 13, 2016 Name: (Pleae print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 8:30-9:30 Talavage-9:30-10:30 2021 2022 INSTRUCTIONS There are 35 multiple

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Linear-Quadratic Control System Design

Linear-Quadratic Control System Design Linear-Quadratic Control Sytem Deign Robert Stengel Optimal Control and Etimation MAE 546 Princeton Univerity, 218! Control ytem configuration! Proportional-integral! Proportional-integral-filtering! Model

More information

Determination of the local contrast of interference fringe patterns using continuous wavelet transform

Determination of the local contrast of interference fringe patterns using continuous wavelet transform Determination of the local contrat of interference fringe pattern uing continuou wavelet tranform Jong Kwang Hyok, Kim Chol Su Intitute of Optic, Department of Phyic, Kim Il Sung Univerity, Pyongyang,

More information

EXERCISES FOR SECTION 6.3

EXERCISES FOR SECTION 6.3 y 6. Secon-Orer Equation 499.58 4 t EXERCISES FOR SECTION 6.. We ue integration by part twice to compute Lin ωt Firt, letting u in ωt an v e t t,weget Lin ωt in ωt e t e t lim b in ωt e t t. in ωt ω e

More information

ANSWERS TO MA1506 TUTORIAL 7. Question 1. (a) We shall use the following s-shifting property: L(f(t)) = F (s) L(e ct f(t)) = F (s c)

ANSWERS TO MA1506 TUTORIAL 7. Question 1. (a) We shall use the following s-shifting property: L(f(t)) = F (s) L(e ct f(t)) = F (s c) ANSWERS O MA56 UORIAL 7 Quetion. a) We hall ue the following -Shifting property: Lft)) = F ) Le ct ft)) = F c) Lt 2 ) = 2 3 ue Ltn ) = n! Lt 2 e 3t ) = Le 3t t 2 ) = n+ 2 + 3) 3 b) Here u denote the Unit

More information

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 8197 1998 ARTICLE NO AY986078 Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Tranformation Evelyn

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Flat Paband/Stopband Filter T j T j Lowpa Bandpa T j T j Highpa Bandreject Review from Lat

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Analysis of Stability &

Analysis of Stability & INC 34 Feedback Control Sytem Analyi of Stability & Steady-State Error S Wonga arawan.won@kmutt.ac.th Summary from previou cla Firt-order & econd order ytem repone τ ωn ζω ω n n.8.6.4. ζ ζ. ζ.5 ζ ζ.5 ct.8.6.4...4.6.8..4.6.8

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Copyright 22 IFAC 5th Triennial World Congre, Barcelona, Spain CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Tritan Pérez Graham C. Goodwin Maria M. Serón Department of Electrical

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems Control and Dynamical Sytem CDS 0 Problem Set #5 Iued: 3 Nov 08 Due: 0 Nov 08 Note: In the upper left hand corner of the econd page of your homework et, pleae put the number of hour that you pent on thi

More information

MATH 251 Examination II April 6, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 6, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination II April 6, 2015 FORM A Name: Student Number: Section: Thi exam ha 12 quetion for a total of 100 point. In order to obtain full credit for partial credit problem, all work mut be hown.

More information

EE 4343/ Control System Design Project

EE 4343/ Control System Design Project Copyright F.L. Lewi 2004 All right reerved EE 4343/5320 - Control Sytem Deign Project Updated: Sunday, February 08, 2004 Background: Analyi of Linear ytem, MATLAB Review of Baic Concept LTI Sytem LT I

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fall 5 Microelectronic Device and ircuit Lecture 9 Second-Order ircuit Amplifier Frequency Repone Announcement Homework 8 due tomorrow noon Lab 7 next week Reading: hapter.,.3. Lecture Material Lat

More information