MECA-H-402: Turbomachinery course Axial compressors

Size: px
Start display at page:

Download "MECA-H-402: Turbomachinery course Axial compressors"

Transcription

1 MECA-H-40: Turbomachinery course Axial compressors Pr. Patrick Hendrick Aero-Thermo-Mecanics Year

2

3 Contents List of figures iii 1 Axial compressors Introduction Two-dimensional flow through a stage Notations Assumptions Velocity triangles How can I build an axial compressor? Why is it so difficult? Influence/limitation of the axial velocity Performance curves Surge and rotating stall i

4 ii Contents

5 List of Figures 1.1 Schematic representation of a stage of an axial turbocompressor.. 1. Schematic representation of an axial compressor Velocity triangle C L vs. AOA Performance curves Wöhler diagram Rotating stall iii

6 Axial compressors 1 This chapter discusses the principle of axial compressors. Axial compressors are excellent for high mass flow rates (up to at least 1000 kg/s), for very high pressure ratio s (up to 45 or higher) while a maintaining high isentropic efficiency. 1.1 Introduction Unlike radial or centrifugal compressors, a fluid particle in an axial compressor stays at a constant distance from the shaft of the machine. The Euler-Rateau formula shows that energy may be transmitted to the fluid by acting on the tangial velocity component or the relative velocity in the rotor. P R = ṁ R u V u (1.1) P R ṁ R = (v v 1) (w w 1) (1.) Operating principle: the compression is carried out in a number of stages, placed in series. Each stage consists of a ring of rotor blades (the rotor) and a ring of stator blades (the stator). The rotor blades are fixed on the drum; the stator blades are fixed at the casing. In the rotor, the mechanical energy available on the shaft is converted into pressure energy and kinetic energy that is communicated to the fluid. In the stator, part of this kinetic energy is transformed into pressure energy. The relative velocity at the entrance of the rotor and absolute speed at the entrance of the stator must have an incidence angle as the fluid does not detache. Given that the pressure must be increased in the rotor and stator channels, the shape of the vanes should be such that the flow channels are divergent. The curvature of a compressor blade is always lower than that of turbine blades to avoid this detachment. Behind the 1

7 Axial compressors last stage, the flow must be re-oriented axially before entering into the combustion chamber. Hypothesis: the actual flow through the machine is relatively complex. The actual three-dimensional flow is studied using a two-dimensional model. A model is obtained by a cut of the compressor following a surface of revolution, which is then developed in a plane. By this approach the flow is studied in a row. 1. Two-dimensional flow through a stage 1..1 Notations Consider a section of the compressor according to a cylindrical surface of radius r m. A stage is made out of a rotor and a stator. The first stage is sometimes preceeded by a distributor whose vanes may have an adjustable angle. The last stage must restore an axial flow (Fig. 1.1). Figure 1.1: Schematic representation of a stage of an axial turbocompressor The following notation is applied: 0 : inlet of the distributor 1 : inlet of the rotor : outlet of the rotor/inlet of the stator 3 : outlet of the stator v a : axial velocity v : absolute velocity

8 1. Two-dimensional flow through a stage 3 w : relative velocity u : tangential velocity α : angle between the absolute and the axial velocity β : angle between the relative and the axial velocity 1.. Assumptions Constant specific weight ρ: to prevent a detachment of the boundary layer, the pressure increase in a stage must be limited, it can then be assumed that the specific weight ρ is constant in a stage. In reality, the speccific weight ρ increases between stages (Fig 1. - ṁ = ρv ax A : A ==> ρ ). Constant axial velocity v a : the axial velocity through the compressor is assumed to be constant. Velocity between two stages (v 3 = v 1 - in reality v 3 is larger than v 1 ) : in the space between two stages, we consider that the fluid presents the same mechanical and thermodynamic characteristics. Figure 1.: Schematic representation of an axial compressor 1..3 Velocity triangles At the inlet of a stage, the fluid has an absolute velocity v 1 which is identical to the absolute velocity v 3 of the preceding stage. By vectorially subtracting the peripheric velocity u, the speed relative w 1 to the rotor inlet is obtained. The angle between this relative speed and the blade tip must be sufficiently limited so that

9 4 Axial compressors Figure 1.3: Velocity triangle the fluid does not detache (Fig. 1.3). The increased of the pressure of the fluid through the rotor requires that the relative velocity is deflected toward the axial direction so that, given the constant axial velocity component direction: w < w 1. By applying the equation of the kinetic energy in a relative space: P R = ( v v1 ṁ R ) + ( u u 1 P R = ( v v1 ṁ R ) ( w w1 ) ) ( w w1 ) (1.3) (1.4) to maximize the fraction P R ṁr, w 1 must be higher than w. Physical interpretation of p: By applying the energy equation in the wheel: W W 1 and the formula of Euler-Rateau: u u 1 + g(z z 1 ) = h h 1 (1.5) P R = ( v v1 ṁ R ) + ( u u 1 ) ( w w1 ) (1.6)

10 1. Two-dimensional flow through a stage 5 It follows that: P R = ṁ ( v v ) 1 R + h h 1 = ht h t1 = h t3 h t1 (1.7) Given that the enthalpy does not vary in a fixed pipe (the stator) and v 1 = v 3, the power on the wheel becomes: and taking into account: P R = ṁ R (h 3 h 1 ) = ṁ R c p (T 3 T 1 ) (1.8) P R = ṁ R p ρ (1.9) p is the increase of pressure that would be achieved in a stage if the compression is done without any friction How can I build an axial compressor? The value of the degree of reaction R: R = (P R) a (P R ) t = h h 1 h t3 h t1 (1.10) R = R = ( v v 1 ( ) w w 1 ) ( w w 1 (w w 1) (v v 1) (w w 1) ) (1.11) (1.1) will impact the contribution of the static pressure and of the kinetic energy into the compressor pressure ratio Why is it so difficult? The difficulty in the construction of an axial compressor is the pressure gradient p. Indeed, the smaller w, the higher the pressure gradient. If this gradient is too high, the fluid will detach from the blade. A solution is to change the angle of attack (AOA), but keep in mind that the angle of attack is connected to the lift coefficient of the blade C L. If the angle of attack becomes too high, the lift coefficient decreases sharply (Fig. 1.4).

11 6 Axial compressors Figure 1.4: C L vs. AOA 1..6 Influence/limitation of the axial velocity A high axial velocity v a is interesting from two points of view. First, because this speed exerts a positive influence on the value of P R and then because at a given velocity, the height of the blades will be lower, resulting in a reduction in the weight and dimensions of the compressor and a potentially higher N. An increase of the axial velocity is limited by the appearance of transonic zones causing shock waves (and, therefore, losses). Accordingly this, it must ensure that: M 1 < 0,9 (1.13) 1..7 Performance curves The variables of interest can be: Π c, P m, η g or η is,c. All this variables are function of the following variables: r 1, N, ṁ R, T 1, p 1, γ and µ 1 (Re 1 ). r 1, N, ṁ R are the turbomachinery parameters and the rest of the variables are called fluid parameters. There are, therefore, 7 variables to characterize an axial compressor. If we consider a fixed r 1 (for a given compressor), there remains 6 variables to fully characterize the compressor. Introduction of the reduced variables:

12 1. Two-dimensional flow through a stage 7 N red = u 1 = r πn 1 60 = c 1 γrt1 ṁ red = ρ 1v 1 A 1 c 1 ρ 1 A 1 = ρ 1 v 1 A 1 γrt1 p 1 rt 1 πr 1 Very often, the considered reduced variables are: N red = N T1 (1.14) = ṁ T 1 p 1 (1.15) N Tt,in (1.16) ṁ red = ṁ T t,in p t,in (1.17) The performance curves are shown in Figure 1.5. Figure 1.5: Performance curves 1..8 Surge and rotating stall Two phenomena will affect the operation of a compressor: The surge phenomenon: a phenomenon of large amplitude and low frequency. The surge phenomenon can take place in axial compressors and centrifugal compressors. It influences not only the compressor, but also the system to which the compressor is connected.

13 8 Axial compressors The rotating stall: a phenomenon of low amplitude and high frequency (leading to high compressor frequency - Fig. 1.6). The rotating stall occurs only in axial machines and only affects the operation of the compressor. Figure 1.6: Wöhler diagram Surge When the flowrate decreases or/and the rotation velocity increases, the angle of attack of the rotor blades will increase. If the angle of attack becomes too large, the fluid can detach over the complete length and the full height of all blades of the rotor. This phenomenon is called the surge phenomenon. The ring is no longer able to transfer energy to the fluid, so that there is no more pressure rise in the stage. The air is not sufficiently compressed, the channels downstream in the machine are saturated. The fluid, which is located downstream in the machine, tends to flow back through the machine: the machine pumps. The downstream pressure decreases and the flow tends to recover its state. If the operating conditions of the compressor do not change, the phenomenon will recur. The velocity triangle shows that the angle of attack on a rotor blade increases: If, at constant rotation velocity, the flow rate decreases.

14 1. Two-dimensional flow through a stage 9 If, at constant speed, the rotation velocity increases. Some solutions can delay this surge phenomenon: The installation of directional vanes at the entrance (VIGV - Variable Inlet Guide Vanes). An air bleed after the first stages (ABV - Air Bleed Valves) Rotating stall Aside of the surge phenomenon where the fluid detaches of the ring of blades, the fluid may also, in the case of an axial machine, detach locally. These areas rotate in the opposite direction of the blades, but with a lower speed. The rotating stall has a local effect and does not cause meaningful changes on the flowrate and/or on the pressure. Suppose that after a damaged blade, a stall occurs on blade (Fig. 1.7). The flowrate between the upper surface of the blade and the underside of the blade 3 decreases. The flowrate will be deflected towards the passage between blades 1 and and blades 3 and 4. It results in a reduction of the angle of attack of the relative velocity to the blade, so that the flow is recovering. The angle of attack of the relative velocity to the blade 3 increases causing a detachment of the fluid. Compared to the ring, the separation zone moves in the opposite direction of rotation with a speed lower than the rotation speed of the ring. It follows that the separation zone runs in the same direction as the ring, but at a smaller absolute velocity of rotation.

15 10 Axial compressors Figure 1.7: Rotating stall

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 24 Axial Flow Compressor Part I Good morning

More information

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec

Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines. Unit 2 (Potters & Wiggert Sec Theory of turbo machine Effect of Blade Configuration on Characteristics of Centrifugal machines Unit (Potters & Wiggert Sec. 1..1, &-607) Expression relating Q, H, P developed by Rotary machines Rotary

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature

Radial Compressors. Damian Vogt Course MJ2429. Nomenclature Turbomachinery Lecture Notes 1 007-10-04 Radial Compressors Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s r Radius

More information

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 22. Radial Flow Turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lecture Lect Radial Flow Turbines Lect Radial inflow turbines, which look similar to centrifugal compressor, are considered suitable for application in small aircraft engines. In many applications a radial

More information

(Refer Slide Time: 4:41)

(Refer Slide Time: 4:41) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-30. Basic Principle and Energy Transfer in Centrifugal Compressor Part

More information

Laboratory Notes. Turbomachinery

Laboratory Notes. Turbomachinery Brussels School of Engineering École polytechnique de Bruxelles Academic Year 2016-2017 Laboratory Notes Turbomachinery Aero-Thermo-Mechanics Department Teaching Assistants : Laurent Ippoliti Joëlle Vincké

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Centrifugal Compressor Part I Good morning

More information

mywbut.com Hydraulic Turbines

mywbut.com Hydraulic Turbines Hydraulic Turbines Hydro-electric power accounts for up to 0% of the world s electrical generation. Hydraulic turbines come in a variety of shapes determined by the available head and a number of sizes

More information

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines, and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Introduction to Reaction Type of Hydraulic

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 1 Introduction to Fluid Machines Well, good

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines

In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Lect- 35 1 In this lecture... Radial flow turbines Types of radial flow turbines Thermodynamics and aerodynamics Losses in radial flow turbines Radial turbines Lect-35 Development of radial flow turbines

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

(Refer Slide Time: 0:45)

(Refer Slide Time: 0:45) (Refer Slide Time: 0:45) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-3. Impulse and Reaction Machines: Introductory

More information

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course

Prof. Dr.-Ing. F.-K. Benra. ISE batchelor course University Duisburg-Essen Campus Duisburg Faculty of engineering Science Department of Mechanical Engineering Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 06.03.2006

More information

Internal Flow Measurements of Turbomachinery using PIV

Internal Flow Measurements of Turbomachinery using PIV Internal Flow Measurements of Turbomachinery using PIV OHUCHIDA Satoshi : Turbo Machinery and Engine Technology Department, Products Development Center, Corporate Research & Development TAMAKI Hideaki

More information

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics. F. Ravelet Laboratoire DynFluid, Arts et Metiers-ParisTech February 3, 2016 Control volume Global balance equations in open systems

More information

Design of Multistage Turbine

Design of Multistage Turbine Turbomachinery Lecture Notes 7-9-4 Design of Multistage Turbine Damian Vogt Course MJ49 Nomenclature Subscripts Symbol Denotation Unit c Absolute velocity m/s c p Specific heat J/kgK h Enthalpy J/kg m&

More information

SATHYABAMA UNIVERISTY. Unit III

SATHYABAMA UNIVERISTY. Unit III Unit III UNIT III STEAM NOZZLES AND TURBINES Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio,supersaturated flow.impulse and reaction principles, compounding,

More information

PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP RMD510. M.S. Ramaiah School of Advanced Studies, Bengaluru Design of Axial Flow Compressor- Session delivered by: Prof. Q. H. Nagpurwala Session Objectives To learn design procedure for axial compressor stages To calculate flow properties across the blade rows

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination: 07.08.2006 Handling time: 120 Minutes ISE

More information

ME 316: Thermofluids Laboratory

ME 316: Thermofluids Laboratory ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Fluid Mechanics Compressible Fluid Flow Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi Bhooshan

More information

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 07 Analysis of Force on the Bucket of Pelton

More information

Axial Flow Compressors and Fans

Axial Flow Compressors and Fans 5 Axial Flow Compressors and Fans 5.1 INTRODUCTION As mentioned in Chapter 4, the maximum pressure ratio achieved in centrifugal compressors is about 4:1 for simple machines (unless multi-staging is used)

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

FOUR QUADRANT CENTRIFUGAL COMPRESSOR PERFORMANCE

FOUR QUADRANT CENTRIFUGAL COMPRESSOR PERFORMANCE FOUR QUADRANT CENTRIFUGAL COMPRESSOR PERFORMANCE Elisabetta Belardini Senior Engineer GE Oil & Gas Florence, Italy Elisabetta is Senior Engineer of Radial Turbo machinery Performance within the Advanced

More information

Engineering Fluid Mechanics

Engineering Fluid Mechanics Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY

More information

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh

Chapter Two. Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency. Laith Batarseh Chapter Two Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency Laith Batarseh The equation of continuity Most analyses in this book are limited to one-dimensional steady flows where the velocity

More information

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR

INFLUENCE OF ROTATING STALL AND SURGE IN THE DESIGN OF A SMALL GAS TURBINE ENGINE WITH AXIAL FLOW COMPRESSOR Proceedings of the th Brazilian Congress of Thermal Sciences and Engineering ENCIT 6 Braz. Soc. of Mechanical Sciences and Engineering ABCM, Curitiba, Brazil, Dec. 5-8, 6 Paper CIT6-96 INFLUENCE OF ROTATING

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information

Chapter three. Two-dimensional Cascades. Laith Batarseh

Chapter three. Two-dimensional Cascades. Laith Batarseh Chapter three Two-dimensional Cascades Laith Batarseh Turbo cascades The linear cascade of blades comprises a number of identical blades, equally spaced and parallel to one another cascade tunnel low-speed,

More information

Axial Flow and Radial Flow Gas Turbines

Axial Flow and Radial Flow Gas Turbines 7 Axial Flow and Radial Flow Gas Turbines 7.1 INTRODUCTION TO AXIAL FLOW TURBINES The axial flow gas turbine is used in almost all applications of gas turbine power plant. Development of the axial flow

More information

Stator Blade Motor Motor Housing

Stator Blade Motor Motor Housing The internal workings of a Ducted Fan The rotor velocity vectors and blade angles After looking at EDFs from a pure axial change of momentum position we must now address the question how the fan is shaped

More information

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course

Prof. Dr.-Ing. F.-K. Benra. ISE Bachelor Course University Duisburg-Essen Campus Duisburg Faculty of Engineering Science Department of Mechanical Engineering Name Matr.- Nr. Examination: Fluid Machines Examiner: Prof. Dr.-Ing. F.-K. Benra Date of examination:

More information

(Refer Slide Time: 0:57)

(Refer Slide Time: 0:57) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part B. Module-2. Lecture-4. Representation of Turbo Machines

More information

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University

Turbomachinery. Hasan Ozcan Assistant Professor. Mechanical Engineering Department Faculty of Engineering Karabuk University Turbomachinery Hasan Ozcan Assistant Professor Mechanical Engineering Department Faculty of Engineering Karabuk University Introduction Hasan Ozcan, Ph.D, (Assistant Professor) B.Sc :Erciyes University,

More information

Turbomachinery Aero-Thermodynamics

Turbomachinery Aero-Thermodynamics Turbomachinery Aero-Thermodynamics Aero-Energetics 3D Alexis. Giauque 1 1 Laboratoire de Mécanique des Fluides et Acoustique Ecole Centrale de Lyon Ecole Centrale Paris, January-February 2015 Alexis Giauque

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

Dynamic centrifugal compressor model for system simulation

Dynamic centrifugal compressor model for system simulation Journal of Power Sources xxx (2005) xxx xxx Dynamic centrifugal compressor model for system simulation Wei Jiang, Jamil Khan, Roger A. Dougal Department of Mechanical Engineering, University of South Carolina,

More information

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS

Dr. S. Ramachandran Prof. R. Devaraj. Mr. YVS. Karthick AIR WALK PUBLICATIONS Fluid Machinery As per Revised Syllabus of Leading Universities including APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Dr. S. Ramachandran Prof. R. Devaraj Professors School of Mechanical Engineering Sathyabama

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

Unified Propulsion Quiz May 7, 2004

Unified Propulsion Quiz May 7, 2004 Unified Propulsion Quiz May 7, 2004 Closed Book no notes other than the equation sheet provided with the exam Calculators allowed. Put your name on each page of the exam. Read all questions carefully.

More information

International Journal of Research in Advent Technology Available Online at:

International Journal of Research in Advent Technology Available Online at: A COMPUTER PROGRAMMED DESIGN OPTIMISATION AND ANALYSIS OF COMPRESSOR IMPELLER G. Naga Malleshwar Rao 1, Dr. S.L.V. Prasad 2, Dr. S. Sudhakarbabu 3 1, 2 Professor of Mechanical Engineering, Shri Shirdi

More information

Exercise 8 - Turbocompressors

Exercise 8 - Turbocompressors Exercise 8 - Turbocompressors A turbocompressor TC) or turbocharger is a mechanical device used in internal combustion engines to enhance their power output. The basic idea of a TC is to force additional

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Andrey Sherbina 1, Ivan Klimov 2 and Leonid Moroz 3 SoftInWay Inc., 1500 District Avenue, Burlington, MA, 01803,

More information

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Lecture Notes CHE 31 Fluid Mechanics (Fall 010) 9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook. Basics (pressure head, efficiency, working point, stability) Pumps

More information

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat

Akshay Khadse, Lauren Blanchette, Mahmood Mohagheghi, Jayanta Kapat Impact of S-CO2 Properties on Centrifugal Compressor Impeller: Comparison of Two Loss Models for Mean Line Analyses The Supercritical CO2 Power Cycles Symposium 2016 Akshay Khadse, Lauren Blanchette, Mahmood

More information

Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD

Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD International Journal of Ignited Minds (IJIMIINDS) Performance Investigation of High Pressure Ratio Centrifugal Compressor using CFD Manjunath DC a, Rajesh b, Dr.V.M.Kulkarni c a PG student, Department

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS

DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS DESIGN OF A CENTRIFUGAL COMPRESSOR FOR NATURAL GAS S. K. Kurauchi a, and J. R. Barbosa b a Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica Departamento de Turbomáquinas São José dos

More information

Contents. Preface... xvii

Contents. Preface... xvii Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2

More information

COMPUTATIONAL METHOD

COMPUTATIONAL METHOD Multi Objective Design Optimization of Rocket Engine Turbopump Turbine Naoki Tani, Akira Oyama and Nobuhiro Yamanishi tani.naoki@jaxa.jp Japan Aerospace Exploration Agency JAXA is now planning to develop

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. #01 Lecture No. # 07 Jet Engine Cycles For Aircraft propulsion

More information

Centrifugal pumps - characteristics

Centrifugal pumps - characteristics University of Ljubljana Faculty of mechanical engineering Askerceva 6 1000 Ljubljana, Slovenija telefon: 01 477 1 00 faks: 01 51 85 67 www.fs.uni-lj.si e-mail: dekanat@fs.uni-lj.si Laboratory for Heat

More information

A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS

A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS A SIMPLE ACOUSTIC MODEL TO SIMULATE THE BLADE-PASSING FREQUENCY SOUND PRESSURE GENERATED IN THE VOLUTE OF CENTRIFUGAL PUMPS PACS REFERENCE: 43.28.Ra Parrondo Gayo, Jorge; Pérez Castillo, Javier; Fernández

More information

Principles of Turbomachinery

Principles of Turbomachinery Principles of Turbomachinery To J. M. T. Principles of Turbomachinery R. K. Turton Lecturer in Mechanical Engineering Loughborough University of Technology London New York E. & F. N. Spon ISBN 978-94-010-9691-1

More information

IX. COMPRESSIBLE FLOW. ρ = P

IX. COMPRESSIBLE FLOW. ρ = P IX. COMPRESSIBLE FLOW Compressible flow is the study of fluids flowing at speeds comparable to the local speed of sound. This occurs when fluid speeds are about 30% or more of the local acoustic velocity.

More information

Aerodynamics of Centrifugal Turbine Cascades

Aerodynamics of Centrifugal Turbine Cascades ASME ORC 2013 2nd International Seminar on ORC Power Systems October 7th-8th, Rotterdam, The Netherlands Aerodynamics of Centrifugal Turbine Cascades G. Persico, M. Pini, V. Dossena, and P. Gaetani Laboratorio

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet Experiment 4 Impact of a Jet Purpose The purpose of this experiment is to demonstrate and verify the integral momentum equation. The force generated by a jet of water deflected by an impact surface is

More information

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids

Department of Civil and Environmental Engineering CVNG 1001: Mechanics of Fluids INTRODUCTION Hydrodynamic Machines A hydromachine is a device used either for extracting energy from a fluid or to add energy to a fluid. There are many types of hydromachines and Figure 1 below illustrates

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

Subjects: Velocity triangles; Compressor performance maps

Subjects: Velocity triangles; Compressor performance maps 16.50 Lecture 5 Subjects: Velocity triangles; Compressor performance maps In the last lecture we discussed the basic mechanisms of energy exchange in compressors and drew some simple velocity triangles

More information

Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee

Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee Steam and Gas Power Systems Prof. Ravi Kumar Department of Mechanical industrial engineering Indian Institute of Technology Roorkee Module No # 06 Lecture No # 26 Impulse Reaction Steam Turbines Hello

More information

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C

Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Two Dimensional Design of Axial Compressor An Enhanced Version of LUAX-C Daniele Perrotti Thesis for the Degree of Master of Science Division of Thermal Power Engineering Department of Energy Sciences

More information

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS 4 th International Conference on Mechanical Engineering, December 26-28, 21, Dhaka, Bangladesh/pp. IV 55-6 COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS Nitin N. Vibhakar* and S.

More information

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- 36 1 In this lecture... Lect-36 Tutorial on radial flow turbines 2 Problem # 1 Lect-36 The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter

More information

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor

Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 1 Lecture-10 Tutorial -2 Solved Problems and Tutorial Problems On Three Dimensional flow in Axial Flow Compressor 2 Recap of simple 3-D flow theories (These are mainly used for design) Lect-10 1)Free Vortex

More information

Specific Static rotor work ( P P )

Specific Static rotor work ( P P ) The specific Static Rotor ork p 1 ρ Specific Static rotor work ( P P ) here P, P static pressures at points, (P P ) static pressure difference of the rotor ρ density, in case of a compressible medium average

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 ISSN 0976-6480 (Print) ISSN

More information

Centrifugal Machines Table of Contents

Centrifugal Machines Table of Contents NLNG Course 017 Table of Contents 1 Introduction and Basic Principles... 1.1 Hydraulic Machines... 1.... 1.3 Pump Geometry... 1.4 Pump Blade Geometry...3 1.5 Diffusers...5 1.6 Pump Losses...6 1.7 Example

More information

Modeling and Validation of the SR-30 Turbojet Engine

Modeling and Validation of the SR-30 Turbojet Engine Modeling and Validation of the SR-30 Turbojet Engine Thermal Energy Technology 6. Semester Group TE6-604 Aalborg University Title: Modeling and Validation of the SR-30 Turbojet Engine Semester: 6. Semester

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2) Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET Dhaka-1000, Bangladesh zahurul@me.buet.ac.bd

More information

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine To cite this article: L Zhang et al 013 IOP

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet Lecture 41 1 Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet 2 Problem-1 Ramjet A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kpa, Ta= - 56.5 0 C = 216.5

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

Turbomachinery Flow Physics and Dynamic Performance

Turbomachinery Flow Physics and Dynamic Performance Turbomachinery Flow Physics and Dynamic Performance Bearbeitet von Meinhard T Schobeiri 1. Auflage 2004. Buch. XXI, 522 S. Hardcover ISBN 978 3 540 22368 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 2070

More information

Numerical Analysis of Partial Admission in Axial Turbines. Narmin Baagherzadeh Hushmandi

Numerical Analysis of Partial Admission in Axial Turbines. Narmin Baagherzadeh Hushmandi Numerical Analysis of Partial Admission in Axial Turbines Narmin Baagherzadeh Hushmandi Doctoral Thesis 2010 II Doctoral Thesis Report / Narmin B. Hushmandi 2009 ABSTRACT Numerical analysis of partial

More information

Flow analysis in centrifugal compressor vaneless diffusers

Flow analysis in centrifugal compressor vaneless diffusers 348 Journal of Scientific & Industrial Research J SCI IND RES VOL 67 MAY 2008 Vol. 67, May 2008, pp. 348-354 Flow analysis in centrifugal compressor vaneless diffusers Ozturk Tatar, Adnan Ozturk and Ali

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering

Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Chapter 7 Steam Turbines MEE 325 Power Plants Engineering Atikorn W. Mechanical Engineering Department King Mongkut s University of Technology Thonburi Introduction Steam turbine is an energy conversion

More information

Design of Radial Turbines & Turbochargers

Design of Radial Turbines & Turbochargers RMD50 Design of Radial Turbines & Turbochargers Session delivered by: Prof. Q. H. Nagpurwala 4 @ M S Ramaiah School of Advanced Studies, Bengaluru Session Objective RMD50 To discuss the design of radial

More information

International ejournals

International ejournals Available online at www.internationalejournals.com International ejournals International ejournal of Mathematics and Engineering 170 (2012) 1603 1612 Design and Coupled Field Analysis of First Stage Gas

More information

Quiz 2 May 18, Statement True False 1. For a turbojet, a high. gives a high thermodynamic efficiency at any compression ratio.

Quiz 2 May 18, Statement True False 1. For a turbojet, a high. gives a high thermodynamic efficiency at any compression ratio. Quiz 2 May 18, 2011 16.50 Propulsion Systems Spring 2011 Two hours, open book, open notes TRUE-FALSE QUESTIONS Justify your answer in no more than two lines. 4 points for correct answer and explanation

More information

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS

ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines ACCURACY OF FAST-RESPONSE PROBES IN UNSTEADY TURBINE FLOWS R. J. Miller Whittle Laboratory University

More information

A NEW METHOD FOR PREDICITING THE PERFORAMNCE MAP OF A SINGLE STAGE OF A CENTRIFUGAL COMPRESSOR

A NEW METHOD FOR PREDICITING THE PERFORAMNCE MAP OF A SINGLE STAGE OF A CENTRIFUGAL COMPRESSOR Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017 Jan 16-18, 2014, Zurich, Switzerland www.pps.global GPPF-2017-119 A NEW METHOD FOR PREDICITING THE PERFORAMNCE MAP OF A SINGLE STAGE OF

More information

Turbine Blade Design of a Micro Gas Turbine

Turbine Blade Design of a Micro Gas Turbine Turbine Blade Design of a Micro Gas Turbine Bhagawat Yedla Vellore Institute of Technlogy, Vellore 632014, India Sanchit Nawal Vellore Institute of Technlogy, Vellore 632014, India Shreehari Murali Vellore

More information

Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach

Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach Rotating Machinery, 10: 75 84, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print DOI: 10.1080/10236210490258106 Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach Yuri

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

SOE2156: Fluids Lecture 4

SOE2156: Fluids Lecture 4 Turbo SOE2156: s Lecture 4 machine { a device exchanging energy (work) between a uid and a mechanical system. In particular : a turbomachine is a device using a rotating mechanical system. The ow of energy

More information