Harvesting. Clean Energy Production. The Best Way to Predict The Future Is To Create It. The Future is in Your Hands.

Size: px
Start display at page:

Download "Harvesting. Clean Energy Production. The Best Way to Predict The Future Is To Create It. The Future is in Your Hands."

Transcription

1 Harvesting Spacetime-Motive Force for Clean Energy Production The Best Way to Predict The Future Is To Create It. The Future is in Your Hands. Presented by David Lewis Anderson, Ph.D. Innovation and Excellence in Time Technology

2 Spacetime Physics for Clean Energy Production World Energy Consumption: Past, Present and Future Implications to Human Society Global Strategic Plan that Works? Potential Solutions in Spacetime Physics: Spacetime-Motive Force Time Reactors Becoming a Part of the Solution A vision for a world energy solution serving the greater good of human society and the planet.

3 World Energy Consumption: History INDIVIDUAL ENERGY CONSUMPTION Primitive Man 1,000,000 B.C. Energy consumed in the form of food Domestic: Energy for cooking, heating, etc. Services: Energy for office work, trade, teaching Energy for industry and agriculture Energy for transport Hunter 100,000 B.C. Primitive Farmer 5,000 B.C. Developed Farmer 1400AD 1,400 A.D. Industrial Man 1,875 A.D. Technological Man 1,950 A.D Gigajoules per person per year Individual Consumption of Energy Has Increased Dramatically 50 0

4 World Energy Consumption: Trends Increasing planet population and industrialization are predicted to significantly increase world energy demands

5 World Energy Consumption: Trends Today 28% of the world s population or ¾ of the world s population consumes 77% of the world s energy production uses less than ¼ of the energy produced. Increasing planet population and industrialization are predicted to significantly increase world energy demands

6 World Energy Consumption: Trends Increasing planet population and industrialization are predicted to significantly increase world energy demands

7 World Energy Consumption: Trends Based on present strategic direction, Earth s fossil fuels will continue to remain as the primary source for world energy

8 The Vision or Destination is Correct The Strategic Plan to Get There is Flawed The definition of insanity is doing the same thing over and over and expecting it to come out different. Albert Einstein

9 Implications to Human Society This planet is accelerating along a path that will continue to deplete its resources, damage its ecosystem and create great risk for human society.

10 Potential Next Generation Solutions Technology That Goes Straight to the Source of Hydro-Electric and Tidal Power

11 Energy from Curved Spacetime Abundant Supply Naturally-Occurring Clean Process Direct to Source (Efficiency) No Hazardous Byproducts Minimal Impact to Planet More Analysis Needed The Next Generation of Energy Production May Harvest the Flow of Spacetime-Motive Force across curved spacetime

12 A Naturally-Occurring Power Source Spacetime-Motive Force Inertial Frame-Dragging Effect Rotating planets or bodies twists spacetime, like a spring. The potential energy stored in curved spacetime is enormous.

13 A Naturally-Occurring Power Source Spacetime-Motive Force Inertial Frame-Dragging Effect Rotating planets or bodies twists spacetime, like a spring. The potential energy stored in curved spacetime is enormous.

14 How much Inertial Frame-Dragging? Frame Dragging is Small but the Earth is big. How large is the frame-dragging effect? Innovation and Excellence in Time Technology

15 What does it mean? How Much Power? ω is the angular speed Period of Earth = hrs I is the moment of inertia. Angular Velocity = 7.29 x 10-5 rad/sec K is the kinetic energy. Moment of Inertia = 8.04 x kg m x Joules! The Kinetic Energy of our rotating planet is very large! But is it safe to harvest?

16 Impact of Harvesting Spacetime-Motive Force Global Tides Change Earth s Rotation Slows Orbit of Moon Increases Weather Patterns Altered Global Chaos! End of the World? Nothing is Free. Our planet is a complex system. Everything is connected and the Conservation of Energy and Physics demand their must be an effect!?

17 Impact of Harvesting Spacetime-Motive Force Let s use an example Period of 1000 years Gradually slow Earth s rotation by seconds Day would become seconds not seconds A possible unnoticeable effect with no consequences Assume ASTC = 1.0 (this is the Spacetime Coupling Coefficient)

18 Impact of Harvesting Spacetime-Motive Force Let s use an example The Result Period of 1000 years Gradually slow Earth s rotation by seconds Day would become seconds not seconds A possible unnoticeable effect with no consequences Assume ASTC = 1.0 (this is the Spacetime Coupling Coefficient) Recalculating, l Earth gives up 3.6 * 1021 kg-m 2 /s 2, or 3.6 * Joules. A Joule is a watt-second. To convert this into kwh, we divide by 3600 seconds/hour and 1000 watts/kw or 3.6 million, and get 1.0 * kwh. This is identical to the total electric use of all Americans for one thousand years as calculated above! The same as if a large 50-megawatt electric power generating plant operated constantly for hours, or around 23,000 years!

19 Impact of Harvesting Spacetime-Motive Force Let s use an example The Result Period of 1000 years Gradually slow Earth s rotation by seconds Day would become seconds not seconds A possible unnoticeable effect with no consequences Assume ASTC = 1.0 (this is the Spacetime Coupling Coefficient) Spinning i energy" of the Earth is around 60 thousand million times that TOTAL ELECTRIC USAGE of all Americans for an entire year! Recalculating, l Earth gives up 3.6 * 1021 kg-m 2 /s 2, or 3.6 * Joules. A Joule is a watt-second. To convert this into kwh, we divide by 3600 seconds/hour and 1000 watts/kw or 3.6 million, and get 1.0 * 1015 kwh. This is identical to the total electric use of all Americans for one thousand years as calculated above! The same as if a large 50-megawatt electric power generating plant operated constantly for 2 * 108 hours, or around 23,000 years!

20 Energy from Curved Spacetime + + One approach to harvest spacetime-motive force stored in the curved spacetime surrounding a planet, or any rotating body, is to use a Time-Warped Field Generator or Time Reactor

21 Time-warped Field Generator Time-warped Field Technology accesses the potential energy differences between two areas of twisted spacetime created by inertial frame-dragging. Time-warped dfield ldgenerators were originally i designed dto generate containable and controllable fields of closed-timelike curves for application in time control technology research. Innovation and Excellence in Time Technology

22 Time Reactor Description Description: A system accessing and applying the stored potential energy within regions of curved spacetime or hyperspace. Twisted spacetime around the earth, or any rotating body, contains enormous levels of potential energy. This is due to the tension in the fabric of spacetime caused by inertial frame-dragging. Problems Addressed: This world lacks an abundant source of plentiful and clean energy. Present power generation systems are inefficient, expensive and create dangerous or harmful byproducts of operation. Also, there is not presently a reliable source of time-warped fields, including closed time-like curves, for use in spacetime research, development and real-world applications. Solution: A time reactor generates both high levels of clean power and containable and controllable timewarped fields and closed time-like curves. Illustration showing two points, A and B, separated across a distance of curved spacetime. A Time Reactor is a TwF Generator optimized for harvesting energy. Innovation and Excellence in Time Technology

23 Time Reactor Configurations Earth-based Emitter Space-based Collector Earth-Based Emitter and Collector Space-Based Emitter and Collector Energy Flow Energy Flow Space-Based Emitter Earth-based Collector Micro-scale Reactor Large Scale Reactor Network A single Time Reactor may include some parts and components at a single point or at two or more points within a region of curved spacetime or hyperspace. Innovation and Excellence in Time Technology

24 Time Reactor Beam Discharges and Captures Spacetime Motive Force How Does It Work? Region of curved spacetime or hyperspace 1. Region and Characteristics are Important 2. Reactor Emitter/Collector Alignment 1. With Each Other 2. At Point of Intersection 3. Emitter Field Charged and Beam Initiated 1. Chemical Reagent 2. Laser Array 3. High Initial Energy 4. Rotating Field Also Injected in Emitter 1. Proprietary Injector System Design 2. Combined Fields Facilitates SMF Propagation 3. Contains the SMF Discharge When Formed 5. SMF Discharge Occurs 1. Captured Energy 2. Concentrated CTCs A Time Reactor simply discharges and captures potential energy stored within curved spacetime or hyperspace.

25 Time Reactor Components A basic time reactor may include just one emitter and collector or arrays of each. This may be at a single location or multiple locations within regions of curved spacetime or hyperspace. System physical size may range from the micro level to systems that cover large surface areas of a planet. The key components of a Time Reactor May Vary Innovation and Excellence in Time Technology

26 More Complex Considerations Earth is Not Solid ASTC typically 1.0 Support Technologies are Lossy Regional Characteristics Vary More Impact Analysis Must Better Understand Effect on our Planetary System and Society Still, Orders of Magnitude Improvement: Output t Performance Risk and Hazard Reduction There are complex variances and efficiency i considerations beyond these simple examples. However, energy production output has a significantly higher potential than present technologies.

27 Becoming A Part of the Solution?? Innovation and Excellence in Time Technology

28 Intentions Are Not Enough George Roter, CEO Engineers Without Borders Change Starts With You Innovation and Excellence in Time Technology

29 Have Hope, And Look For It Dr. Edgar Mitchell Scientist t Test Pilot Naval Officer Astronaut Entrepreneur Author Follow your dreams and have faith in yourself Innovation and Excellence in Time Technology

30 We do not see our universe the way it is. We see the universe the way we are. David Lewis Anderson The first step forward to understand new opportunities in spacetime physics for ourselves and human society is the most difficult. Innovation and Excellence in Time Technology

31 Harvesting Spacetime-Motive Force for Clean Energy Production The Best Way to Predict The Future Is To Create It. The Future is in Your Hands. Presented by David Lewis Anderson, Ph.D. To learn more visit Innovation and Excellence in Time Technology

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

KICKSTART PHYSICS SPACE 1. SPEED AND ESCAPE VELOCITY 2. PROJECTILE MOTION 3. ACCELERATION AND G-FORCES 4. C AND RELATIVITY 5.

KICKSTART PHYSICS SPACE 1. SPEED AND ESCAPE VELOCITY 2. PROJECTILE MOTION 3. ACCELERATION AND G-FORCES 4. C AND RELATIVITY 5. KICKSTART PHYSICS SPACE 1. SPEED AND ESCAPE VELOCITY 2. PROJECTILE MOTION 3. ACCELERATION AND GFORCES 4. C AND RELATIVITY 5. EINSTEIN Kickstart would like to acknowledge and pay respect to the traditional

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Honors Physics 1 Course Code: 2003390 UNIT 4 TOPIC of STUDY: Newton s Laws of Motion and the Law of Gravity STANDARDS: 10: Energy, 12: Motion ~Net force produces motion ~There are four fundamental

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Circular Motion and Gravity Lecture 5

Circular Motion and Gravity Lecture 5 Circular Motion and Gravity Lecture 5 ˆ Today we talk about circular motion. There are two reasons to do this... ˆ Last week we talked about Newton s laws in problems dealing with straight-line motion.

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC

General Relativity: Einstein s Theory of Gravitation. Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC General Relativity: Einstein s Theory of Gravitation Presented By Arien Crellin-Quick and Tony Miller SPRING 2009 PHYS43, SRJC The Motivations of General Relativity General Relativity, or GR, was created

More information

4.1 Energy Energy changes in a system, and the ways energy is stored before and after such changes Energy stores and systems.

4.1 Energy Energy changes in a system, and the ways energy is stored before and after such changes Energy stores and systems. 4.1 Energy The concept of energy emerged in the 19th century. The idea was used to explain the work output of steam engines and then generalised to understand other heat engines. It also became a key tool

More information

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College Gravitational Wave Kehan Chen 2017.7.29 Math 190S Duke Summer College 1.Introduction Since Albert Einstein released his masterpiece theory of general relativity, there has been prediction of the existence

More information

Lecture: October 1, 2010

Lecture: October 1, 2010 Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on

More information

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Agenda Announce: Stony Brook talk this Friday on Precision Cosmology Project Part I due in one week before class: one paragraph

More information

Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions

Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions Einstein s silence to Hermann Oberth s principle of relativistic fuelenergy Inflation and thirteen unanswered relativity questions Abstract: The American Apollo Space Program Rocket Pioneer group member

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

10-6 Angular Momentum and Its Conservation [with Concept Coach]

10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax-CNX module: m50810 1 10-6 Angular Momentum and Its Conservation [with Concept Coach] OpenStax Tutor Based on Angular Momentum and Its Conservation by OpenStax College This work is produced by

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 30. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 30 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 1 Gravity & The Distances to Stars Lecture 8 Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 2 Preparing for the Exam 1 Exams in this class are multiple choice, but the questions can be

More information

2 Energy from the Nucleus

2 Energy from the Nucleus CHAPTER 4 2 Energy from the Nucleus SECTION Atomic Energy BEFORE YOU READ After you read this section, you should be able to answer these questions: What is nuclear fission? What is nuclear fusion? What

More information

Harvesting Lunar Eccentricity?

Harvesting Lunar Eccentricity? Harvesting Lunar Eccentricity? Terry R. McConnell Syracuse University November 7, 2014 Abstract A thought experiment involving elementary physics shows that it is possible, in principle, to extract a large

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves

ASTR 200 : Lecture 31. More Gravity: Tides, GR, and Gravitational Waves ASTR 200 : Lecture 31 More Gravity: Tides, GR, and Gravitational Waves 1 Topic One : Tides Differential tidal forces on the Earth. 2 How do tides work???? Think about 3 billiard balls sitting in space

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 Topics Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration Centripetal Force Angular

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

THE SOLAR SYSTEM NOTE TAKING WORKSHEET ANSWERS

THE SOLAR SYSTEM NOTE TAKING WORKSHEET ANSWERS page 1 / 5 page 2 / 5 the solar system note pdf The Solar System is the gravitationally bound planetary system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that

More information

Monday, October 10, 2011

Monday, October 10, 2011 the shuttle blasts off Then comes the tremendous pressure of three G s and the sudden release into weightlessness as the ship leaves the gravitational field behind -from The Arizona Republic 1 Chapter

More information

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter

GRADE EIGHT CURRICULUM. Unit 1: The Makeup and Interactions of Matter Chariho Regional School District - Science Curriculum September, 2016 GRADE EIGHT CURRICULUM Unit 1: The Makeup and Interactions of Matter OVERVIEW Summary The performance expectations for this unit help

More information

Physics. Chapter 9 Gravity

Physics. Chapter 9 Gravity Physics Chapter 9 Gravity The Newtonian Synthesis Gravity is a Universal Force The Newtonian Synthesis According to legend, Newton discovered gravity while sitting under an apple tree. The Falling Moon

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

By Daniel C. Edelson, PhD

By Daniel C. Edelson, PhD Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore GEO - L ITERACY Preparation for Far-Reaching Decisions For the complete

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran

ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran Surprising as it may be to most non-scientists and even to some scientists, Albert Einstein concluded in his later years that the past, present,

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We

More information

Tides Light the Electromagnetic Spectrum Thermal Radiation. Events. Homework Due Next time (Sept. 22) Exam I on Sept. 24

Tides Light the Electromagnetic Spectrum Thermal Radiation. Events. Homework Due Next time (Sept. 22) Exam I on Sept. 24 Events Today Tides Light the Electromagnetic Spectrum Thermal Radiation Homework Due Next time (Sept. 22) Exam I on Sept. 24 Why are stars and planets spherical? Gravity pulls - it is an attractive force

More information

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed l 1 more day for LON-CAPA #4 l First exam: Feb 6 in Life Sciences A133 1:00 2:20 PM 40 questions, should not take full time review in 2 nd half of this lecture you may bring 1 8.5 X11 sheet of paper with

More information

The Earth, the Sun and the Moon

The Earth, the Sun and the Moon The Earth, the Sun and the Moon Overview Page 1 of 14 Introduction The Earth, The Sun and The Moon is a software product, designed primarily for presentation on an interactive whiteboard. Teachers can

More information

Where do objects get their energy?

Where do objects get their energy? Where do objects get their energy? Energy makes matter move. Energy is always 'conserved' Conservation of Energy Energy can neither be created nor destroyed The total energy content of the universe was

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

Space SPACE KICKSTART PHYSICS WORKSHOP

Space SPACE KICKSTART PHYSICS WORKSHOP SPACE KICKSTART PHYSICS WORKSHOP LIST OF EXPERIMENTS 1. Speed & escape velocity 2. Projectile Motion 3. Acceleration & g-forces 4. c & Relativity 5. Einstein Name: Kickstart would like to acknowledge and

More information

PYP of the IB: Program of Inquiry. An inquiry into: An inquiry into How we express ourselves. An inquiry into How the world works

PYP of the IB: Program of Inquiry. An inquiry into: An inquiry into How we express ourselves. An inquiry into How the world works PYP of the IB: Program of Inquiry School: Center for Inquiry at School #2 2010-2011 : Age the nature of orientation in and time; personal the the ways in the natural the the rights K Safe and Healthy Central

More information

Angular Momentum and Its Conservation

Angular Momentum and Its Conservation Angular Momentum and Its Conservation Bởi: OpenStaxCollege Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster and faster simply by

More information

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods. Physics I Unit 1 Methods in Science (Systems of Units) Estimated Time Frame Big Ideas for Units 10 Days Tools are needed for the study of Physics, such as measurement, conversions, significant figures,

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 3.1 & 3.3 & 3.4 - Energy, Work, and Power Energy, Work, and Power You need to know what energy, work, and power is, and the units for energy and

More information

Force on a Moving Charge in a Magnetic Field: Examples and Applications

Force on a Moving Charge in a Magnetic Field: Examples and Applications Force on a Moving Charge in a Magnetic Field: Examples and Applications Bởi: OpenStaxCollege Magnetic force can cause a charged particle to move in a circular or spiral path. Cosmic rays are energetic

More information

Interference of Light Photon with the Dark Energy

Interference of Light Photon with the Dark Energy Interference of Light Photon with the Dark Energy Syed Ahmed Kataria * Integrated Child Development Service, Srinagar, India Abstract: The photon of light is constant and stable; it does not travel and

More information

EXPLOITING THE NEW ENERGY SOURCE PHOTON ENERGY

EXPLOITING THE NEW ENERGY SOURCE PHOTON ENERGY EXPLOITING THE NEW ENERGY SOURCE PHOTON ENERGY (PROJECT OF ADVENTURE INVESTMENT) CONSTRUCTION MACHINERY AND INDUSTRIAL WORKS CONINCO JOINT STOCK COMPANY, (abbreviation name: CONINCO-MI JSC.,) Address:

More information

The Power of the Universe on Earth: Plasma Physics and Fusion Energy

The Power of the Universe on Earth: Plasma Physics and Fusion Energy Educating Kids & Exciting Teachers about Science: A Model from the Plasma Science Community The Power of the Universe on Earth: Plasma Physics and Fusion Energy David Newman Physics Department University

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

Universal gravitation

Universal gravitation Universal gravitation Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman February 22, 2017 W. Freeman Universal gravitation February 22, 2017 1 / 14 Announcements Extra homework help

More information

A. What is Energy? B. Kinetic Energy. 6.1: Energy of all shapes and sizes. 1 Define: (a) Watt (b) Joule (c) Erg

A. What is Energy? B. Kinetic Energy. 6.1: Energy of all shapes and sizes. 1 Define: (a) Watt (b) Joule (c) Erg 6.1: Energy of all shapes and sizes A. What is Energy? (a) Watt (b) Joule (c) Erg 2 Why does an electric bill have W-hrs listed on it? 3 What is the speed of light in centimeter-gram-second units? 4 Organize

More information

Physics. Special Relativity

Physics. Special Relativity Physics Special Relativity 1 Albert Einstein, the high school dropout and patent office clerk published his ideas on Special Relativity in 1905. 2 Special vs. General Relativity Special Relativity deals

More information

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA AN OVERVIEW OF NUCLEAR ENERGY Prof. Mushtaq Ahmad, MS, PhD, MIT, USA Outline of the Seminar 2 Motivation and Importance of Nuclear Energy Future Energy Planning in the Kingdom Current Status of Nuclear

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Landing-Sensor Choosing for Lunar Soft-Landing Process

Landing-Sensor Choosing for Lunar Soft-Landing Process Landing-Sensor Choosing for Lunar Soft-Landing Process Huang hao Chu Guibai Zhang He (China Academy of Space Technology, No.104 Youyi Road Haidian Beijing China) Abstract: Soft landing is an important

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Sep. 28, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

-SQA- SCOTTISH QUALIFICATIONS AUTHORITY. Hanover House 24 Douglas Street GLASGOW G2 7NQ NATIONAL CERTIFICATE MODULE DESCRIPTOR

-SQA- SCOTTISH QUALIFICATIONS AUTHORITY. Hanover House 24 Douglas Street GLASGOW G2 7NQ NATIONAL CERTIFICATE MODULE DESCRIPTOR -SQA- SCOTTISH QUALIFICATIONS AUTHORITY Hanover House 4 Douglas Street GLASGOW G 7NQ NATIONAL CERTIFICATE MODULE DESCRIPTOR -Module Number- 31715 -Session- 199-93 -Superclass- RC -Title- CIRCULAR MOTION

More information

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter 13.1 Neutron Stars Lecture Outline Chapter 13 Neutron Stars and After a Type I supernova, little or nothing remains of the original star. After a Type II supernova, part of the core may survive. It is

More information

GraspIT Questions AQA GCSE Physics Space physics

GraspIT Questions AQA GCSE Physics Space physics A. Solar system: stability of orbital motions; satellites (physics only) 1. Put these astronomical objects in order of size from largest to smallest. (3) Fill in the boxes in the correct order. the Moon

More information

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/16. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 10 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance with the

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

Midterm 2 PRS Questions

Midterm 2 PRS Questions Midterm 2 PRS Questions PRS questions from the lectures after Midterm 1 but before Midterm 2 PRS Question. You want to launch a rocket into space, and you want to maximize its kinetic energy. Suppose that

More information

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 21. Vivek Sharma UCSD Physics Physics D Lecture Slides Jan 1 Vivek Sharma UCSD Physics Particle Accelerators as Testing ground for S. Relativity When Electron Goes Fast it Gets Fat E = γ mc v As 1, γ c Apparent Mass approaches Relativistic

More information

R. Cons. Eng. Simon Mwangi REGISTERED CONSULTING ENGINEER

R. Cons. Eng. Simon Mwangi REGISTERED CONSULTING ENGINEER R. Cons. Eng. Simon Mwangi REGISTERED CONSULTING ENGINEER eng.simon.mwangi@gmail.com Vision 2030 Statement is a national long-term development blue-print to create a globally competitive and prosperous

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions that are designed to see if you have understood the main concepts of the chapter. Treat all balls with mass as point masses. 1.

More information

FACT SHEET. Inertial Confinement Fusion at the. National Ignition Facility. September 2012

FACT SHEET. Inertial Confinement Fusion at the. National Ignition Facility. September 2012 FACT SHEET Inertial Confinement Fusion at the National Ignition Facility September 2012 The United States faces significant challenges in how to meet its long-term electricity generation demand. By 2050,

More information

Big Questions. Physics 201, Lecture 7. Newton s First Law. What Did the Big Guys Say. Today s Topics. What does it take to maintain a motion?

Big Questions. Physics 201, Lecture 7. Newton s First Law. What Did the Big Guys Say. Today s Topics. What does it take to maintain a motion? Big Questions Physics 201, Lecture 7 oday s opics n n What does it take to maintain a motion? ewton s Laws of Motion (Chap. 5) n First Law, Force and Inertia Forces n Second Law, F=ma Mass n hird Law,

More information

The result is; distances are contracted in the direction of motion.

The result is; distances are contracted in the direction of motion. The result is; distances are contracted in the direction of motion. t = t/(1 v 2 /c 2 ) 0.5 d = d(1- v 2 /c 2 ) 0.5 These are the Lorentz equations. The Twin-Paradox. A woman astronaut is going to fly

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

Announce/Remind. Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back!

Announce/Remind. Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back! Announce/Remind Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back! Extra Credit Opportunity if you didn t do Monsters of the Milky

More information

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

HIGH TEMPERATURE CORE CREATION IN THE P-N JUNCTION OF SEMICONDUCTOR DEVICES AND ITS USAGE FOR FUSION. Vesellin Tashev, Angel Manev, Dimitar Valev

HIGH TEMPERATURE CORE CREATION IN THE P-N JUNCTION OF SEMICONDUCTOR DEVICES AND ITS USAGE FOR FUSION. Vesellin Tashev, Angel Manev, Dimitar Valev HIGH TEMPERATURE CORE CREATION IN THE P-N JUNCTION OF SEMICONDUCTOR DEVICES AND ITS USAGE FOR FUSION Vesellin Tashev, Angel Manev, Dimitar Valev Stara Zagora Department, Space Research and Technology Institute,

More information

Physics 201, Lecture 23

Physics 201, Lecture 23 Physics 201, Lecture 23 Today s Topics n Universal Gravitation (Chapter 13) n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (13.4) n Gravitational Potential Energy (13.5)

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

Year 7 Recall Booklet. Name: Class:

Year 7 Recall Booklet. Name: Class: Year 7 Recall Booklet Name: Class: Energy Kinetic energy Moving things have kinetic energy. The heavier a thing is and the faster it moves the more kinetic energy it has. All moving things have kinetic

More information

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 NAME DATE Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 Important note: this lab meets at the playground located at the SW corner of 23 rd and University streets, about 7 blocks

More information

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height Physics 01, Lecture Today s Topics n Universal Gravitation (Chapter 1 n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (1.4 n Gravitational Potential Energy (1.5 n Escape

More information

Chapter 3-4 Energy Work Power

Chapter 3-4 Energy Work Power Chapter 3-4 Energy 3-1. The Meaning of Work 3-2. Power 3-3. Kinetic Energy 3-4. Potential Energy 3-5. Energy Transformations 3-6. Conservation of Energy 3-7. The Nature of Heat 3-8. Linear Momentum 3-9.

More information

Section 5: Conservation of Energy and Gravitation

Section 5: Conservation of Energy and Gravitation Section 5: Conservation of Energy and Gravitation 5.01 Work 5.02 Kinetic and Gravitational Potential Energy Physics (6)(B) Physics (6)(C) 5.03 Conservation of Energy Physics (6)(A) 5.04 Elastic Potential

More information

Physics 2210 Fall 2011 David Ailion EXAM 4

Physics 2210 Fall 2011 David Ailion EXAM 4 Dd Physics 2210 Fall 2011 David Ailion EXAM 4 PLEASE FILL IN THE INFORMATION BELOW: Name (printed): Name (signed): Student ID Number (unid): u Discussion Instructor: Marc Lindley Jon Paul Lundquist Peter

More information

Chapter 3-4 Energy. Horsepower Kinetic Energy Work Potential Energy Power. James Watt

Chapter 3-4 Energy. Horsepower Kinetic Energy Work Potential Energy Power. James Watt Chapter 3-4 Energy Horsepower 3-1. The Meaning of Work 3-2. Power 3-3. Kinetic Energy 3-4. Potential Energy 3-5. Energy Transformations 3-6. Conservation of Energy 3-7. The Nature of Heat 3-8. Linear Momentum

More information

Review of physics concepts for Exam 3. April, 2019

Review of physics concepts for Exam 3. April, 2019 Review of physics concepts for Exam 3 April, 2019 Reminders: 1. The vector sum of all forces = (the total inertial mass ) *a 2. Gravity F = mg; E=mgh 3. Friction along a surface Ff = (friction coefficient)

More information

General Relativity and Black Holes

General Relativity and Black Holes General Relativity and Black Holes Lecture 19 1 Lecture Topics General Relativity The Principal of Equivalence Consequences of General Relativity slowing of clocks curvature of space-time Tests of GR Escape

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

P3 Revision Questions

P3 Revision Questions P3 Revision Questions Part 1 Question 1 What is a kilometre? Answer 1 1000metres Question 2 What is meant by an average speed? Answer 2 The average distance covered per second Question 3 How do speed cameras

More information

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Bring a calculator and a #2 pencil Allowed 1 page notes (front and back) E=mc 2, General Relativity, and exam review ISP209s10

More information

MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN

MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN ENGAGE THE ATTRACTION TANGO THE ATTRACTION TANGO In your science journal, on the next clean page, title the page with The Attraction Tango. In your group,

More information

3. Which one is a match? A. left picture B. middle picture C. right picture D. none of the above E. all look okay to me B

3. Which one is a match? A. left picture B. middle picture C. right picture D. none of the above E. all look okay to me B 3. If I observe a galaxy with an apparent velocity of recession of 1500 km/s, and Hubble s constant is 75 km/s/mpc, how far away is the galaxy?. 2 Mpc; about 6.5 million light years. 5 Mpc; about 16 million

More information