Chapter 3-4 Energy Work Power

Size: px
Start display at page:

Download "Chapter 3-4 Energy Work Power"

Transcription

1 Chapter 3-4 Energy 3-1. The Meaning of Work 3-2. Power 3-3. Kinetic Energy 3-4. Potential Energy 3-5. Energy Transformations 3-6. Conservation of Energy 3-7. The Nature of Heat 3-8. Linear Momentum 3-9. Rockets Angular Momentum Special Relativity Rest Energy General Relativity The Energy Problem The Future 3-1. Work Work equals force times distance. W = Fd The SI unit of work is the joule. 1 joule (J) = 1 newton-meter (N m) W=Fd=(100N)(8m)=800N m=800j 3-2. Power Power is the rate at which work is being done: P = W/t SI unit of power is the watt. 1 watt (W) = 1 joule/second (J/s) The kilowatt (kw) is a convenient unit of power for many applications. 1

2 Horsepower James Watt Perfected the steam engine 200 years ago Had to provide a comparison to the work output of a horse. He found that: Typical horse could perform 497 W of work for as much as 10 hours a day Watt increased the standard to 746 W 1 horsepower (hp) = 746 W = kw 1 kilowatt (kw) = 1.34 hp Early steam engines ranged from hp 3-3. Kinetic Energy Energy is that property something has that enables it to do work. The energy of a moving object is called kinetic energy (KE): KE = ½mv 2 where m = mass and v = speed. KE increases very rapidly with speed because of the v 2 factor Potential Energy Potential energy (PE) is the energy an object has by virtue of its position. Gravitational Potential Energy: PE = mgh 2

3 3-5. Energy Transformations Energy can be transformed or converted from one form to another Nature of Heat Count Rumford supported the British in the Revolutionary War and supervised the making of cannons. He observed that during the boring process heat was given off (frictional heat) that could be used to boil water and could be produced over and over again from the same piece of metal. Heat must be energy Energy Transformations Types of Energy 1. Kinetic energy 2. Potential energy 3. Chemical energy 4. Heat energy 5. Electric energy 6. Radiant energy 3

4 3-6. Conservation of Energy The law of conservation of energy states that energy cannot be created or destroyed, although it can be changed from one form to another. Matter can be considered as a form of energy; matter can be transformed into energy and energy into matter according to the law of conservation of energy. E o = m o c 2 where E o = rest energy, m o = rest mass, and c = speed of light (3x10 8 m/s or 186,000 miles/sec) Linear Momentum Linear Momentum is a measure of the tendency of a moving object to continue in motion along a straight line: p = mv 3-8. Linear Momentum The law of conservation of momentum states: In the absence of outside forces, the total momentum of a set of objects remains the same no matter how the objects interact with one another. 4

5 3-8. Linear Momentum Newton s Cradle-an example of the conservation of linear momentum Rockets The momentum of the exhaust gases is balanced by the rocket's upward momentum. Multistage rockets are more efficient than single-stage, and so are widely used Rockets Rockets are a version of Newton s third law of motion as well as the conservation of linear momentum. 5

6 3-10. Angular Momentum Angular momentum is a measure of the tendency of a rotating object to continue spinning about a fixed axis L=mvr L= angular Momentum m=mass circling v=velocity of rotation r=distance from center The smaller the r the faster the v. Angular momentum is conserved Angular Momentum Definition: The more angular momentum an object has, the greater its tendency to continue to spin (and be stable) Toy tops Footballs The earth Bullets Defining angular momentum is complicated; depends on How fast the object is turning Mass of the object How the mass is distributed (the further the mass is from the center of the object, the greater the angular momentum) Angular Momentum Gyroscopes Due to angular momentum, when a force is applied in one direction, the combined forces, including the angular momentum, will be in a perpendicular direction. watch?v=8h98bgrzpom Torpedo Gyroscope 6

7 3-10. Angular Momentum Naval Gyroscopes used to stabilize ships and guns Angular Momentum Naval Gyroscopes used to stabilize ships and guns Special Relativity Albert Einstein ( ) published the special theory of relativity in Special relativity is based on two postulates: 1. The laws of physics are the same in all frames of reference moving at constant velocity. 2. The speed of light (c ) in free space has the same value for all observers (c = 3 x 10 8 m/s) 7

8 3-11. Special Relativity m o = mγ heavier t o l o = t / γ slower = l / γ shorter Twin Paradox Muon Experiment 3.12 Rest Energy 3.12 Rest Energy E = mc 2 or Energy and Mass are the same! Example 3.8 p 91 How much mass is converted to energy in a 100MW nuclear power plant? T=(60)(60)(24)= 86,400 s/day E=Pt=10 8 W(86,400 s/day)=8.64 x J m = E/c 2 = 8.64 x J/(3 x 10 8 m/s) 2 m = 9.6 x 10-5 kg or about oz 8

9 3-13. General Relativity General theory of relativity was developed by Einstein in 1916, which related gravitation to the structure of space and time and showed that even light was subject to gravity The Energy Problem 1. Oil and natural gas reserves will last about another century.. 2. Although coal reserves will last several hundred more years, mining coal is dangerous, and burning coal creates environmental problems such as acid rain, air pollution, and enhanced global warming. 3. The potential for a large-scale nuclear accident is present. 4. Discharge of radioactive wastes into the environment from badly run nuclear power plants has occurred. 5. An unsolved disposal problem of radioactive nuclear waste exists. Fig

10 Fig Fig

11 Fig Fig The Energy Problem Chernobyl Nuclear Accident 11

12 3-14. The Energy Problem Chernobyl Nuclear Accident The Future The Future Energy consumption

13 Lecture Quiz What is the equation that defines work? Power? 2. How many horsepower is there in one kilowatt? 3. What kinds of energy are involved in a windmill electric generator? 4. Which theory of relativity involves gravity? 5. What is the major fuel used for energy? 13

Chapter 3-4 Energy. Horsepower Kinetic Energy Work Potential Energy Power. James Watt

Chapter 3-4 Energy. Horsepower Kinetic Energy Work Potential Energy Power. James Watt Chapter 3-4 Energy Horsepower 3-1. The Meaning of Work 3-2. Power 3-3. Kinetic Energy 3-4. Potential Energy 3-5. Energy Transformations 3-6. Conservation of Energy 3-7. The Nature of Heat 3-8. Linear Momentum

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Energy -- The money of physics Demo: Elastic Collisions Objects of equal mass exchange momentum in elastic collisions. 1 Demo: Blaster Balls

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards

P1 Quick Revision Questions. P1 for AQA GCSE examination 2018 onwards P1 Quick Revision Questions Question 1... of 50 What type of energy is stored in a stretched elastic band? Answer 1... of 50 Elastic potential energy. Question 2... of 50 What type of energy is stored

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Example 2. Example 1. Example 4. Example 3. Kinetic Energy. Kinetic Energy 11/19/15

Example 2. Example 1. Example 4. Example 3. Kinetic Energy. Kinetic Energy 11/19/15 A tugboat pulls a ship with a constant net horizontal force of 5.00 x 10 3 N and causes the ship to move through a harbor. How much work is done on the ship if it moves a distance of 3.00 km? Example A

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008 HNRS 227 Chapter 3 Energy presented by Prof. Geller Fall 2008 Don t Forget the Following Units of length, mass and time Metric Prefixes The Scientific Method Speed, velocity, acceleration Force Falling

More information

PSC1341 Chapter 3 Work, Power and Momentum

PSC1341 Chapter 3 Work, Power and Momentum PSC1341 Chapter 3 Work, Power and Momentum Chapter 3: Work, Power and Momentum A. Work B. Power C. Simple Machines D. Energy E. Kinetic energy F. Potential energy G. Law of Conservation of Energy H. Momentum

More information

Physics Year 11 Term 1 Week 7

Physics Year 11 Term 1 Week 7 Physics Year 11 Term 1 Week 7 Energy According to Einstein, a counterpart to mass An enormously important but abstract concept Energy can be stored (coal, oil, a watch spring) Energy is something moving

More information

CBSE Class 9 Work Energy and Power Quick Study Chapter Note

CBSE Class 9 Work Energy and Power Quick Study Chapter Note CBSE Class 9 Work Energy and Power Quick Study Chapter Note Work: In our daily life anything that makes us tired is known as work. For example, reading, writing, painting, walking, etc. In physics work

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [WORK, POWER AND ENERGY] CHAPTER NO. 7 A little concept of vector mathematics is applied here

More information

Work and the Work-Energy Theorem

Work and the Work-Energy Theorem Work and Energy Click on the topic to go to that section Energy and the Work-Energy Theorem Work and Energy 2009 by Goodman & Zavorotniy Forces and Potential Energy Conservation of Energy Power Conservation

More information

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434)

Energy. on this world and elsewhere. Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) Energy on this world and elsewhere Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu, click on classes

More information

Chapter 7 Kinetic Energy and Work

Chapter 7 Kinetic Energy and Work Prof. Dr. I. Nasser Chapter7_I 14/11/017 Chapter 7 Kinetic Energy and Work Energy: Measure of the ability of a body or system to do work or produce a change, expressed usually in joules or kilowatt hours

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively Het basisvak Toegepaste Natuurwetenschappen http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work Energy The ability to do work Work How we chance energy from one form to another

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th. Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 0th. F=ma Electric Force Work, Energy and Power Number 60 50 40 30 0 10 0 17 18 0

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics Today Announcements: HW#5 is due by 8:00 am Wed. Feb. 5th. Extra Credit Exam due by Tomorrow 8am. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics ISP09s9 Lecture 11-1- Energy and

More information

Conceptual Understanding

Conceptual Understanding Name Period Conceptual Understanding 1. Define work in scientific terms, and give the formula. What is it measured in? Work is a force applied over a distance to move and object. Force applied and object

More information

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works?

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works? Physics of Energy As we discussed. Our society needs to find a sustainable energy solution that Fulfills global energy needs in the long term. Doesn t degrade the environment. Premise of this course in

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Power. Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit:

Power. Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit: Power Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit: Alternative expression for power: if F is parallel to Δx. Example problem:

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule.

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Forms of Energy What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Major Classes of Energy 1. Kinetic energy (E k ) is the work needed to accelerate

More information

Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage

Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage Energy LCHS Work Forms of Energy Power Conservation of Energy Kepler s Laws of Motion Simple Machines Mechanical Advantage machine energy lever friction mechanical advantage input force mechanical system

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Chapter 3: Force, Work and Energy

Chapter 3: Force, Work and Energy Chapter 3: Force and Force Equilibrium Chapter 3: Force, Work and Energy Chapter 3: Force, Work and Energy 3.1 Mass and Weight 3.2 Newton's Law of Gravitation 3.3 Force and Newton's 3 Laws of Motion 3.4

More information

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11

Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Today HW#4 pushed back to 8:00 am Thursday Exam #1 is on Thursday Feb. 11 Bring a calculator and a #2 pencil Allowed 1 page notes (front and back) E=mc 2, General Relativity, and exam review ISP209s10

More information

Introduction to Energy Study Guide (also use your notes!!!!)

Introduction to Energy Study Guide (also use your notes!!!!) Introduction to Energy Study Guide (also use your notes!!!!) 1. What is energy? The ability to do work 2. What is kinetic energy? The energy of motion (movement) 3. Can objects with kinetic energy do work?

More information

Buoyancy Momentum/Impulse Angular Momentum Torque

Buoyancy Momentum/Impulse Angular Momentum Torque Buoyancy Momentum/Impulse Angular Momentum Torque Newton s Third Law Problem: How can a horse pull a cart if the cart is pulling back on the horse with an equal but opposite force? Aren t these balanced

More information

Physics 10 Lecture 7A. "Energy and persistence conquer all things. --Benjamin Franklin

Physics 10 Lecture 7A. Energy and persistence conquer all things. --Benjamin Franklin Physics 10 Lecture 7A "Energy and persistence conquer all things. --Benjamin Franklin Quiz 1 Info It will be a Scantron test covering Chapters 1, 2, 3, 4, 5, and 6. A list of equations, constants, and

More information

FORCE, WORK, ENERGY & POWER

FORCE, WORK, ENERGY & POWER INAYA MEDICAL COLLEGE (IMC) PHYS 101 - LECTURE 5 FORCE, WORK, ENERGY & POWER DR. MOHAMMED MOSTAFA EMAM 1 What change the state of object is called force. We mean by saying state, shape or position of the

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Slide. King Saud University College of Science Physics & Astronomy Dept.

Slide. King Saud University College of Science Physics & Astronomy Dept. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 7: ENERGY AND ENERGY TRANSFER LECTURE NO. 11 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR

More information

What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s:

What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: Energy & Work What is Energy? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: motion temperature shape color http://www.youtube.com/watch?v=-dpbvtabkju

More information

DATE: NAME: CLASS: BLM 6-8 ASSESSMENT. Multiple Choice Circle the letter for the choice that best completes the statement or answers the question.

DATE: NAME: CLASS: BLM 6-8 ASSESSMENT. Multiple Choice Circle the letter for the choice that best completes the statement or answers the question. Unit 2 Test Goal Demonstrate your understanding of the information presented in Unit 2. What to Do Carefully read the instructions before answering each set of questions. Multiple Choice Circle the letter

More information

work: When an unbalanced force acts on an object through some distance.

work: When an unbalanced force acts on an object through some distance. Work & Energy work: When an unbalanced force acts on an object through some distance. W = F x s [no motion = no work!] work -----> overcoming resistance Work is a scalar quantity and has no direction associated

More information

An Introduction. Work

An Introduction. Work Work and Energy An Introduction Work Work tells us how much a force or combination of forces changes the energy of a system. Work is the bridge between force (a vector) and energy (a scalar). W = F Dr

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes The Energy Story Nature of Energy Energy is all around you! l You can hear energy as sound. l You can see energy as light. l And you can feel it as wind. Nature of Energy You

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

Energy, Work, and Power

Energy, Work, and Power Energy, Work, and Power I. Energy - kinetic and potential - conservation II. Work - dot product - work-energy relations III. Springs IV. Power - machines and efficiency The student will be able to: 1 Define

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

Mechanics 4. Work, Power, Energy Linear Momentum Conservation Laws. Work W

Mechanics 4. Work, Power, Energy Linear Momentum Conservation Laws. Work W Mechanics 4 Work, Power, Energy Linear Momentum Conservation Laws Work W If a force F acts on a body and the body moves a distance s in the direction of the force, the work W done by the force F is defined

More information

Physics 20 Lesson 26 Energy, Work and Power

Physics 20 Lesson 26 Energy, Work and Power Physics 20 Lesson 26 Energy, Work and Power Let us recap what we have learned in Physics 20 so far. At the beginning of the course we learned about kinematics which is the description of how objects move

More information

Lecture 9: Kinetic Energy and Work 1

Lecture 9: Kinetic Energy and Work 1 Lecture 9: Kinetic Energy and Work 1 CHAPTER 6: Work and Kinetic Energy The concept of WORK has a very precise definition in physics. Work is a physical quantity produced when a Force moves an object through

More information

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy Let s pick up where we left off last time..the topic was gravitational potential energy Now, let s talk about a second form of energy Potential energy Imagine you are standing on top of half dome in Yosemite

More information

Energy and the Environment. HNRS 228 Spring 2010 Prof. Geller

Energy and the Environment. HNRS 228 Spring 2010 Prof. Geller Energy and the Environment HNRS 228 Spring 2010 Prof. Geller Good to Know Units of length, mass and time Metric Prefixes Relationship of Mass, Volume and Density The Scientific Method Speed, velocity,

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 3.1 & 3.3 & 3.4 - Energy, Work, and Power Energy, Work, and Power You need to know what energy, work, and power is, and the units for energy and

More information

Physics Unit 4:Work & Energy Name:

Physics Unit 4:Work & Energy Name: Name: Review and Preview We have come a long way in our study of mechanics. We started with the concepts of displacement and time, and built up to the more complex quantities of velocity and acceleration.

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Physics. Chapter 7 Energy

Physics. Chapter 7 Energy Physics Chapter 7 Energy Work How long does a force act? Last week, we meant time as in impulse (Ft) This week, we will take how long to mean distance Force x distance (Fd) is what we call WORK W = Fd

More information

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal =

W = Fd cos θ. W = (75.0 N)(25.0 m) cos (35.0º) = 1536 J = J. W 2400 kcal = 8 CHAPTER 7 WORK, ENERGY, AND ENERGY RESOURCES generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the

More information

Kinetic and Potential Energy. Supplemental Text Material Pages

Kinetic and Potential Energy. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Pages 326-333 Work Transference of Energy Work = Force x distance W=Fd Work Lifting load against the force of the weight of the object Twice the

More information

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed l 1 more day for LON-CAPA #4 l First exam: Feb 6 in Life Sciences A133 1:00 2:20 PM 40 questions, should not take full time review in 2 nd half of this lecture you may bring 1 8.5 X11 sheet of paper with

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Chapter 9: Finish Electromagnetic Waves

Chapter 9: Finish Electromagnetic Waves Chapter 9: Finish Electromagnetic Waves Electromagnetic Spectrum X-Rays Solar radiation Review for Exam 2: Chapters 6 9 Chapter 10: Special Relativity Classical (Galilean) Relativity Two Postulates of

More information

CPO Science Foundations of Physics

CPO Science Foundations of Physics CPO Science Foundations of Physics Unit 4, Chapter 10 Chapter 9 Unit 4: Energy and Momentum Chapter 10 Work and Energy 10.1 Machines and Mechanical Advantage 10.3 Energy and Conservation of Energy Chapter

More information

Lecture Notes (Work & Energy)

Lecture Notes (Work & Energy) Lecture Notes (Work & Energy) Intro: - one of the most central concepts in science is energy; the combination energy and matter makes up our universe - matter is the substance of the universe, while energy

More information

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy Introduction CHAPTER 1 1.1 Prime Movers Prime mover is a device which converts natural source of energy into mechanical work to drive machines for various applications. In olden days, man had to depend

More information

Energy & Sustainability. Lecture 3: Rules of the Game Energy units and conversion Factors And a few more words On probability

Energy & Sustainability. Lecture 3: Rules of the Game Energy units and conversion Factors And a few more words On probability Energy & Sustainability Lecture 3: Rules of the Game Energy units and conversion Factors And a few more words On probability January 20, 2009 Previous Class Summary reminder of last class The laws of nature

More information

WORK, ENERGY AND POWER

WORK, ENERGY AND POWER WORK, ENERGY AND POWER 4.1 Introduction Work is said to be done when a force applied on the body displaces the body through a certain distance in the direction of force. 4. Work Done by a Constant Force

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common?

Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common? Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by :00 pm Thursday February 18th. (It opens on LONCAPA today) The Electric Force Work, Energy and Power Number

More information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J). Work Work The process of moving an object by applying a force. Work = Force x displacement. Work is measured in Joules (J) or Newton-meters (Nm). W = Fd Example: To prove his strength, a weightlifter pushes

More information

1 An experiment is carried out to find a value for g, the acceleration of free fall.

1 An experiment is carried out to find a value for g, the acceleration of free fall. 1 An experiment is carried out to find a value for g, the acceleration of free fall. A weighted card of known length l is dropped through two light gates. The light gates are attached to a data logger

More information

CIE Physics IGCSE. Topic 1: General Physics

CIE Physics IGCSE. Topic 1: General Physics CIE Physics IGCSE Topic 1: General Physics Summary Notes Length and time A ruler (rule) is used to measure the length of an object between 1mm and 1m. The volume of an object of irregular shape can be

More information

Review of (don t write this down!)

Review of (don t write this down!) Homework Video Review of (don t write this down!) Unit Conversions SI (System Internationale) base units of measurement distance meter (m) time second (s) speed meter per second (m/s) mass gram (g) force

More information

CHAPTER 9 FORCE AND LAWS OF MOTION

CHAPTER 9 FORCE AND LAWS OF MOTION CHAPTER 9 FORCE AND LAWS OF MOTION Q 1. What is a force? Ans: Force is a push or pull which tries to bring the change in the state of rest or of uniform motion in a straight line. Unit of force: force

More information

DATE: NAME: CLASS: BLM 4-8 ASSESSMENT

DATE: NAME: CLASS: BLM 4-8 ASSESSMENT Chapter 4 Test Goal Demonstrate your understanding of the information presented in Chapter 4. What to Do Carefully read the instructions before answering each set of questions. True/False On the line provided,

More information

4.1 Energy Energy changes in a system, and the ways energy is stored before and after such changes Energy stores and systems.

4.1 Energy Energy changes in a system, and the ways energy is stored before and after such changes Energy stores and systems. 4.1 Energy The concept of energy emerged in the 19th century. The idea was used to explain the work output of steam engines and then generalised to understand other heat engines. It also became a key tool

More information

9 Energy. Energy can change from one form to another without a net loss or gain.

9 Energy. Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents Newton s Laws 3 connected particles 9 work & energy 18 power &

More information

Energy can change from one form to another without a net loss or gain. 9.1 Work

Energy can change from one form to another without a net loss or gain. 9.1 Work Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

NCERT solution for Work and energy

NCERT solution for Work and energy 1 NCERT solution for Work and energy Question 1 A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (See below figure). Let us take it that the force acts on the

More information

Work Work has a variety of meanings (taking out the trash is hard work; the toaster doesn t work; Mom goes to work)

Work Work has a variety of meanings (taking out the trash is hard work; the toaster doesn t work; Mom goes to work) Physics Work, Power, and Energy Notes (Chapter 8 in Textbook) Key Terms Work Power Energy Potential Kinetic Mechanical Energy Law of Conservation of Energy Work-Energy Theorem Joule Watt Work Work has

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Energy. Potential Kinetic

Energy. Potential Kinetic Energy the ability to do work or cause change typically expressed in units of joules (J) can be transferred from one object to another two general types: Potential Kinetic Potential Energy (PE) stored

More information