Turbo machinery: is a device that exchanges energy with a fluid using continuously flowing fluid and rotating blades. Examples are : Wind turbines,

Size: px
Start display at page:

Download "Turbo machinery: is a device that exchanges energy with a fluid using continuously flowing fluid and rotating blades. Examples are : Wind turbines,"

Transcription

1 . Introduction

2 urbo machinery: i a device that exchange energy with a fluid uing continuouly flowing fluid and rotating ble. Example are : Wind turbine, Water turbine, Aircraft engine. 2

3 laification of urbomachine urbomachine can be claified in two main group; A. ower Machine (urbine): extract energy from flow medium and tranfer it to haft of the machine. According to the available kind of energy power machine can be further claified a:. Water turbine : convert eure energy 2. Wind turbine: convert kinetic energy of the air 3. Heat urbine: onvert heat energy of the ga or team a. team turbine: b. Ga turbine 3

4 Machine for Extracting Work (ower) from a Fluid 4

5 B. Working Machine (ump): deliver energy from the haft of the machine to the flow medium. According to the kind of flow medium and eure generated working machine are further claified into:. ump (Liquid Medium) 2. omeor (Ga Medium) a. Fan Low eure rie b. Blower medium reure rie c. urbo omeor high eure rie 5

6 Machine for oing Work on a Fluid 6

7 laification of urbomachine bae on the way in which the flow pae through h the rotor: I. Axial flow Machine: the direction of the flow in the meridian ection iparallel l to theaxiof the rotor Flow path ~ parallel to axi of rotation II. Rial flow Machine: the direction of the flow in the meridian ection i perpendicular to the rotor: Flow path ~ perpendicular to axi of rotation III. Mixed flow Machine: he direction of the flow in the meridian ection ha a component parallel a well a perpendicular to the axi of the rotor. 7

8 8

9 9

10 0

11 urbomachine have alway a vaned rotor and often tationary vane (guide vane). he guide vane are motly located at the eure end of the machine. reure end/flange: i the part at which the energy poeed by the fluid i a maximum: In working machine, the exit end i the eure end In power machine the inlet end i the eure end uction end/flange: i the part at which the energy poeed b the fluid i a minimum. i In working machine, the inlet end i the eure end In power machine the exit end i the eure end

12 he pecific Work [ ] 2 he difference of the ueful pecific energy content of the flow medium between the two end of themachine idefined a pecific work done between inlet and outlet of the machine m 2 Regarding the energy tranfer in a turbomachinery i to be noted that: a. an increae/decreae of the ueful energy content of the flow medium in the cae of working/power machine, b. andalwayand alway increae of the non utilizable energy content of the flow medium. 2

13 Energy aborbed by the flow medium due to flow loe. hi energy i non-utilizable. otal energy tranferred from impeller to the flow medium Ueful energy rie of the flow medium Flow energy tranferred into torque otal energy available (ueful) ump urbine 3

14 From Bernoulli Equation: otal Energy reure + Energy Velocity Energy + geodetic Energy hu pecific energy can be given by the formula: 2 2 m vdp + + g ( Z Z ) vel geo 2 Where: vdp geo vel g ( Z Z ) Z Z pecific eure work kinetic energy pecific geodetic dti energy 4

15 pecific energy content of the flow medium between and end of the machine can be exeed interm of He H. 2 m 2 m g 2 H[ m ] Note that the value of H will change if the machine work in another field of gravity contrary to the value of which doe not change with g. i alway meaured between the uction and eure end of the machine. In the cae of water turbine the tail race urface i conidered a the uction end. 5

16 Often the equation for can be implified: In the cae of Wind turbine where only velocity energy i available, it i: vel 2 Inthe cae of team turbine, the velocity and geodetic energy can be neglected a both are very mall compared with the eure energy, Inthe cae of pump with equal diameter of uction and eure flange, the velocity energy i zero. 2 2 vdp + geo 6

17 etermination of the reure Energy he eure energy reeent the needed work to change the tatic eure of the flow medium from to by a oce without loe. In cae of an incomeible medium the eure energy i: dp vdp ρ ρ In cae of a comeible medium the denity i changing from to. ha to be determined by integration: vdp dp ρ 7

18 onider ientropic oce AB he coure AB i given by the equation:. v cont. where k V he value of the cont can be determined from the known inlet condition: comeion :. v exp anion :. v v v. v.. 8

19 omeion (umping Machine) p ( p g ) Integration: dp v vdp R k k v k k V R k k nd R t con ga a tan N i t i f th id l F : kg kcal kg Nm kg Nm R Air For : ρ give thi oce ientropic for theory ga From ideal,, :, kg kcal kg Nm kg kg V ( ) 9

20 Expanion (turbine) Expanion (turbine) Integration: dp v vdp R k k v k k ( ) gae perfect For imilarly ( ) team For i i gae perfect For 20

21 in, iagram a. omeion p c For ientropic oce: ' ' For ientropic oce: ( ) d t or hence Δ, ' ' For iabatic oce: ( ) p t c t or Δ Δ 0 d c di A vdp di vdp di or vdp di dq ' d c 2

22 hu, i obtained if the integration i done from to along a line of cont. p for intance along the eure : Δt AB B i reeented by the area 22

23 B. Expanion where Δt c p Δt c p ( ' ) i reeented by the area AB B 23

24 in i, iagram ' a. omeion: vdp di i ' i Δ i i i and i reeented tdby the ditance AB. 24

25 in i, iagram b. expanion: vdp di i i ' Δ i i i ' and i reeented tdby the ditance AB. 25

26 he power he amount of the power change of the continuou flow which pae the machine i: N eff M ρv Nm or [ W ] oupling power effective power for ideal machine that operate without ih any loe An actuallymachine involve loe. hu the coupling power of the machine i: ρv for pump m N η ρv η ρv η for turbine 26

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

Bernoulli s equation may be developed as a special form of the momentum or energy equation. BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow

More information

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b .6 A upercritical team power plant ha a high preure of 0 Ma and an exit condener temperature of 50 C. he maximum temperature in the boiler i 000 C and the turbine exhaut i aturated vapor here i one open

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

PEMP RMD M.S. Ramaiah School of Advanced Studies

PEMP RMD M.S. Ramaiah School of Advanced Studies Steam Turbine Seion delivered by: Prof. Q.H. Nagpurwala Seion Objective Thi eion i intended to dicu the following: Claification of team turbine Compounding of team turbine Force, work done and efficiency

More information

MAE 101A. Homework 3 Solutions 2/5/2018

MAE 101A. Homework 3 Solutions 2/5/2018 MAE 101A Homework 3 Solution /5/018 Munon 3.6: What preure gradient along the treamline, /d, i required to accelerate water upward in a vertical pipe at a rate of 30 ft/? What i the anwer if the flow i

More information

Specific Static rotor work ( P P )

Specific Static rotor work ( P P ) The specific Static Rotor ork p 1 ρ Specific Static rotor work ( P P ) here P, P static pressures at points, (P P ) static pressure difference of the rotor ρ density, in case of a compressible medium average

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines Unit (Potters & Wiggert Sec. 1..1, &-607) Expression relating Q, H, P developed by Rotary machines Rotary

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

SOLUTION MANUAL CHAPTER 12

SOLUTION MANUAL CHAPTER 12 SOLUION MANUAL CHAPER CONEN SUBSECION PROB NO. In-ext Concept Quetion a-g Concept problem - Brayton cycle, ga turbine - Regenerator, Intercooler, nonideal cycle 5-9 Ericon cycle 0- Jet engine cycle -5

More information

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh Chapter Two Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency Laith Batarseh The equation of continuity Most analyses in this book are limited to one-dimensional steady flows where the velocity

More information

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets External Flow: Flow over Bluff Object (Cylinder, Sphere, Packed Bed) and Impinging Jet he Cylinder in Cro Flow - Condition depend on pecial feature of boundary layer development, including onet at a tagnation

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 11 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 11 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUION MANUAL ENGLISH UNI PROBLEMS CHAPER SONNAG BORGNAKKE VAN WYLEN FUNDAMENALS of hermodynamic Sixth Edition CHAPER SUBSECION PROB NO. Rankine Cycle 67-8 Brayton Cycle 8-87 Otto, Dieel, Stirling and

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

Fluids Lab 1 Lecture Notes

Fluids Lab 1 Lecture Notes Fluid Lab Lecture Note. Bernoulli Equation. Pitot-Static Tube 3. Aireed Meaurement 4. Preure Nondimenionalization Reference: Anderon 3.-3.5, Denker 3.4 ( htt://www.av8n.com/how/ ) Bernoulli Equation Definition

More information

SOE2156: Fluids Lecture 4

SOE2156: Fluids Lecture 4 Turbo SOE2156: s Lecture 4 machine { a device exchanging energy (work) between a uid and a mechanical system. In particular : a turbomachine is a device using a rotating mechanical system. The ow of energy

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

University R & D Session. KAIST Activities

University R & D Session. KAIST Activities Univerity R & D Seion KAIST Activitie 016. 3. 30 Jeong IK Lee Aociate Profeor Dept. of Nuclear & Quantum Engineering, KAIST Iue Studied in KAIST Larger power ytem require higher pecific power Advanced

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

m = P 1V 1 RT 1 P 2 = P 1. P 2 V 2 T 2 = P 1V 1 T 1 V 1 2 V 1 T 2 = T 1. {z} T 2 = T 1 1W 2 = PdV = P 1 (V 2 V 1 ). Z T2 (c vo + αt)dt.

m = P 1V 1 RT 1 P 2 = P 1. P 2 V 2 T 2 = P 1V 1 T 1 V 1 2 V 1 T 2 = T 1. {z} T 2 = T 1 1W 2 = PdV = P 1 (V 2 V 1 ). Z T2 (c vo + αt)dt. NAME: SOLUTION AME 0 Thermodynamic Examination Prof J M Power March 00 Happy 56th birthday, Sir Dugald Clerk, inventor of the two-troke engine, b March 85 (5) A calorically imperfect ideal ga, with ga

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

ME 3560 Fluid Mechanics

ME 3560 Fluid Mechanics Sring 018 ME 3560 Fluid Mechanic Chater III. Elementary Fluid Dynamic The Bernoulli Equation 1 Sring 018 3.1 Newton Second Law A fluid article can exerience acceleration or deceleration a it move from

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Basics (pressure head, efficiency, working point, stability) Pumps

More information

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course University Duisburg-Essen Campus Duisburg Faculty of engineering Science Department of Mechanical Engineering Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 06.03.2006

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION

ME 315 Exam 3 8:00-9:00 PM Thursday, April 16, 2009 CIRCLE YOUR DIVISION ME 315 Exam 3 8:00-9:00 PM Thurday, Aril 16, 009 Thi i a cloed-book, cloed-note examination. There i a formula heet at the back. You mut turn off all communication device before tarting thi exam, and leave

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids INTRODUCTION Hydrodynamic Machines A hydromachine is a device used either for extracting energy from a fluid or to add energy to a fluid. There are many types of hydromachines and Figure 1 below illustrates

More information

M E 320 Professor John M. Cimbala Lecture 23

M E 320 Professor John M. Cimbala Lecture 23 M E 320 Professor John M. Cimbala Lecture 23 Today, we will: Discuss diffusers and do an example problem Begin discussing pumps, and how they are analyzed in pipe flow systems D. Diffusers 1. Introduction.

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Angular momentum equation

Angular momentum equation Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:

More information

MECA-H-402: Turbomachinery course Axial compressors

MECA-H-402: Turbomachinery course Axial compressors MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year 013-014 Contents List of figures iii 1 Axial compressors 1 1.1 Introduction...............................

More information

Pressure distribution in a fluid:

Pressure distribution in a fluid: 18/01/2016 LECTURE 5 Preure ditribution in a fluid: There are many intance where the fluid i in tationary condition. That i the movement of liquid (or ga) i not involved. Yet, we have to olve ome engineering

More information

MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacques Chaurette eng. January 17, 2008

MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacques Chaurette eng. January 17, 2008 MICRO-HYDRO INSTALLATION SIZING CALCULATIONS Jacque Chaurette eng. January 7, 008 Calculation for micro-hydro ine jet impact elocity are baed on the ame ort of calculation done for pump ytem, except there

More information

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min SOLUTIONS FOR TUTORIL QUESTIONS COURSE TE 49 ) Maxiu pup diplaceent i c /rev. Motor diplaceent i c /rev. a) t full pup diplaceent: Ideal otor peed 4rev/in x / 4 rev/in The lo in otor peed due to the voluetric

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D). MAE0-W7A The homework i due Monday, November 4, 06. Each problem i worth the point indicated. Copying o the olution rom another i not acceptable. (). Multiple choice (0 point) a). Which tatement i invalid

More information

ME 316: Thermofluids Laboratory

ME 316: Thermofluids Laboratory ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

More information

TURBOMACHINES. VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan

TURBOMACHINES. VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan TURBOMACHINES VIJAYAVITHAL BONGALE Associate Professor and Head Department of Mechanical Engineering Malnad College of Engineering, Hassan 573 201. Mobile No:9448821954 E-mail : vvb@mcehassan.ac.in 1 Dimensional

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: T η = T 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent

More information

Design of Radial Turbines & Turbochargers

Design of Radial Turbines & Turbochargers RMD50 Design of Radial Turbines & Turbochargers Session delivered by: Prof. Q. H. Nagpurwala 4 @ M S Ramaiah School of Advanced Studies, Bengaluru Session Objective RMD50 To discuss the design of radial

More information

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lecture Lect Radial Flow Turbines Lect Radial inflow turbines, which look similar to centrifugal compressor, are considered suitable for application in small aircraft engines. In many applications a radial

More information

Solved problems 4 th exercise

Solved problems 4 th exercise Soled roblem th exercie Soled roblem.. On a circular conduit there are different diameter: diameter D = m change into D = m. The elocity in the entrance rofile wa meaured: = m -. Calculate the dicharge

More information

MODIFIED DIAGRAM FOR STEAM-WATER INJECTOR MIXING CHAMBER

MODIFIED DIAGRAM FOR STEAM-WATER INJECTOR MIXING CHAMBER MODIFIED DIAGRAM FOR STEAM-WATER INJECTOR MIXING CHAMBER Maša BUKUROV, Slobodan TAŠIN, Siniša BIKIĆ Univerity of Novi Sad, Faculty of Technical Science, Department of Energy and Proce Engineering, Novi

More information

Given A gas turbine power plant operating with air-standard Brayton cycle

Given A gas turbine power plant operating with air-standard Brayton cycle ME-200 Fall 2017 HW-38 1/4 Given A ga turbine power plant operating with air-tandard Brayton cycle Find For ientropic compreion and expanion: (a) Net power (kw) produced by the power plant (b) Thermal

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

nozzle which is fitted to a pipe through which the liquid is flowing under pressure.

nozzle which is fitted to a pipe through which the liquid is flowing under pressure. Impact of Jets 1. The liquid comes out in the form of a jet from the outlet of a nozzle which is fitted to a pipe through which the liquid is flowing under pressure. The following cases of the impact of

More information

Potential energy of a spring

Potential energy of a spring PHYS 7: Modern Mechanic Spring 0 Homework: It i expected that a tudent work on a a homework #x hortly after lecture #x, ince HWx i on material of LECx. While the due date for HW are typically et to about

More information

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. F. Ravelet Laboratoire DynFluid, Arts et Metiers-ParisTech February 3, 2016 Control volume Global balance equations in open systems

More information

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0.

( ) Given: In a constant pressure combustor. C4H10 and theoretical air burns at P1 = 0.2 MPa, T1 = 600K. Products exit at P2 = 0. (SP 9) N-butane (C4H1) i burned with 85 percent theoretical air, and the product of combution, an equilibrium mixture containing only O, CO, CO, H, HO, N, and NO, exit from a combution chamber at K,. MPa.

More information

Design of Multistage Turbine

Design of Multistage Turbine Turbomachinery Lecture Notes 7-9-4 Design of Multistage Turbine Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s c p Specific heat J/kgK h Enthalpy J/kg m&

More information

On the Isentropic Forchheimer s Sound Waves Propagation in a Cylindrical Tube Filled with a Porous Media

On the Isentropic Forchheimer s Sound Waves Propagation in a Cylindrical Tube Filled with a Porous Media 5th WSEAS Int. Conf. on FLUID MECHANICS (FLUIDS') Acapulco, Mexico, January 5-7, On the Ientropic Forchheimer Sound Wave Propagation in a Cylindrical Tube Filled with a Porou Media H. M. Dwairi Civil Engineering

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

CHAPTER 12 Turbomachinery

CHAPTER 12 Turbomachinery CAER urbomachinery Chapter / urbomachinery 800 / 0 8 8 rad /s, u r 8 8 0 0 m /s, u r 8 8 0 0 8 m /s, rbv, but V u since, n n 0 0 0 0 0 0 m / s V V 0 0 m /s, rb 0 0 0 Vn u 0 8 6 77 m /s, tan tan 0 n t V

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature Turbomachinery Lecture Notes 1 007-10-04 Radial Compressors Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s r Radius

More information

Isentropic Sound Waves Propagation in a Tube Filled with a Porous Media

Isentropic Sound Waves Propagation in a Tube Filled with a Porous Media INTERNATIONAL JOURNAL OF ECHANICS Ientropic Sound Wave Propagation in a Tube Filled with a Porou edia H.. Duwairi Abtract A rigid frame, cylindrical capillary theory of ound propagation in porou media

More information

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known. PROBLEM.7 A hown in Fig. P.7, 0 ft of air at T = 00 o R, 00 lbf/in. undergoe a polytropic expanion to a final preure of 5.4 lbf/in. The proce follow pv. = contant. The work i W = 94.4 Btu. Auming ideal

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

SOLUTIONS

SOLUTIONS SOLUTIONS Topic-2 RAOULT S LAW, ALICATIONS AND NUMERICALS VERY SHORT ANSWER QUESTIONS 1. Define vapour preure? An: When a liquid i in equilibrium with it own vapour the preure exerted by the vapour on

More information

Computation of Velocity, Pressure and Temperature Profiles in a Cryogenic Turboexpander

Computation of Velocity, Pressure and Temperature Profiles in a Cryogenic Turboexpander HMT-6-C8 8 th National & 7 th ISHMT-ASME Heat and Ma Tranfer Conference January 4-6, 6 IIT Guwahati, India Computation of Velocity, Preure and Temperature Profile in a Cryogenic Turboexpander Subrata K.

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

More information

An Essential Requirement in CV Based Industrial Appliances.

An Essential Requirement in CV Based Industrial Appliances. Measurement of Flow P M V Subbarao Professor Mechanical Engineering Department An Essential Requirement in CV Based Industrial Appliances. Mathematics of Flow Rate The Scalar Product of two vectors, namely

More information

Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0

Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.0 using the Blade Element Momentum Method. Version 1.0 Grant Ingram December 13, 2005 Copyright c) 2005 Grant Ingram, All Rights Reserved. 1 Contents 1 Introduction 5 2 Blade Element Momentum Theory 5 3

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1.

J.P. Holman: 3.09) T sur := Use table 3-1 to determine the shape factor for this problem. 4π r S := T sphere := 30K r 1. S = m k := 1. .P. Holman:.09) T ur : 0 Ue table - to determine the hape factor for thi problem. D :.m r : 0.5m π r S : T phere : 0 r D S 7.0 m :.7 m Ue eq. - to calculate the heat lo. q : S T phere T ur q 57.70 .P.

More information

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm)

Hydraulic Turbines. Table 6.1 Parameters of hydraulic turbines. Power P (kw) Speed N (rpm) 6 Hydraulic Turbines Problem 1 There are 10 solved examples and 7 exercise problems (exclude Problems 1, 2, and 10) in this chapter. Prepare a table to mention the values of all the parameters, such as

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics

Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics IOP Conference Series: Earth and Environmental Science Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics To cite this article: J H Kim et al 2012 IOP Conf.

More information

Mechanical Engineering for Renewable Energy Systems. Wind Turbines

Mechanical Engineering for Renewable Energy Systems. Wind Turbines ENGINEERING TRIPOS PART IB PAPER 8 - ELECTIVE (2) Mechanical Engineering for Renewable Energy Systems Wind Turbines Lecture 3: Aerodynamic fundamentals Hugh Hunt Fundamental fluid mechanics limits to energy

More information

Theory of turbomachinery. Chapter 1

Theory of turbomachinery. Chapter 1 Theory of turbomachinery Chater Introduction: Basic Princiles Take your choice of those that can best aid your action. (Shakeseare, Coriolanus) Introduction Definition Turbomachinery describes machines

More information

Designing scroll expanders for use in heat recovery Rankine cycles

Designing scroll expanders for use in heat recovery Rankine cycles Deigning croll expander for ue in heat recovery Rankine cycle V Lemort, S Quoilin Thermodynamic Laboratory, Univerity of Liège, Belgium ABSTRACT Thi paper firt invetigate experimentally the performance

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010. hermodynamics Lecture 7: Heat transfer Open systems Bendiks Jan Boersma hijs Vlugt heo Woudstra March, 00 Energy echnology Summary lecture 6 Poisson relation efficiency of a two-stroke IC engine (Otto

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body

Chapter 12 Radiation Heat Transfer. Special Topic: Heat Transfer from the Human Body Chapter 1 Radiation Heat ranfer Special opic: Heat ranfer from the Human Body 1-7C Ye, roughly one-third of the metabolic heat generated by a peron who i reting or doing light work i diipated to the environment

More information

Solution to 10-Minute Quiz in Aircraft Propulsion, 2 nd Edition

Solution to 10-Minute Quiz in Aircraft Propulsion, 2 nd Edition Solution to 10-Minute Quiz in Aircraft Propulion, nd Edition Quiz No. 1 1. Heating M=1 M1 Branch Heating. M1 Branch 3. 3 p=contant p=contant 4 1 η th = 1 1 1 4. max

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant.

Blackbody radiation. Main radiation laws. Sun as an energy source. Solar spectrum and solar constant. Lecture 3. lackbody radiation. Main radiation law. Sun a an energy ource. Solar pectrum and olar contant. Objective:. Concept of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium..

More information

MODULE 4: ABSORPTION

MODULE 4: ABSORPTION MODULE 4: ABSORPTION LECTURE NO. 3 4.4. Deign of packed tower baed on overall ma tranfer coefficient * From overall ma tranfer equation, N K ( y y ) one can write for packed tower a N A K y (y-y*) Then,

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

CHAPTER EIGHT P U M P I N G O F L I Q U I D S CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid

More information

Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine

Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine Mechanics and Mechanical Engineering Vol. 17, No. 3 2013) 269 284 c Lodz University of Technology Impact of Blade Quality on Maximum Efficiency of Low Head Hydraulic Turbine Romuald Puzyrewski Gdansk University

More information