Roadmap for Discrete-Time Signal Processing

Size: px
Start display at page:

Download "Roadmap for Discrete-Time Signal Processing"

Transcription

1 EE 4G Note: Chapter 8 Continuou-time Signal co(πf Roadmap for Dicrete-ime Signal Proceing Dicrete-time Signal (Section 8.) Sampling Period econd (or ampling frequency / Hz) Denoted a n) or imply n) for n,,, If i too big, we have no idea of the original continuou-time ignal! Page 5-

2 EE 4G Note: Chapter 8 So increae the ampling frequency, but by how much? Surpriing reult by Nyquit (Section 8.) A continuou-time ignal, having no frequency component above f h Hz, can be completely recovered by ample taken at a ampling rate greater than or equal to f h Hz. hi i called the Nyquit rate. Recontruction formula: π ( t n ) in( ) n ) n π ( t n ) n t n n )inc Quantization (Section 8.) Not only time can be dicretized, ignal level can too (and mut to be tored in computer). x ( n ) A 3-bit computer can tore 3 4,94,967, 96 level. I it good enough? Similaritie between continuou-time and dicrete-time analyi PROPERIES CONINUOUS-IME DISCREE-IME Sytem Propertie Sytem Equation Complex Frequency ranform Linearity, Cauality, Stability Differential Equation d y( + 3y( dt Laplace ranform X t ( ) e dt Linearity, Cauality, Stability (8.4) Difference Equation (8.4) y [ n ] y[( n ) ] x[ n ] Z-tranform (8.3) X ( z) n n ) z n Page 5-

3 EE 4G Note: Chapter 8 ranfer function Fourier ranform Fourier Serie H ( ) Continuou-ime Fourier ranform (CF) jωt t e dt X ( jω ) ) Continuou-ime Fourier Serie for Periodic Signal X k e π jk t dt ( ) z H z z + 4z + Dicrete-time Fourier ranform (DF) (8.4) X ( jω ) n n ) e jωn Dicrete Fourier ranform (DF) for Finite-Duration Signal (4-3,-,-4) X k N n n) e πk j n N Synthei echnique Filter Deign: Again Low-pa, High-pa, Band-pa, Band-reject Baic trategy : tart with analog prototype and then map to dicrete-domain.. Infinite Impule Repone (IIR) Filter Deign (Section 9-4) - impule repone goe on forever : h( n ), n,,,.... Finite Impule Repone (FIR) Filter Deign (Section 9-5) finite impule repone : h ( n ) [ 5 ] Computational echnique Fat Fourier ranform (Section -4) i a fat algorithm to compute DF. he baic idea i to the recurive nature of the dicrete-time complex exponential to reduce the complexity of the algorithm. n Page 5-3

4 EE 4G Note: Chapter 8 Part one: A/D and D/A Chapter 8 Dicrete-ime Signal and Sytem 8.A Analog-to-Digital Converion Sampling Operation Sampling Model: n x ( δ ( t n ) Here, our ampling function p ( i a periodic ignal compoed of a train of delta function. n p ( t ) δ ( t n ) Why x (, intead of jut uing the value of x ( at,,,?. Almot the ame x ( n ) δ ( t n ) t n t n Page 5-4

5 EE 4G Note: Chapter 8. he impule retain energy of the ample behave like a real ignal! x ( dt n ) δ ( t n ) dt n n ) For analyi purpoe, we ue x ( to repreent the dicrete-time ignal x (n ) ( x ( i the continuou-time urrogate of x (n ) ). Spectrum of X and it relationhip to X Multiplication in ime Convolution in Frequency x ( p( X X [ j( ω υ)] P( jυ) dυ From able 4- (Ch.4), mπ P( jω) F[ δ ( t n )] δ ω n m π - another impule train (in frequency domain) with period ω πf, our ampling frequency hu, X ( jω) X [ j( ω υ)] δ ( υ mω ) m dυ X ( jω jmω ) m - Compare thi with the impule train. X become a periodic pectrum with period ω. Pictorially, if X look like X(jω) -ω h ω h What doe X look like? Page 5-5

6 EE 4G Note: Chapter 8 wo cae: ω Cae : ωh : ucceive copie of X do not overlap X (jω) -ω -ω h -ω -ω +ω h -ω h ω h ω -ω h ω ω +ω h ω It i trivial to ee that we can recover X by multiplying X with the ideal low-pa filter with bandwidth ω /. H(jω) -ω / ω / ω Cae : ω h > : ucceive copie of X overlap X (jω) -ω -ω -ω h ω h ω ω No way to recontruct X. Nyquit ampling theorem: A ignal, having no frequency component above ω h rad/, i completely pecified by ample that are taken at a uniform ampling rate greater than or equal to ω h rad/. hi i called the Nyquit Sampling Rate. Page 5-6

7 EE 4G Note: Chapter 8 he phenomenon of ampling under the Nyquit rate i called ALIASING. In time domain: At the time of ampling, indicated by vertical line, the two ignal hown both agree with the obervation. Either of thee ignal could produce the indicated obervation, hown by circled point, o the two ignal are aid to be "aliaed." In frequency domain: Sine wave of f Hz X(jω) x ( ampling at f <f -πf X (jω) πf ω -4πf -πf -πf πf πf 4πf If our ear can be model a a low-pa filter with bandwidth around f Hz, EAR(jω) ω ω thi i what we will hear: the original plu unwanted lower-frequency component. EAR(jω)X (jω) -πf πf ω Page 5-7

8 EE 4G Note: Chapter 8 Original Image: Downample by a factor of two: look at the low frequency pattern around the tripe. If ampling frequency i fixed (for example CD), the original ignal i low-paed firt to enure that no aliaing occur. hi proceing i called anti-aliaing. Page 5-8

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time 5.5 Sampling he Connection Between: Continuou ime & Dicrete ime Warning: I don t really like how the book cover thi! It i not that it i wrong it jut ail to make the correct connection between the mathematic

More information

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu

Chapter 4: Applications of Fourier Representations. Chih-Wei Liu Chapter 4: Application of Fourier Repreentation Chih-Wei Liu Outline Introduction Fourier ranform of Periodic Signal Convolution/Multiplication with Non-Periodic Signal Fourier ranform of Dicrete-ime Signal

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Solution Dicrete Time Proceing of Continuou Time Signal Sampling à 2.. : Conider a inuoidal ignal and let u ample it at a frequency F 2kHz. xt 3co000t 0. a) Determine and expreion for the ampled

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

LRA DSP. Multi-Rate DSP. Applications: Oversampling, Undersampling, Quadrature Mirror Filters. Professor L R Arnaut 1

LRA DSP. Multi-Rate DSP. Applications: Oversampling, Undersampling, Quadrature Mirror Filters. Professor L R Arnaut 1 ulti-rate Application: Overampling, Underampling, Quadrature irror Filter Profeor L R Arnaut ulti-rate Overampling Profeor L R Arnaut Optimal Sampling v. Overampling Sampling at Nyquit rate F =F B Allow

More information

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing. SAMPLING Sampling i the acquiition of a continuou ignal at dicrete time interval and i a fundamental concept in real-time ignal proceing. he actual ampling operation can alo be defined by the figure belo

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time EE 477 Digital Signal Proceing 4 Sampling; Dicrete-Time Sampling a Continuou Signal Obtain a equence of ignal ample uing a periodic intantaneou ampler: x [ n] = x( nt ) Often plot dicrete ignal a dot or

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Lecture 5 Frequency Response of FIR Systems (III)

Lecture 5 Frequency Response of FIR Systems (III) EE3054 Signal and Sytem Lecture 5 Frequency Repone of FIR Sytem (III Yao Wang Polytechnic Univerity Mot of the lide included are extracted from lecture preentation prepared by McClellan and Schafer Licene

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

LTV System Modelling

LTV System Modelling Helinki Univerit of Technolog S-72.333 Potgraduate Coure in Radiocommunication Fall 2000 LTV Stem Modelling Heikki Lorentz Sonera Entrum O heikki.lorentz@onera.fi Januar 23 rd 200 Content. Introduction

More information

The Laplace Transform

The Laplace Transform The Laplace Tranform Prof. Siripong Potiuk Pierre Simon De Laplace 749-827 French Atronomer and Mathematician Laplace Tranform An extenion of the CT Fourier tranform to allow analyi of broader cla of CT

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms

( 1) EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #10 on Laplace Transforms EE 33 Linear Signal & Sytem (Fall 08) Solution Set for Homework #0 on Laplace Tranform By: Mr. Houhang Salimian & Prof. Brian L. Evan Problem. a) xt () = ut () ut ( ) From lecture Lut { ()} = and { } t

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

( ) ( ) ω = X x t e dt

( ) ( ) ω = X x t e dt The Laplace Tranform The Laplace Tranform generalize the Fourier Traform for the entire complex plane For an ignal x(t) the pectrum, or it Fourier tranform i (if it exit): t X x t e dt ω = For the ame

More information

Data Converters. Introduction. Overview. The ideal data converter. Sampling. x t x nt x t t nt

Data Converters. Introduction. Overview. The ideal data converter. Sampling. x t x nt x t t nt Data Converter Overview Introduction Pietro Andreani Dept. of Electrical and Information echnology Lund Univerity, Sweden Introduction he ideal A/D and D/A data converter Sampling Amplitude quantization

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Lecture 2: The z-transform

Lecture 2: The z-transform 5-59- Control Sytem II FS 28 Lecture 2: The -Tranform From the Laplace Tranform to the tranform The Laplace tranform i an integral tranform which take a function of a real variable t to a function of a

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank. Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY DIGITAL SIGNAL PROCESSING DEPT./SEM.: CSE /VII DIGITAL FILTER DESIGN-IIR & FIR FILTER DESIGN PART-A. Lit the different type of tructure for realiation of IIR ytem? AUC APR 09 The different type of tructure

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Midterm Test Nov 10, 2010 Student Number:

Midterm Test Nov 10, 2010 Student Number: Mathematic 265 Section: 03 Verion A Full Name: Midterm Tet Nov 0, 200 Student Number: Intruction: There are 6 page in thi tet (including thi cover page).. Caution: There may (or may not) be more than one

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia Part A: Signal Proceing Chapter 5: Digital Filter Deign 5. Chooing between FIR and IIR filter 5. Deign Technique 5.3 IIR filter Deign 5.3. Impule Invariant Method 5.3. Bilinear Tranformation 5.3.3 Digital

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

PIPELINING AND PARALLEL PROCESSING. UNIT 4 Real time Signal Processing

PIPELINING AND PARALLEL PROCESSING. UNIT 4 Real time Signal Processing PIPELINING AND PARALLEL PROCESSING UNIT 4 Real time Signal Proceing Content Introduction Pipeling of FIR Digital Filter Parallel proceing Low power Deign FIR Digital Filter A FIR Filter i defined a follow:

More information

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION ECE-202 Final, Fall 16 1 ECE-202 FINAL December 13, 2016 Name: (Pleae print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 8:30-9:30 Talavage-9:30-10:30 2021 2022 INSTRUCTIONS There are 35 multiple

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters Linearteam tech paper The analyi of fourth-order tate variable filter and it application to Linkwitz- iley filter Janne honen 5.. TBLE OF CONTENTS. NTOCTON.... FOTH-OE LNWTZ-LEY (L TNSFE FNCTON.... TNSFE

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Math 201 Lecture 17: Discontinuous and Periodic Functions

Math 201 Lecture 17: Discontinuous and Periodic Functions Math 2 Lecture 7: Dicontinuou and Periodic Function Feb. 5, 22 Many example here are taken from the textbook. he firt number in () refer to the problem number in the UA Cutom edition, the econd number

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase GNSS Solution: Carrier phae and it meaurement for GNSS GNSS Solution i a regular column featuring quetion and anwer about technical apect of GNSS. Reader are invited to end their quetion to the columnit,

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Compact finite-difference approximations for anisotropic image smoothing and painting

Compact finite-difference approximations for anisotropic image smoothing and painting CWP-593 Compact finite-difference approximation for aniotropic image moothing and painting Dave Hale Center for Wave Phenomena, Colorado School of Mine, Golden CO 80401, USA ABSTRACT Finite-difference

More information

Comparing Means: t-tests for Two Independent Samples

Comparing Means: t-tests for Two Independent Samples Comparing ean: t-tet for Two Independent Sample Independent-eaure Deign t-tet for Two Independent Sample Allow reearcher to evaluate the mean difference between two population uing data from two eparate

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Chapter 4 Interconnection of LTI Systems

Chapter 4 Interconnection of LTI Systems Chapter 4 Interconnection of LTI Sytem 4. INTRODUCTION Block diagram and ignal flow graph are commonly ued to decribe a large feedback control ytem. Each block in the ytem i repreented by a tranfer function,

More information

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014 Subband Coding and Wavelets National Chiao Tung Universit Chun-Jen Tsai /4/4 Concept of Subband Coding In transform coding, we use N (or N N) samples as the data transform unit Transform coefficients are

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

EP2200 Queueing theory and teletraffic systems

EP2200 Queueing theory and teletraffic systems P00 Queueing theory and teletraffic ytem Lecture 9 M/G/ ytem Vitoria Fodor KTH S/LCN The M/G/ queue Arrival proce memoryle (Poion( Service time general, identical, independent, f(x Single erver M/ r /

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Linear predictive coding

Linear predictive coding Linear predictive coding Thi method combine linear proceing with calar quantization. The main idea of the method i to predict the value of the current ample by a linear combination of previou already recontructed

More information

3.1 The Revised Simplex Algorithm. 3 Computational considerations. Thus, we work with the following tableau. Basic observations = CARRY. ... m.

3.1 The Revised Simplex Algorithm. 3 Computational considerations. Thus, we work with the following tableau. Basic observations = CARRY. ... m. 3 Computational conideration In what follow, we analyze the complexity of the Simplex algorithm more in detail For thi purpoe, we focu on the update proce in each iteration of thi procedure Clearly, ince,

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design

COMM 602: Digital Signal Processing. Lecture 8. Digital Filter Design COMM 60: Digital Signal Proeing Leture 8 Digital Filter Deign Remember: Filter Type Filter Band Pratial Filter peifiation Pratial Filter peifiation H ellipti H Pratial Filter peifiation p p IIR Filter

More information

The Root Locus Method

The Root Locus Method The Root Locu Method MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

A Study on Simulating Convolutional Codes and Turbo Codes

A Study on Simulating Convolutional Codes and Turbo Codes A Study on Simulating Convolutional Code and Turbo Code Final Report By Daniel Chang July 27, 2001 Advior: Dr. P. Kinman Executive Summary Thi project include the deign of imulation of everal convolutional

More information