Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Size: px
Start display at page:

Download "Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1"

Transcription

1 Relativity Physics April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

2 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations There were a few problems but many thought these would be resolved using known principles. There is nothing new to be discovered in physics now. All that remains is more and more precise measurement Lord Kelvin 11 Apr 02 Physics 102 Lecture 8 2

3 Measuring the speed of light The first measurement of c was made by Rømer (1676) by studying the moons of Jupiter. Fizeau made first terrestrial measurement in Foucault, then Michelson, measured with rotating mirror. Small displacement due to mirror motion d Fixed mirror Measurement arm of length D lens Storage arm of length L Rotating mirror θ = ω t During time light bounces between mirrors, the rotating mirror turns slightly 11 Apr 02 Physics 102 Lecture 8 3 m storage

4 The Luminiferous Æther If light is a wave, in what does it propagate? What properties must ether have? Fills all space (even vacuum and intermolecular space) Doesn t hinder motion Perfectly elastic Infinitely diffuse The existence of such a medium is now universally assumed by physicists. Millikan and Gale, A First Course in Physics, Apr 02 Physics 102 Lecture 8 4

5 The Michelson-Morley Experiment A. A. Michelson (later with E. W. Morley) set out to measure the aether wind in Imagine a plane flying 1000 miles round trip at 500 miles/hr With no wind, time is given by: 500 miles 500 MPH 500 miles + = 1+ 1= 2hrs 500 MPH With 100 mile/hr wind, time is given by: 500 miles 600 MPH 500 miles + = = 208. hrs 400 MPH If you knew the distance, you could time the flight and find whether or not there was a wind. 11 Apr 02 Physics 102 Lecture 8 5

6 Michelson Interferometer The Earth s motion through the aether is analogous to traveling in a wind. We measure the path length difference with an interferometer. Earth s v A In B Beam splitter Out Mirror With an aether, the time delay in the two arms is different and thus the interference condition is different. If initially there were no output due to destructive interference we might get constructive interference. Result of experiment: Output is independent of Earth s motion thus there is no aether. 11 Apr 02 Physics 102 Lecture 8 6

7 The Postulates of Special Relativity The laws of physics are the same in every inertial reference frame. The speed of light (in a vacuum), measured in any inertial reference frame, always has the same value c no matter how fast the source and observer are moving relative to each other. 11 Apr 02 Physics 102 Lecture 8 7

8 LIGHT PULSE LAB FRAME 11 Apr 02 Physics 102 Lecture 8 8

9 LIGHT PULSE ROCKET FRAME 11 Apr 02 Physics 102 Lecture 8 9

10 Speed of light 11 Apr 02 Physics 102 Lecture 8 10

11 Implications of Special Relativity Space and time are not absolute: measurements depend on the observer s reference frame. Moving clocks run slow Moving rulers are foreshortened in direction of motion Moving masses increase Nothing can travel faster than the speed of light in a vacuum, and only massless particles can travel that fast. Mass and energy can be transformed, one into the other. 11 Apr 02 Physics 102 Lecture 8 11

12 A gedanken experiment. Imagine we construct a clock in which we time the interval between when we send out a flash and when it is received. D f The time for a tick would be: A. B. C. D. E. t D c 0 = / t c D 0 = / t = D/ c 0 2 t = D/ c 0 2 t = 2c/ D 0 11 Apr 02 Physics 102 Lecture 8 12

13 now imagine our clock is moving with velocity v such that it covers a distance 2L in time t, that is: D 2L = v t E. The time for a tick, as measured by us, is: A.The same as before because the speed of light is the same in all frames. B. C. D. t = 2 L/ c 2 2 / t = 2 D + L c t = 2 D/ v t = 2 ( D/ c) + ( L/ v) Apr 02 Physics 102 Lecture 8 13

14 To summarize: Clock at rest with respect to us: t t = D/ c 0 2 = t 0 1 ( v/ c) 2 Clock moving with velocity v with respect to us: tc = 4D + 4L t 2 2 t = 2 D + L / c = 4D + v t 2D/ c = 1 ( v/ c) Apr 02 Physics 102 Lecture 8 14

15 Moving clocks As 1-v 2 /c 2 is always less than 1 in the expression t = t v c the time between ticks for the moving clock,, is always longer than the time between ticks for the clock that is at rest with respect to us,. Moving clocks run slower. This has been measured with atomic clocks on planes. It holds for biological clocks. It s important for the GPS system. is called the proper time. 11 Apr 02 Physics 102 Lecture

16 Atmospheric Muons Muons (electron-like particles) have a typical life of only 2.2 microseconds in the lab. At the speed of light, a particle moves 2/3 km in 2.2 µsec Muons produced at the top of the atmosphere (10 km) nevertheless reach the ground. 11 Apr 02 Physics 102 Lecture 8 16

17 A. Muons decay into different particles that can make it to the Earth s surface. B. When moving near the speed of light the distance you cover is no longer given by d C. In the muon s frame, our clock runs faster and so the distance is shorter. D. In our frame, the muon s clock runs slower and so it has longer to traverse the atmosphere. = v t 11 Apr 02 Physics 102 Lecture 8 17

18 .more muons They are moving at 0.999c and moving clocks run slower! lifetime in Earth bound frame is 22. µ s = 49. 2µ s Thus they can travel 15 km! Note: muon decay is statistical: Nt () t / τ = N0 e τ = lifetime. 11 Apr 02 Physics 102 Lecture 8 18

19 We can define a proper length in the same manner as we defined proper time. It is the distance one measures when the object is at rest. Let s say we have a stick that is meters long and we assess its length by timing how long it takes a rocket traveling at velocity v to go by it. We find: A., where is the time interval for the moving clock. B., where is the time interval on a stationary clock C. D. l v t 0 = l = v t 0 0 t t 0 l0 = c t0 l = v t/ 1 ( v/ c) 0 l Apr 02 Physics 102 Lecture 8 19

20 Now imagine that you are on a rocket ship traveling with velocity v and moving by the same stick. The length you measure, call it, will be: A. B. C. D. l = v t l = v t 1 ( v/ c) 0 2 l = v t 0 l = v t/ 1 ( v/ c) l 2 11 Apr 02 Physics 102 Lecture 8 20

21 Combine these two ways of looking at the stick... Standing on Earth timing the passage of a rocket with the moving clock: l = v t 0 l = v t 1 ( v/ c) = l 1 ( v/ c) 0 Standing in the rocket timing how long it takes you to go by the stick. 11 Apr 02 Physics 102 Lecture l = v t 0 Moving objects appear shorter! 2 Plug in time relation from before

22 Relativistic momentum In special relativity, the conservation laws which we have covered still hold true as long as we redefine momentum and energy. The relativistic momentum (which is conserved) is mv p = mv (for v << v c c) Note that if v exceeds c the momentum is not defined. We can think of this as an increase in the mass of the particle when it moves fast. 11 Apr 02 Physics 102 Lecture 8 22

23 Relativistic energy Mass and energy are equivalent and are not independently conserved. The total energy of an object (not including potential, electrical. etc.) is: 2 mc E = = E v c 0 E K At v=0, an object has its rest mass energy: This means that m kg of mass is equivalent to mc 2 Joules of energy. 11 Apr 02 Physics 102 Lecture 8 23

24 Newton was wrong Some misconceptions Classical mechanics concerned itself with only the low velocity limit. Newtonian mechanics is a subset of special relativity. Nothing travels faster than light Material particles and information cannot travel faster than light. However, some types of waves do and objects can appear to travel faster than light. A cosmic reference frame cannot exist The distant stars define a cosmic frame. However, the laws of physics are still the same in all inertial frames. 11 Apr 02 Physics 102 Lecture 8 24

25 Cosmic Microwave Background Dipole This shows that we are moving with respect to a cosmic reference frame at 200 km/sec. 11 Apr 02 Physics 102 Lecture 8 25

26 General Relativity: Gravitation In special relativity, space and time are the (four dimensional) scaffolding upon which events occur. In the general theory of relativity, space and time become an active part of physics, and the curvature of spacetime is identified with gravity. Matter tells space how to curve, space tells matter how to move. Because energy and mass are equivalent, a hotter object-- with lots of thermal energy-- has greater gravitational pull than a cold one. Predictions: planetary orbits not quite elliptical; bending of light near the Sun; redshifting of light by gravity, 11 Apr 02 Physics 102 Lecture 8 26

27 First tested prediction of Einstein s theory: 1919 Bending of light An Einstein ring 11 Apr 02 Physics 102 Lecture 8 27

28 Cluster Gravitational Lens 11 Apr 02 Physics 102 Lecture 8 28

29 A black hole in a distant galaxy (scale of picture: half a million light years across!) 11 Apr 02 Physics 102 Lecture 8 29

30 Gravitational Waves Just as accelerating electric charges produce electromagnetic waves, accelerating masses produce gravitational waves (spacetime ripples) Hulse and Taylor proved the existence of these waves The Laser Interferometer Gravitational-wave Observatory (LIGO) will try to detect them directly. 11 Apr 02 Physics 102 Lecture 8 30

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory Relativity Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion

More information

Midterm Solutions. 1 1 = 0.999c (0.2)

Midterm Solutions. 1 1 = 0.999c (0.2) Midterm Solutions 1. (0) The detected muon is seen km away from the beam dump. It carries a kinetic energy of 4 GeV. Here we neglect the energy loss and angular scattering of the muon for simplicity. a.

More information

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc.

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc. Chapter 36 The Special Theory of Relativity Units of Chapter 36 Galilean Newtonian Relativity The Michelson Morley Experiment Postulates of the Special Theory of Relativity Simultaneity Time Dilation and

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Lecture Outline Chapter 29. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 29. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 29 Physics, 4 th Edition James S. Walker Chapter 29 Relativity Units of Chapter 29 The Postulates of Special Relativity The Relativity of Time and Time Dilation The Relativity of

More information

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. College - PHY2054C 11/10/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline 1 2 3 1 The speed of light is the maximum possible speed, and it is always measured to have the same value

More information

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point.

Theory of Relativity Final Quiz July 11, VERY short answers. Each worth 1 point. Theory of Relativity Final Quiz July 11, 2012 Name: Below are short questions and problems. Answer to the best of your ability. All equations and constants you need are on a separate sheet. VERY short

More information

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer.

Postulate 2: Light propagates through empty space with a definite speed (c) independent of the speed of the source or of the observer. Einstein s Special Theory of Relativity 1 m E = mv E =m*c m* = KE =m*c - m c 1- v p=mv p=m*v c 9-1 Postulate 1: The laws of physics have the same form in all inertial reference frames. Postulate : Light

More information

Relativity. Astronomy 101

Relativity. Astronomy 101 Lecture 29: Special & General Relativity Astronomy 101 Common Sense & Relativity Common Sense is the collection of prejudices acquired by the age of 18. Albert Einstein It will seem difficult at first,

More information

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010 Physics 2D Lecture Slides Lecture 2 Jan. 5, 2010 Lecture 1: Relativity Describing a Physical Phenomenon Event (s) Observer (s) Frame(s) of reference (the point of View! ) Inertial Frame of Reference Accelerated

More information

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements Chapter 37. Relativity Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements The Relativity of Simultaneity Time Dilation Length g Contraction

More information

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016

ENTER RELATIVITY THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION 8/19/2016 ENTER RELATIVITY RVBAUTISTA THE HELIOCENTRISM VS GEOCENTRISM DEBATE ARISES FROM MATTER OF CHOOSING THE BEST REFERENCE POINT. GALILEAN TRANSFORMATION The laws of mechanics must be the same in all inertial

More information

Understanding and Testing Relativity

Understanding and Testing Relativity Understanding and Testing Relativity From Einstein s formulations to the tests of today www. library.thinkquest.org www.csep10.phys.utk.edu www.arcive.ncsa.uiuc.edu Boston University - April 25, 2006 1

More information

Black Holes -Chapter 21

Black Holes -Chapter 21 Black Holes -Chapter 21 The most massive stellar cores If the core is massive enough (~3 M ; total initial mass of star > 25 M or so), even neutron degeneracy pressure can be overwhelmed by gravity. A

More information

Space and Time Before Einstein. The Problem with Light. Admin. 11/2/17. Key Concepts: Lecture 28: Relativity

Space and Time Before Einstein. The Problem with Light. Admin. 11/2/17. Key Concepts: Lecture 28: Relativity Admin. 11/2/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Recap: Special Relativity and the need for a more general theory! The strong equivalence principle! Gravitational time dilation! Curved space-time & Einstein s theory

More information

A100H Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Black holes Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu March 22, 2016 Read: S2, S3, Chap 18 03/22/16 slide 1 Exam #2: March 29 One week from today!

More information

Lecture 8 : Special Theory of Relativity

Lecture 8 : Special Theory of Relativity Lecture 8 : Special Theory of Relativity The speed of light problem Einstein s postulates Time dilation 9/23/10 1 Sidney Harris I: THE SPEED OF LIGHT PROBLEM Recap Relativity tells us how to relate measurements

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 37. Relativity. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 37 Relativity PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 37 Looking forward at why different

More information

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College

Gravitational Wave. Kehan Chen Math 190S. Duke Summer College Gravitational Wave Kehan Chen 2017.7.29 Math 190S Duke Summer College 1.Introduction Since Albert Einstein released his masterpiece theory of general relativity, there has been prediction of the existence

More information

Physics. Special Relativity

Physics. Special Relativity Physics Special Relativity 1 Albert Einstein, the high school dropout and patent office clerk published his ideas on Special Relativity in 1905. 2 Special vs. General Relativity Special Relativity deals

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

Relativity. April 16, 2014 Chapter 35 1

Relativity. April 16, 2014 Chapter 35 1 Relativity April 16, 2014 Chapter 35 1 Announcements! Next week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: BPS 1410 (this room) Comprehensive, covers material

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sept 29 Vivek Sharma UCSD Physics Galilean Relativity Describing a Physical Phenomenon Event ( and a series of them) Observer (and many of them) Frame of reference (& an Observer

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum

Announcements. Lecture 6. General Relativity. From before. Space/Time - Energy/Momentum Announcements 2402 Lab will be started next week Lab manual will be posted on the course web today Lab Scheduling is almost done!! HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2)

More information

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Problem Set 1 1. Speeds What fraction of the speed of light does each of the following

More information

Special Relativity 1

Special Relativity 1 Special Relativity 1 Special Relativity: A Summary Caitlyn Edwards Dr. Gan Modern Physics November 2017 Special Relativity 2 Abstract The physics of Einstein s theory of special relativity differs dramatically

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Universe Notes Name 1 Newton and Gravity Newton s Thought Experiment Satellite s orbit as an Application of Projectiles Isaac Newton, as well as giving

More information

dt = p m, (2.1.1) dt = p

dt = p m, (2.1.1) dt = p Chapter 2 Special relativity 2.1 Galilean relativity We start our discussion of symmetries by considering an important example of an invariance, i.e. an invariance of the equations of motion under a change

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. A material called spacetime Title A material called spacetime Author(s)Greve, Ralf Issue Date 2017-08-21 Doc URL http://hdl.handle.net/2115/67121 Type lecture Note Colloquium of Mechanics, Study Center Mechanics, Dar File Information

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture 14; November 10, 2016 Previously on Astro 1 Late evolution and death of intermediate-mass stars (about 0.4 M to about 4 M ): red giant when shell hydrogen fusion begins, a

More information

Relativity and Black Holes

Relativity and Black Holes Relativity and Black Holes Post-MS Evolution of Very High Mass (>15 M Θ ) Stars similar to high mass except more rapid lives end in Type II supernova explosions main difference: mass of iron core at end

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Lecture 21: General Relativity Readings: Section 24-2

Lecture 21: General Relativity Readings: Section 24-2 Lecture 21: General Relativity Readings: Section 24-2 Key Ideas: Postulates: Gravitational mass=inertial mass (aka Galileo was right) Laws of physics are the same for all observers Consequences: Matter

More information

Name the object labelled B and explain its purpose.

Name the object labelled B and explain its purpose. PhysicsAndMathsTutor.com 1 1. The diagram represents the Michelson-Morley interferometer. surface-silvered mirror M 1 l 1 extended source of monochromatic light B surface-silvered mirror M 2 A l 2 viewing

More information

Physics 2D Lecture Slides Lecture 2. March 31, 2009

Physics 2D Lecture Slides Lecture 2. March 31, 2009 Physics 2D Lecture Slides Lecture 2 March 31, 2009 Newton s Laws and Galilean Transformation! But Newton s Laws of Mechanics remain the same in All frames of references!! 2 2 d x' d x' dv = " dt 2 dt 2

More information

Light and Relativity

Light and Relativity PHY1033C Fall 2017 Lecture W11 Light and Relativity 1. Light, a Special Wave For more than 200 years, Newton s theory of mechanics, condensed into the three laws of motion, have been accepted as the correct

More information

Elements of Physics II

Elements of Physics II Physics 132: Lecture 23 Elements of Physics II Agenda for Today Special Theory of relativity Inertial vs. non-inertial reference frames Postulates of SR Consequences of SR Time dilation Length contraction

More information

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity

Motivation. The Speed of Light. The Speed of Light. In Water Things Look Like This. Introduction to Special and General Relativity Introduction to Special and General Relativity Motivation: Michelson-Morley Experiment Induction versus Force Law The Basics Events Principles of Relativity Giving up on absolute space and time What Follows

More information

Astronomy 102, Fall September 2009

Astronomy 102, Fall September 2009 Today in Astronomy 102: relativity Measurement of physical quantities, reference frames, and space-time diagrams. Relative and absolute physical quantities. Classical physics and Galileo s theory of relativity.

More information

Elements of Physics II

Elements of Physics II Physics 132: Lecture 21 Elements of Physics II Agenda for Today Special Theory of relativity Inertial vs. non-inertial reference frames Postulates of SR Consequences of SR Simultaneity Time dilation Physics

More information

Lecture 7: Special Relativity I

Lecture 7: Special Relativity I Lecture 7: Special Relativity I ª Einstein s postulates ª Time dilation ª Length contraction ª New velocity addition law Sidney Harris Please read Chapter 7 of the text 2/19/15 1 Albert Einstein ª Over

More information

Principle of Relativity

Principle of Relativity Principle of Relativity Physical laws are the same in all inertial frames. 1) The same processes occur. But 2) the description of some instance depends on frame of reference. Inertial Frames An inertial

More information

Chapter 3 Special relativity 3.1 About motion

Chapter 3 Special relativity 3.1 About motion Chapter 3 Special relativity 3.1 About motion Learning objectives Explain what is meant by absolute motion and relative motion. Describe the experimental evidence that all motion is relative. Discuss whether

More information

1. Convective throughout deliver heat from core to surface purely by convection.

1. Convective throughout deliver heat from core to surface purely by convection. 6/30 Post Main Sequence Evolution: Low-Mass Stars 1. Convective throughout deliver heat from core to surface purely by convection. 2. Convection mixes the material of the star is the material carries the

More information

Astronomy 120 Overview

Astronomy 120 Overview Prof. Jeff Kenney Class 15 June 15, 2018 Astronomy 120 Overview Lec 1-5: intro, physics review (FAST) Lec 6-8: stars (FAST) Lec 9-14: galaxies, clusters & dark matter (SLOW) Lec 15-18: black holes & active

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2003 Introduction to Special Relativity January 6, 2003 Assignment 1 Corrected version Due January 13, 2003 Announcements Please

More information

Lecture 2. Einstein Asserts Relativity. July 31, Ruled out the possibility that Earth is at rest relative to the ether

Lecture 2. Einstein Asserts Relativity. July 31, Ruled out the possibility that Earth is at rest relative to the ether Lecture 2 Einstein Asserts Relativity July 31, 2017 Where We Are Now... Ruled out the possibility that Earth is at rest relative to the ether Earth alone at rest? Violates Copernicus! Ether Drag? Ruled

More information

Theory of Relativity Final Quiz July 7, VERY short answers. Each worth 1 point.

Theory of Relativity Final Quiz July 7, VERY short answers. Each worth 1 point. Theory of Relativity Final Quiz July 7, 2011 Name: Below are short questions and problems. Answer to the best of your ability. All equations and constants you need are on a separate sheet. VERY short answers.

More information

The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System

The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System Bart Leplae - bartleplae@hotmail.com 18-Aug-2013 This paper touches upon various topics covered

More information

Chapter-1 Relativity Part I RADIATION

Chapter-1 Relativity Part I RADIATION Chapter-1 Relativity Part I RADIATION Radiation implies the transfer of energy from one place to another. - Electromagnetic Radiation - Light - Particle and Cosmic Radiation photons, protons, neutrons,

More information

Space, Time and Simultaneity

Space, Time and Simultaneity PHYS419 Lecture 11: Space, Time & Simultaneity 1 Space, Time and Simultaneity Recall that (a) in Newtonian mechanics ( Galilean space-time ): time is universal and is agreed upon by all observers; spatial

More information

Today in Astronomy 102: relativity

Today in Astronomy 102: relativity Today in Astronomy 102: relativity Measurement of physical quantities, reference frames, and space-time diagrams. Relative and absolute physical quantities. Classical physics and Galileo s theory of relativity.

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I! Einstein Tower Experiment! Gravitational redshifting! Strong Equivalence Principal! Read Chapter 8! Due to snow and confusion the mid-term is delayed to Thursday March

More information

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame.

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame. Chapter 2: The Special Theory of Relativity What is a reference frame? A reference fram is inertial if Newton s laws are valid in that frame. If Newton s laws are valid in one reference frame, they are

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan 24 No class Monday,

More information

Chapter S3 Spacetime and Gravity. Agenda. Distinguishing Crackpots

Chapter S3 Spacetime and Gravity. Agenda. Distinguishing Crackpots Chapter S3 Spacetime and Gravity Agenda Announce: Online Quizzes Observations Extra Credit Lecture Distinguishing Crackpot/Genuine Science Review of Special Relativity General Relativity Distinguishing

More information

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies Relativity 1905 - Albert Einstein: Brownian motion fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies fi The Special Theory of Relativity The Luminiferous Ether Hypothesis:

More information

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY.

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY. !! www.clutchprep.com CONCEPT: INERTIAL REFERENCE FRAMES A reference frame is a coordinate system that you make measurements in, and there are two types: - Inertial reference frames, which move at velocity

More information

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light

General Relativity and Gravity. Exam 2 Results. Equivalence principle. The Equivalence Principle. Experiment: throw a ball. Now throw some light General Relativity and Gravity Special Relativity deals with inertial reference frames, frames moving with a constant relative velocity. It has some rather unusual predictions Time dilation Length contraction

More information

The Constancy of the Speed of Light

The Constancy of the Speed of Light The Constancy of the Speed of Light Also, recall the Michelson-Morley experiment: c-u c+u u Presumed ether wind direction u is the relative speed between the frames (water & shore) Result: Similar There

More information

Lecture 10: General Relativity I

Lecture 10: General Relativity I Lecture 10: General Relativity I Einstein Tower Experiment Gravitational redshifting Strong Equivalence Principal Sidney Harris 10/2/13 1 O: RECAP OF SPECIAL RELATIVITY Einstein s postulates Laws of physics

More information

Chapter 28: Relativity

Chapter 28: Relativity Chapter 28: Relativity Brent Royuk Phys-111 Concordia University Classical Mechanics Translational Rotational s = r x = vt = t vt = r v = vo + at = o + t at = r x = v ot + 1 2 at 2 θ = ω ot + 1 2 αt 2

More information

General Relativity and Black Holes

General Relativity and Black Holes General Relativity and Black Holes Lecture 19 1 Lecture Topics General Relativity The Principal of Equivalence Consequences of General Relativity slowing of clocks curvature of space-time Tests of GR Escape

More information

Today in Astronomy 102: relativity, continued

Today in Astronomy 102: relativity, continued Today in Astronomy 10: relativity, continued Einstein s procedures and results on the special theory of relativity. Formulas and numerical examples of the effects of length contraction, time dilation,

More information

Lecture 18 Vacuum, General Relativity

Lecture 18 Vacuum, General Relativity The Nature of the Physical World Lecture 18 Vacuum, General Relativity Arán García-Bellido 1 Standard Model recap Fundamental particles Fundamental Forces Quarks (u, d, c, s, t, b) fractional electric

More information

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Black holes Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu October 30, 2014 Read: S2, S3, Chap 18 10/30/14 slide 1 Sizes of s The solar neighborhood visualized!

More information

Astronomy 102 Lecture 04

Astronomy 102 Lecture 04 Today in Astronomy 102: relativity q Measurement of physical quantities, reference frames, and space-time diagrams. q Relative and absolute physical quantities. q Classical physics and Galileo s theory

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Black Holes Goals: Understand Special Relativity General Relativity How do we observe black holes. Black Holes A consequence of gravity Massive neutron (>3M ) cannot be supported by degenerate neutron

More information

SPECIAL RELATIVITY! (Einstein 1905)!

SPECIAL RELATIVITY! (Einstein 1905)! SPECIAL RELATIVITY! (Einstein 1905)! Motivations:! Explaining the results of the Michelson-Morley! experiment without invoking a force exerted! on bodies moving through the aether.! Make the equations

More information

Introduction to Relativity & Time Dilation

Introduction to Relativity & Time Dilation Introduction to Relativity & Time Dilation The Principle of Newtonian Relativity Galilean Transformations The Michelson-Morley Experiment Einstein s Postulates of Relativity Relativity of Simultaneity

More information

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm

Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils. Announcements. Review for test on Monday, Nov 7 at 3:25pm Test #3 Next Tuesday, Nov. 8 Bring your UNM ID! Bring two number 2 pencils Announcements Review for test on Monday, Nov 7 at 3:25pm Neutron Star - Black Hole merger Review for Test #3 Nov 8 Topics: Stars

More information

Students' Alternate Conceptions in Introductory Physics

Students' Alternate Conceptions in Introductory Physics Students' Alternate Conceptions in Introductory Physics The following is a list of preconceptions and misconceptions that high school physics teachers and college professors have recognized in their students.

More information

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity

General Relativity. PHYS-3301 Lecture 6. Chapter 2. Announcement. Sep. 14, Special Relativity Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 6 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 14, 2017 General Relativity Chapter 2 Special Relativity

More information

We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity

We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity Supplementary Textbook Chapters S2 and S3: Special and General Relativity We will consider just a small part of these which introduce Einstein s Special and General Theories of Relativity Young Einstein

More information

Test 3 results B A. Grades posted in Learn

Test 3 results B A. Grades posted in Learn Test 3 results Grades posted in Learn D C B A End of the Semester approaches - make sure that your test, clicker and homework grades are what you think they should be on Learn F Clicker Question: What

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

Experimental Values of Lorentz Transformations of Mass and Time

Experimental Values of Lorentz Transformations of Mass and Time Experimental Values of Lorentz Transformations of Mass and Time Lorentz Transformation Thought Experiment GPS Clock Calculations Pound-Rebka Experiment Triplet Paradox Experiment The Lorentz transformation

More information

Special Relativity: The laws of physics must be the same in all inertial reference frames.

Special Relativity: The laws of physics must be the same in all inertial reference frames. Special Relativity: The laws of physics must be the same in all inertial reference frames. Inertial Reference Frame: One in which an object is observed to have zero acceleration when no forces act on it

More information

Tuesday, February 15, Ice Cube Neutrino Facility

Tuesday, February 15, Ice Cube Neutrino Facility Ice Cube Neutrino Facility Semester Report This Thursday, Feb 17th, due in class: a list of resources (books, websites, articles, etc.), along with title. 1% will be deducted from your paper grade for

More information

Class 6 : General Relativity. ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds

Class 6 : General Relativity. ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds Class 6 : General Relativity ASTR398B Black Holes (Fall 2015) Prof. Chris Reynolds RECAP! Einstein s postulates " Laws of physics look the same in any inertial frame of reference. " The speed of light

More information

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University Unit 10: Relativity Hewitt Chapters 35-36 Brent Royuk Phys-109 Concordia University The Correspondence Principle 2 Relativity What s relative about relativity? 3 Relativity Billy-Bob s Pickup Truck Galilean

More information

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities HW#6 Chapter 0 Concept: 9, 6, 20, 28, 34 Problems: 4, 6 From Last Time Range of visible light from 400 nm to 700 nm Eye interprets different wavelengths as different colors but has only three sensors,

More information

Experimental Values of Lorentz Transformations of Mass and Time

Experimental Values of Lorentz Transformations of Mass and Time Experimental Values of Lorentz Transformations of Mass and Time Measuring the Fitzgerald Contraction Lorentz Transformation Thought Experiment GPS Clock Calculations Pound-Rebka Experiment Triplet Paradox

More information

Lorentz Transformations and the Twin Paradox By James Carter

Lorentz Transformations and the Twin Paradox By James Carter Lorentz Transformations and the Twin Paradox By James Carter The Lorentz transformation m = M/ 1-v 2 /c 2 is a principle of measurement that can be classed as one of the laws of physics. (A moving body

More information

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation.

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation. Background The curious "failure" of the Michelson-Morley experiment in 1887 to determine the motion of the earth through the aether prompted a lot of physicists to try and figure out why. The first attempt

More information

Lesson 12 Relativity

Lesson 12 Relativity Lesson 12 Relativity Introduction: Connecting Your Learning Relative motion was studied at the beginning of the course when the simple notion of adding or subtracting velocities made perfect sense. If

More information

Einstein in a Nutshell

Einstein in a Nutshell Einstein in a Nutshell Richard Wolfson Benjamin F. Wissler Professor of Physics Middlebury College Insight Cruises/Scientific American January 15, 2011 Relativity in Recent News http://newscenter.berkeley.edu/2011/12/05/record-black-holes-bigger-than-our-solar-system/,

More information