Energy: Forms and Changes

Size: px
Start display at page:

Download "Energy: Forms and Changes"

Transcription

1 Energy: Forms and Changes

2 The Energy Story

3 Nature of Energy Energy is all around you! l You can hear energy as sound. l You can see energy as light. l And you can feel it as wind.

4 Nature of Energy You use energy when you: l hit a softball. l lift your book bag. l compress a spring.

5 Nature of Energy Living organisms need energy for growth and movement.

6 Nature of Energy Energy is involved when: l a bird flies. l a bomb explodes. l rain falls from the sky. l electricity flows in a wire.

7 Nature of Energy What is energy that it can be involved in so many different activities? l Energy can be defined as the ability to do work. l If an object or organism does work (exerts a force over a distance to move an object) the object or organism uses energy.

8 Nature of Energy Because of the direct connection between energy and work, energy is measured in the same unit as work: joules (J). In addition to using energy to do work, objects gain energy because work is being done on them.

9 Forms of Energy Thermal energy Mechanical energy Chemical energy Electromagnetic energy Nuclear energy Sound energy Light energy

10 What is Thermal Energy? Thermal energy is the energy created by moving particles inside a substance. More movement of particles = more thermal energy The transfer of thermal energy is known as heat Heat energy can be produced by friction. A hot object is one whose atoms and molecules are excited and show rapid movement. A cooler object's molecules and atoms will show less movement.

11 What is Mechanical Energy? Energy due to a object s motion (kinetic) or position (potential). The bowling ball has mechanical energy. When the ball strikes the pins, mechanical energy is transferred to the pins!

12 Mechanical Energy When work is done to an object, it acquires energy. The energy it acquires is known as mechanical energy.

13 Examples of Mechanical Energy

14 Mechanical Energy When you kick a football, you give mechanical energy to the football to make it move.

15 Mechanical Energy When you throw a balling ball, you give it energy. When that bowling ball hits the pins, some of the energy is transferred to the pins (transfer of momentum).

16 What types of energy are shown below? Mechanical and Thermal Energy (Don t forget friction)

17 What is Chemical Energy? Energy that is available for release from chemical reactions. The chemical bonds in a matchstick store energy that is transformed into thermal energy when the match is struck.

18 Chemical Energy Chemical Energy is required to bond atoms together. And when bonds are broken, energy is released.

19 Chemical Energy Fuel and food are forms of stored chemical energy.

20 Examples of Chemical Energy

21 What is Electromagnetic Energy? Electromagnetic energy is a term used to describe all the different kinds of energies released into space by stars such as the Sun They include: Radio Waves TV waves Radar waves Heat (infrared radiation) Light Ultraviolet Light (This is what causes Sunburns) X-rays (Just like the kind you get at the doctor's office) Short waves Microwaves (like in a microwave oven) Gamma Rays

22 Electromagnetic Energy Power lines carry electromagnetic energy into your home in the form of electricity.

23 Electromagnetic Energy Light is a form of electromagnetic energy. Each color of light (Roy G Bv) represents a different amount of electromagnetic energy. Electromagnetic Energy is also carried by X-rays, radio waves, and laser light.

24 What is Electrical Energy? Energy caused by the movement of electrons Easily transported through power lines and converted into other forms of energy

25 Nuclear Energy The nucleus of an atom is the source of nuclear energy.

26 Nuclear Energy When the nucleus splits (fission), nuclear energy is released in the form of heat energy and light energy. Nuclear energy is also released when nuclei collide at high speeds and join (fuse).

27 Nuclear Energy The sun s energy is produced from a nuclear fusion reaction in which hydrogen nuclei fuse to form helium nuclei.

28 Nuclear Energy Nuclear energy is the most concentrated form of energy.

29 What type of energy is shown below? Chemical Energy

30 What types of energy are shown below? Electrical, Mechanical and Electromagnetic Energy

31 What type of energy is shown below? Chemical Energy (yummy)

32 What type of energy is shown below? Thermal Energy

33 Energy Conversion Energy can be changed from one form to another. Changes in the form of energy are called energy conversions.

34 Energy conversions All forms of energy can be converted into other forms. l The sun s energy through solar cells can be converted directly into electricity. l Green plants convert the sun s energy (electromagnetic) into starches and sugars (chemical energy).

35 Other energy conversions l In an electric motor, electromagnetic energy is converted to mechanical energy. l In a battery, chemical energy is converted into electromagnetic energy. l The mechanical energy of a waterfall is converted to electrical energy in a generator.

36 Energy Conversions In an automobile engine, fuel is burned to convert chemical energy into heat energy. The heat energy is then changed into mechanical energy.

37 Chemical à Heat à Mechanical

38 States of Energy The most common energy conversion is the conversion between potential and kinetic energy. All forms of energy can be in either of two states: l Potential l Kinetic

39 States of Energy: Kinetic and Potential Energy Kinetic Energy is the energy of motion. Potential Energy is stored energy.

40 Kinetic Energy The energy of motion is called kinetic energy. The faster an object moves, the more kinetic energy it has. The greater the mass of a moving object, the more kinetic energy it has. Kinetic energy depends on both mass and velocity.

41 Kinetic Energy The amount of the energy an object possesses due to its motion *Kinetic energy = 1/2 mv 2 mass, m (kg) velocity, v (m/s) *Note v 2 means that the amount of kinetic energy increases VERY rapidly with increasing speed

42 Potential Energy Potential Energy is stored energy. l Stored chemically in fuel, the nucleus of atom, and in foods. l Or stored because of the work done on it: Stretching a rubber band. Winding a watch. Pulling back on a bow s arrow. Lifting a brick high in the air. Roller coaster at the top of the hill

43 Gravitational Potential Energy Potential energy that is dependent on height is called gravitational potential energy.

44 Gravitational Potential Energy A waterfall, a suspension bridge, and a falling snowflake all have gravitational potential energy.

45 Potential Energy Gravitational Potential energy (GPE) is the energy an object (mass) possesses because of its position relative to the ground (9.8 m/s 2 ) mass Gravitational Potential Energy = mgh h m=mass g=rate of acceleration due to gravity (9.8 m/s 2 h=height

46 Potential Energy Energy that is stored due to being stretched or compressed is called elastic potential energy.

47 Gravitational Potential Energy If you stand on a 3-meter diving board, you have 3 times the G.P.E, than you had on a 1-meter diving board.

48 Energy is Conserved Conservation of Energy is different from Energy Conservation. Energy Conservation means using energy wisely Conservation of Energy means energy is neither created nor destroyed. The TOTAL amount of energy in the Universe is constant, stays the same!! Don t we create energy at a power plant? Oh that this were true no, we simply transform energy at our power plants Doesn t the sun create energy? Nope it exchanges mass for energy

49 Kinetic-Potential Energy Conversion Roller coasters work because of the energy that is built into the system. cars are pulled mechanically up the tallest hill, giving them a great deal of potential energy. the conversion between potential and kinetic energy powers the cars throughout the entire ride.

50 Kinetic vs. Potential Energy At the point of maximum potential energy, the car has minimum kinetic energy.

51 Energy Transformations Most mechanical processes involve conversions between KE, PE, and work l A car rolling down a hill into a valley PE at the top of the hill is converted into KE as the car rolls down the hill KE is converted to PE as the car rolls up the other side BUT, the TOTAL amount of energy remains the same! IT S THE LAW! Law of Conservation of Energy!

52 A Total PE=10 J D B E C A B C All potential energy P.E. = 10 J K.E. = 0 J D Potential energy & Kinetic energy P.E. = 5 J; K.E. = 5 J All kinetic energy (greatest speed) K.E. = 10 J P.E. = 0 J All potential energy (stops for an instant) P.E. = 10 J K.E. = 0 J E Potential energy & Kinetic energy P.E. = 4 J; K.E. = 6 J

53 The Transformation of Energy Energy is conserved. Conservation of energy means it can change forms between kinetic and potential, but it never disappears. The total amount of energy is always the same. IT S THE LAW! Law of Conservation of Energy!

54 No Energy for Free No matter what, you can t create energy out of nothing: it has to come from somewhere. We can transform energy from one form to another; we can store energy, we can use energy from natural sources. The net energy of the entire Universe is constant. The best we can do is scrape up some useful crumbs.

55 Kinetic-Potential Energy Conversions As a basketball player throws the ball into the air, various energy conversions take place.

56 Ball slows down Ball speeds up

57 The Law of Conservation of Energy Energy can be neither created nor destroyed by ordinary means. l It can only be converted from one form to another. l If energy seems to disappear, then scientists look for it leading to many important discoveries.

58 Law of Conservation of Energy In 1905, Albert Einstein said that mass and energy can be converted into each other. He showed that if matter is destroyed, energy is created, and if energy is destroyed mass is created. 2 E = MC

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind. Nature of Energy You use energy when you: hit

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind. Nature of Energy You use energy when you: hit

More information

TYPES OF ENERGY and Energy

TYPES OF ENERGY and Energy TYPES OF ENERGY and Energy Conversions Mechanical, Electromagnetic, Electrical, Chemical, Nuclear, and Thermal What is Mechanical Energy? o Energy due to an object s motion (kinetic) or position (potential).

More information

What is energy? The ability to cause change.

What is energy? The ability to cause change. What is energy? The ability to cause change. THERMAL internal motion of particles The ability to cause change. NUCLEAR changes in the nucleus ENERGY MECHANICAL motion of objects CHEMICAL bonding of atoms

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

Energy and Mechanical Energy

Energy and Mechanical Energy Energy and Mechanical Energy Energy Review Remember: Energy is the ability to do work or effect change. Usually measured in joules (J) One joule represents the energy needed to move an object 1 m of distance

More information

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J).

8.5 - Energy. Energy The property of an object or system that enables it to do work. Energy is measured in Joules (J). Work Work The process of moving an object by applying a force. Work = Force x displacement. Work is measured in Joules (J) or Newton-meters (Nm). W = Fd Example: To prove his strength, a weightlifter pushes

More information

15.1 Energy and Its Forms. Energy and Work. How are energy and work related? Energy is the ability to do work. Work is a transfer of energy.

15.1 Energy and Its Forms. Energy and Work. How are energy and work related? Energy is the ability to do work. Work is a transfer of energy. Energy and Work How are energy and work related? Energy is the ability to do work. Work is a transfer of energy. Energy and Work Energy has different forms. A. The sun gives off energy in the form of heat

More information

CHAPTER 13.3 AND 13.4 ENERGY

CHAPTER 13.3 AND 13.4 ENERGY CHAPTER 13.3 AND 13.4 ENERGY Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy

More information

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. ENERGY Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy depends on Objective 4: What is non-mechanical

More information

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule.

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Forms of Energy What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Major Classes of Energy 1. Kinetic energy (E k ) is the work needed to accelerate

More information

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J)

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J) WHAT IS ENERGY???? Energy can have many different meanings and forms The ability of an object to do work Measured in joules (J) N m = J Work in Progress So what is are the different types of energy? DIFFERENT

More information

Law of of Energy. Energy is NEVER created or destroyed! Energy can only be STORED or TRANFERRED.

Law of of Energy. Energy is NEVER created or destroyed! Energy can only be STORED or TRANFERRED. Energy! What is ENERGY? Energy is the ability to do work. Everything that happens in the world uses energy! Most of the @me we can t see energy, but it is everywhere around us! Law of Conserva@on of Energy

More information

NOTES Foldable must include: - Form of Energy name on OUTSIDE of flap - Definition - At least one example (picture OR word)

NOTES Foldable must include: - Form of Energy name on OUTSIDE of flap - Definition - At least one example (picture OR word) Unit 7: Energy. Bell Ringer: You are on a roller coaster 92 meters above the ground traveling at 14 m/s. You weigh 400 N (or approximately 40.8 kg). What is your mechanical energy? Show your work and include

More information

WORK is. a FORCE is a push or a pull. when a FORCE moves an object. the ability to do WORK or cause change

WORK is. a FORCE is a push or a pull. when a FORCE moves an object. the ability to do WORK or cause change ENERGY is the ability to do WORK or cause change Name 2 things that ARE energy or that HAVE energy WORK is when a FORCE moves an object a FORCE is a push or a pull There are two main kinds of energy POTENTIAL

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy

Energy is the ability to do work. Q: What is energy? Work is done when a force causes an object to move. Q: What is work? Q: Potential Energy Q: What is energy? Energy is the ability to do work. Q: What is work? Work is done when a force causes an object to move. Q: Potential Energy The energy of an object due to its position, shape, or condition

More information

Energy - the ability to do work or cause change. 1 point

Energy - the ability to do work or cause change. 1 point Energy and Waves Energy - the ability to do work or cause change Work - the transfer of energy Work = Force X Distance Power - the rate at which work is done Power = Work Time Kinetic Energy - the energy

More information

Energy. Potential Kinetic

Energy. Potential Kinetic Energy the ability to do work or cause change typically expressed in units of joules (J) can be transferred from one object to another two general types: Potential Kinetic Potential Energy (PE) stored

More information

Energy and Energy Transformations

Energy and Energy Transformations CHAPTER 2 Energy and Energy Transformations Forms of Energy What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you

More information

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy 8.6.A demonstrate and calculate how unbalanced forces change the speed or direction of an object s motion Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy Force

More information

What is it? What are the different types?

What is it? What are the different types? What is it? What are the different types? Energy definition Energy is a challenging concept to understand and explain Energy is an abstract concept that has slightly different definitions depending on

More information

Introduction to Energy Study Guide (also use your notes!!!!)

Introduction to Energy Study Guide (also use your notes!!!!) Introduction to Energy Study Guide (also use your notes!!!!) 1. What is energy? The ability to do work 2. What is kinetic energy? The energy of motion (movement) 3. Can objects with kinetic energy do work?

More information

Electric energy Radiant energy Nuclear energy

Electric energy Radiant energy Nuclear energy CHAPTER 7 LESSON 1: FORMS OF ENERGY Potential Energy Stored Energy Energy Kinetic Potential Work What is Energy? Mechanical Sound Thermal Electric Radiant Nuclear Potential is stored due to the interactions

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

Name Class Date. Energy Energy

Name Class Date. Energy Energy CHAPTER 13 3 What Is Energy? SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: How are energy and work related? Why is potential energy called energy of position?

More information

The six major forms of energy are: 1. Mechanical 2. Thermal 3. Chemical 4. Electrical 5. Electromagnetic 6. Nuclear

The six major forms of energy are: 1. Mechanical 2. Thermal 3. Chemical 4. Electrical 5. Electromagnetic 6. Nuclear The six major forms of energy are: 1. Mechanical 2. Thermal 3. Chemical 4. Electrical 5. Electromagnetic 6. Nuclear Mechanical Energy Energy associated with the motion and position of everyday objects.

More information

UNIT 2 MECHANICS CHAPTER 6 ENERGY

UNIT 2 MECHANICS CHAPTER 6 ENERGY UNIT 2 MECHANICS CHAPTER 6 ENERGY Chapter 6A The Nature of Energy Objectives: Discuss the importance of energy State what energy can do and the units in which energy is measured Define mechanical work

More information

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy

Mechanical Energy Thermal Energy Chemical Energy Electrical Energy Electromagnetic Energy Physical Science PHYSICS UNIT 4 Study Guide. Chapter 15 - Energy Key Terms Energy Kinetic Energy Potential Gravitational Potential Elastic Potential Mechanical Energy Thermal Energy Chemical Energy Electrical

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

law of conservation of energy energy

law of conservation of energy energy What happens when? 6.8A compare and contrast potential and kinetic energy 6.9 Law of Conservation of energy states that energy can neither be created nor destroyed. How does it work? Explanation If you

More information

Table of Contents. Chapter: Energy. Section 1: The Nature of Energy. Section 2: Conservation of Energy

Table of Contents. Chapter: Energy. Section 1: The Nature of Energy. Section 2: Conservation of Energy Table of Contents Chapter: Energy Section 1: The Nature of Energy Section 2: 1 The Nature of Energy What is energy? Wherever you are sitting as you read this, changes are taking place lightbulbs are heating

More information

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage

Section 1: Work, Power, and Machines. Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Section 1: Work, Power, and Machines Preview Key Ideas Bellringer What Is Work? Math Skills Power Machines and Mechanical Advantage Section 1 Key Ideas How is work calculated? What is the relationship

More information

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122.

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122. Slide / 22 Slide 2 / 22 8th Grade Energy of Objects of Motion 205-0-28 www.njctl.org Slide 3 / 22 Energy of Objects in Motion Slide 4 / 22 Review from Last Unit Energy and its Forms Mechanical Energy Energy

More information

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force.

What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. What is Energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy Energy is the ability to do work. (reminder=what is

More information

Energy Notes. Name: Hr:

Energy Notes. Name: Hr: Energy Notes Name: Hr: Guided Outline 5-1 Nature of Energy Directions: As you read through Chapter 5 in your textbook, fill in the missing information. I. Section 1: Nature of Energy A. What is Energy?

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

Energy and Energy Transfer. Warm Up. Physics Unit: ENERGY. October 31, Major Types of Energy

Energy and Energy Transfer. Warm Up. Physics Unit: ENERGY. October 31, Major Types of Energy Energy and Energy Transfer Create a New Unit: In your Notebook, use 1 whole page and write: Physics Unit: ENERGY Draw pictures of anything you can think of related to "Energy". Energy > The ability to

More information

Mechanical Energy the energy associated with position and motion of an object

Mechanical Energy the energy associated with position and motion of an object Unit 3.3 Mechanical Energy the energy associated with position and motion of an object Mechanical Energy is composed of both kinetic and potential energy. Mechanical Energy = Potential Energy + Kinetic

More information

Introduction to Energy! 6 th Grade Module H: Matter and Energy Unit 2: Energy Lesson 1

Introduction to Energy! 6 th Grade Module H: Matter and Energy Unit 2: Energy Lesson 1 Introduction to Energy! 6 th Grade Module H: Matter and Energy Unit 2: Energy Lesson 1 Energy is There are two main types of energy Kinetic energy - energy of an object that is due to motion. All moving

More information

Kinetic and Potential Energy. Supplemental Text Material Pages

Kinetic and Potential Energy. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Pages 326-333 Work Transference of Energy Work = Force x distance W=Fd Work Lifting load against the force of the weight of the object Twice the

More information

Energy & Life PRE READING TASK. State the different types of Energy you know WHICH YOU SEE AROUND YOU, give some EXAMPLES.

Energy & Life PRE READING TASK. State the different types of Energy you know WHICH YOU SEE AROUND YOU, give some EXAMPLES. Name: Class: Date: Energy & Life Grade 11A Science Related Reading/Physics Physics Gr11A PRE READING TASK TYPES OF ENERGY State the different types of Energy you know WHICH YOU SEE AROUND YOU, give some

More information

Unit 1: Energy and Motion

Unit 1: Energy and Motion 4 4 Table of Contents Unit 1: Energy and Motion Chapter 4: Energy 4.1: The Nature of Energy 4.2: Conservation of Energy 4.1 The Nature of Energy Change Requires Energy Energy: ability to cause change.

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

What is energy? Ability to do work (change)

What is energy? Ability to do work (change) What is energy? Ability to do work (change) Remember the forms of energy! 1. Thermal Energy motion of energy in the particles of matter due to more/less heat. (Heat energy = when thermal energy is transferred)

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

Energy transformations Sources and Effects and transmission of Energy

Energy transformations Sources and Effects and transmission of Energy Winnetonka 9 th Grade Physics: Unit 9 test Energy transformations Sources and Effects and transmission of Energy Kinetic Energy: E! =!! m v! Gravitational Potential Energy: E! = m g h Elastic Potential

More information

Work, Power and Energy Worksheet

Work, Power and Energy Worksheet Work, Power and Energy Worksheet Name: 1. Which of the following statements are true about work? Include all that apply. a. Work is the transfer of energy into or out of a system by means of an external

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 3.1 & 3.3 & 3.4 - Energy, Work, and Power Energy, Work, and Power You need to know what energy, work, and power is, and the units for energy and

More information

Energy: The ability to do work and the ability to cause change

Energy: The ability to do work and the ability to cause change Notes: Energy Energy: The ability to do work and the ability to cause change Work: occurs when a force causes an object to move in the direction of the force -Work and Energy are expressed in joules (J)

More information

Momentum. Impulse = F t. Impulse Changes Momentum

Momentum. Impulse = F t. Impulse Changes Momentum Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

UNIT II. Energy Transfer of Energy. Chapter 2: Energy Transfers

UNIT II. Energy Transfer of Energy. Chapter 2: Energy Transfers UNIT II Energy Transfer of Energy Chapter 2: Energy Transfers The ability of matter to do work or make things happen is known as Energy. There are various forms of energy. Kinetic energy is the energy

More information

LESSON 15: Marshmallow Launcher ESTIMATED TIME Setup: minutes Procedure: minutes

LESSON 15: Marshmallow Launcher ESTIMATED TIME Setup: minutes Procedure: minutes LESSON 15: Marshmallow Launcher ESTIMATED TIME Setup: 10 15 minutes Procedure: 15 20 minutes DESCRIPTION Launch marshmallows from a plastic-spoon catapult to demonstrate the differences between potential

More information

Do Now: What does it mean when you say That person has a lot of energy?

Do Now: What does it mean when you say That person has a lot of energy? Do Now: What does it mean when you say That person has a lot of energy? ENERGY What have we learned so far? 1. Work is done on an object when a force acts in the direction the object is moving. 2. When

More information

Identify all the forms of energy you see in the picture below.

Identify all the forms of energy you see in the picture below. Identify all the forms of energy you see in the picture below. Essential Question: How are forms of energy alike and different? Standards: S8P2c. Compare and contrast the different forms of energy (heat,

More information

Mechanical Energy. Unit 4

Mechanical Energy. Unit 4 Mechanical Energy Unit 4 Expectations Cell phones put away, or upside down on your desk No talking during notes Raise your hand to ask a question Everyone will follow along and copy into their own notes

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

Momentum and Energy. Chapter 3

Momentum and Energy. Chapter 3 Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

What is Energy? The ability to do work or cause change.

What is Energy? The ability to do work or cause change. What is Energy? The ability to do work or cause change. Two Categories of Energy Kinetic Energy energy of motion. The faster it moves, the more kinetic energy it has. Potential Energy stored energy due

More information

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up What is energy, and what are energy transformations? What do you think?

More information

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up What is energy, and what are energy transformations? What do you think?

More information

A Correlation of Conceptual Physics 2015 to the Utah Science Core Curriculum for Physics (Grades 9-12)

A Correlation of Conceptual Physics 2015 to the Utah Science Core Curriculum for Physics (Grades 9-12) A Correlation of for Science Benchmark The motion of an object can be described by measurements of its position at different times. Velocity is a measure of the rate of change of position of an object.

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Work and Energy Energy Conservation

Work and Energy Energy Conservation Work and Energy Energy Conservation MidterM 1 statistics Mean = 16.48 Average = 2.74 2 Clicker Question #5 Rocket Science!!! The major principle of rocket propulsion is: a) Conservation of energy b) Conservation

More information

Section 1 Work, Power, and Machines

Section 1 Work, Power, and Machines Chapter 12 Work and Energy Section 1 Work, Power, and Machines Section 2 Simple Machines Section 3 What is Energy? Section 4 Conservation of Energy Skills Experiment Design SI Units and SI unit conversions

More information

3 Types of Heat Transfer

3 Types of Heat Transfer 3 Types of Heat Transfer The movement of heat from a warmer object to a cooler object. Heat Transfer- 1. Conduction Heat transfer by direct contact of molecules. In other words, when one molecule runs

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

Energy Unit Test * Required

Energy Unit Test * Required Energy Unit Test * Required 1. First and Last Name 2. Class Period 2nd 4th Forms of Energy Standard 6.PS3.1 Analyze the properties and compare sources of kinetic, elastic potential, gravitational potential,

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

Energy Basics First Law of Thermodynamics and Energy Transformations Integrated Science 4 Honors Name: Per:

Energy Basics First Law of Thermodynamics and Energy Transformations Integrated Science 4 Honors Name: Per: Energy Basics First Law of Thermodynamics and Energy Transformations Integrated Science 4 Honors Name: Per: To understand how natural and human-built systems work, we must clearly define what matter and

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

Highlights of chapter 5, section 2

Highlights of chapter 5, section 2 Highlights of chapter 5, section 2 2 Conservation of Energy Changing Forms of Energy There are situations around us every day that involve energy changing from one form to another form. There are many

More information

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.7(B) illustrate the transformation of energy within an organism such as the transfer from chemical energy

More information

At what point is the potential energy the highest for a pendulum? A) Potential energy is unrelated to height B) At the end of its path (1 & 5) C) At

At what point is the potential energy the highest for a pendulum? A) Potential energy is unrelated to height B) At the end of its path (1 & 5) C) At At what point is the potential energy the highest for a pendulum? A) Potential energy is unrelated to height B) At the end of its path (1 & 5) C) At the middle of its path (2 & 4) D) At the bottom of its

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2 1 NAME PERIOD PHYSICS GUIDESHEET ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT CLASS OVERHEAD NOTES (5 pts/page) (Plus 5 pts/page for sample questions)

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy VELOCITY Velocity is a measure of how fast an object is traveling in a certain direction. Example: A bus traveling North at 150 m/s Example: A car is traveling 45 mph South.

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Formula Chart. Net force = 2. ADD forces in the same direction. Magnitude is the size of a force.

Formula Chart. Net force = 2. ADD forces in the same direction. Magnitude is the size of a force. 8.6 A : demonstrate and calculate how unbalanced forces change the speed or direction of an object s motion Hemphill Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy Force

More information

Physical Science Final Examination-Review Sheet (14-15) KEY. 1. A process used to answer questions or solve problems is called scientific inquiry.

Physical Science Final Examination-Review Sheet (14-15) KEY. 1. A process used to answer questions or solve problems is called scientific inquiry. Physical Science Final Examination-Review Sheet (14-15) KEY 1. A process used to answer questions or solve problems is called scientific inquiry. 2. Anything that has mass and takes up space is matter.

More information

Unit 1. Types of Energy and Energy Conservation

Unit 1. Types of Energy and Energy Conservation Strand B. Energy Unit 1. Types of Energy and Energy Conservation Contents Page Energy Types 2 Gravitational Potential and Kinetic Energy 5 Conservation of Energy 8 B.1.1 Energy Types Energy is a physical

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th. Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 0th. F=ma Electric Force Work, Energy and Power Number 60 50 40 30 0 10 0 17 18 0

More information

Chapter 14 Our Star Pearson Education, Inc.

Chapter 14 Our Star Pearson Education, Inc. Chapter 14 Our Star Basic Types of Energy Kinetic (motion) Radiative (light) Potential (stored) Energy can change type, but cannot be created or destroyed. Thermal Energy: the collective kinetic energy

More information

Work and Energy Chapter 4 and 5

Work and Energy Chapter 4 and 5 Section 1 Work and Energy Chapter 4 and 5 Motion Read Chapter 4 pages 100 121 and Chapter 5 pages: 126-153 Objectives: - Distinguish between kinetic and potential energy; calculate kinetic energy, describe

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

Slide 1 / 113. Slide 2 / th Grade. Energy of Objects in Motion Classwork-Homework Slide 3 / 113. Classwork #1: Energy

Slide 1 / 113. Slide 2 / th Grade. Energy of Objects in Motion Classwork-Homework Slide 3 / 113. Classwork #1: Energy Slide 1 / 113 Slide 2 / 113 8th Grade Energy of Objects in Motion Classwork-Homework 2015-08-25 www.njctl.org Slide 3 / 113 Classwork #1: Energy 1 Define Energy. Slide 4 / 113 2 What two things are necessary

More information

You are about to start an exciting series of lessons on physical science. God s Design for the Physical World

You are about to start an exciting series of lessons on physical science. God s Design for the Physical World Table of of Contents Unit 1 - Forms of Energy Lesson 1 Forms of Energy 8 Lesson 2 Mechanical Energy 12 Lesson 3 Chemical Energy 16 Lesson 4 Nuclear Energy 18 Lesson 5 Nuclear Weapons 21 Special Feature

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information