Understanding Motion, Energy & Gravity

Size: px
Start display at page:

Download "Understanding Motion, Energy & Gravity"

Transcription

1 Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity (speed and/or direction) with time constant velocity is not felt, but acceleration (speeding/ slowing, turning into curve) is Acceleration of Gravity Acceleration due to Gravity on earth is a constant = 9.8 m / s 2. I.e., objects fall faster by 9.8 m / s with each passing second Acceleration is independent of the mass of an object. This was first demonstrated by Galileo who dropped objects of different masses from the Leaning Tower of Pisa Acceleration of Gravity Acceleration due to Gravity on earth is a constant = 9.8 m / s 2. I.e., objects fall faster by 9.8 m / s with each passing second Acceleration is independent of the mass of an object. This was first demonstrated by Galileo who dropped object of different masses from the Leaning Tower of Pisa

2 Momentum & Force Momentum = mass x velocity (p = mv) a force must be applied to change the momentum. I.e., constant velocity = no net force. Change in momentum = mass x (velocity1 - velocity2) Magnitude of force & change in momentum: which hurts more, being hit by a bug traveling at 30 mph or a baseball traveling at 30 mph? Both transfer momentum to you (and you feel a force as a result) during the collision The mere presence of a force doesn t result in a change in momentum. E.g., a driver can achieve a constant velocity even though air resistance & friction with the road are present Momentum & Force Momentum = mass x velocity (p = mv) a force must be applied to change the momentum. I.e., constant velocity = no net force. Change in momentum = mass x (velocity1 - velocity2) = mass x acceleration Change in momentum = mass object x (30 mph - 0 mph) S Magnitude of force & change in momentum: which hurts more, being hit by a bug traveling at 30 mph or a baseball traveling at 30 mph? Both transfer momentum to you (and you feel a force as a result) during the collision The mere presence of a force doesn t result in a change in momentum. E.g., a driver can achieve a constant velocity even though air resistance & friction with the road are present Momentum & Force Momentum = mass x velocity (p = mv) a force must be applied to change the momentum. I.e., constant velocity = no net force. Change in momentum = mass x (velocity1 - velocity2) = mass x acceleration Magnitude of force & change in momentum: which hurts more, being hit by a bug traveling at 30 mph or a baseball traveling at 30 mph? Both transfer momentum road friction to you (and you feel a force as a result) during the collision air resistance The mere presence of a force doesn t result in a change in momentum. E.g., a driver can achieve a constant velocity even though air resistance & friction with the road are present Acceleration & net force change in momentum = change in velocity acceleration = application of a non-zero net force I.e., we feel forces when we accelerate in a car (being pushed back) or drive on a curvy road (pushed to the side) planets accelerate as they orbit the Sun. Thus, something must be applying a force

3 Angular Momentum angular momentum, or circular/turning momentum is the momentum an object has when spinning on its axis An ice skater has angular momentum when they are spinning in place the Earth has angular momentum due to its rotation (rotational angular momentum) and its orbit around the Sun (orbital angular momentum) Angular Momentum Angular momentum changes from the application of a torque, or twisting force E.g., pushing on the hinges of the door results in no net torque, but pushing on the end of the door does planet Sun Angular Momentum Angular momentum changes from the application of a torque, or twisting force E.g., pushing on the hinges of the door results in no net torque, but pushing on the end of the door does Angular Momentum Angular momentum changes from the application of a torque, or twisting force E.g., pushing on the hinges of the door results in no net torque, but pushing on the end of the door does r F

4 Weight vs Mass Mass: amount of matter in an object Weight: a force, e.g., a force that a scale measures when you stand on it. Weight = (Mass) x (acceleration due to gravity) Weight vs Mass Your measured weight can vary, e.g., when riding an elevator accelerating up = you weigh more due to the elevator s acceleration accelerating down = you weigh less moving at a constant speed = no weight change Your measured weight can vary, e.g., when riding an elevator if the cable breaks... you are in free fall (gravity accelerates you at the same rate as your surroundings)... and thus weightless. astronauts in the Space Shuttle experience weightlessness by falling around the Earth Weight vs Mass Isaac Newton ( A.D.) Born just after Galileo's death Developed calculus Used math to develop scientific ideas Fundamental contributions: 1.Three laws of motion 2.Law of gravity 3.Applying the laws of physics to the heavens

5 Newton s 1st law of motion An object moves at constant velocity if there is no net force acting upon it. Objects at rest (velocity = 0) stay at rest Moving object stays in motion unless a force acts upon it. For a moving car, the forces acting upon it are air resistance, friction with the road (and maybe gravity if one is driving uphill) You don't feel motion when moving at a constant velocity (e.g, a smooth airplane flight) In physics, this is the concept of inertia Newton s 2nd law of motion Force = mass x acceleration Another way to think of it force is change in momentum One can throw a baseball farther than a bowling ball. Jupiter exerts a stronger gravitational force on passing comets than the Earth does 2nd law: circular motion What force is in play when one swings a ball on a rope? The inward force along the string keeps it in circular motion For a driver turning into a curve, the inward force is friction For a planet orbiting the Sun, the inward force is gravity Newton s 3rd law of motion For any force, there is always an equal and opposite reaction force. Standing on the ground: you push on the ground, it pushes back on you no net force. Better example: What happens when you jump in the air from a log floating on water This is what allows a rocket to lift off.

6 Conservation Laws Newton s laws arise from conservation principles: Conservation of momentum Conservation of angular momentum Conservation of energy Conservation of Momentum Total momentum of interacting objects does not change unless an external force is applied. An object can gain or lose momentum only if some other object s momentum changes by a precisely opposite amount E.g., Billiard balls. E.g., Rocket: forward momentum of rocket = backward momentum of gas ball at rest or in motion = 1st law. collision - transfer of momentum = 2nd and 3rd law. Conservation of Angular Momentum In the absence of an external torque, the total angular momentum of a set of interacting objects does not change. Angular momentum = mass x speed x radius of orbit Earth's orbit: Orbital angular momentum constant Orbit continues unless something takes away angular momentum. Orbital speed is greatest when closest to the Sun (i.e., Kepler s 2nd law)

7 Conservation of Rotational Angular Momentum The Earth will keep rotating at the same speed, as long as it doesn t transfer angular momentum to another object An ice skater is a great example of conservation of angular momentum. Conservation of Energy Objects gain or lose energy only by exchanging it with other objects. Energy type 1: Kinetic, or energy of motion Energy type 2: Radiative, or light energy Energy type 3: Potential, or stored energy Angular momentum = mass x speed x radius 1 Joule = 1 kg m 2 / s 2 1 Calorie = 4184 Joules Thermal Energy i.e., kinetic energy of random motion of atoms and molecules Temperature ~ average kinetic energy of the particles

8 Thermal Energy i.e., kinetic energy of random motion of atoms and molecules Temperature ~ average kinetic energy of the particles Temperature Scales normal hot 30 Thermal Energy Thermal energy depends both on the number of particles (density) and their temperature. I.e., a boiling pot of water has more thermal energy than a hot oven. Gravitational Potential Energy gravitational potential energy: depends on the mass of the object & and how far it can fall as a result of gravity E.g., = mass x acceleration of gravity x height above ground 32

9 Mass-Energy Einstein showed that mass and energy are related: Potential energy stored in nuclei. Nuclear fusion can release some of this potential energy. 1 megaton H-bomb explosion results from converting 0.1 kg of mass into energy. Mass comes from energy too particle accelerators 11-megaton ROMEO Event at Bikini Atoll (NNSA) Gravity Newton is rumored to have observed a falling apple Newton's law of gravity: The gravitational force between two objects is Force on mass 1 from 2 is the same as force on mass 2 from mass 1. Gravity affects anything with mass. Gravity follows an inverse square law with distance. Gravity Gravity Gravity keeps the planets in orbit around the Sun What happens to the force of gravity if the distance between the objects doubles? If we were to replace the Sun (radius = 7 x 10 8 m) with a neutron star (radius = 10,000 m) with the same mass, would Earth's orbit change? planet's velocity planet force of gravity orbital path Sun

10 Gravity Weak between two people because the masses involved are small. Strong between a person & Earth because the Earth is massive & the distance is small. Strong between Sun & planets because the Sun is very massive. Newton: Ellipses (& circles) are only one kind of orbit Ellipses (& circles) are bound orbits Parabolic & hyperbolic orbits are unbound Circles, Ellipses, parabolas, and hyperbolas are conic sections For all orbits, objects move faster when closer to the object being orbited Types of Orbits Kepler s 3rd Law Gravity = Centrifugal Force = mass x centripetal acceleration Circumference = Speed x Period So, Center of Mass Perception: E.g., the Earth orbits the Sun Reality: Both the Earth & Sun orbit their common center of mass For objects of equal mass, the center of mass is exactly halfway between them. For the Earth-Sun, the center of mass is below the surface of the Sun

11 Center of Mass Orbital Energy Kepler s third law (modified) A planet s total orbital energy always stays the same Orbits cannot change spontaneously Gravitational Encounters However, orbits can change through the exchange of orbital energy with other objects E.g., comets passing close to Jupiter can lose so much orbital energy that the comet becomes bound to Jupiter Spacecrafts can use the exchange of energy with planets to boost their speed.

12 The Voyager Missions Atmospheric Drag Satellites can lose orbital energy via drag with the upper atmosphere of the Earth Orbital energy is converted to thermal energy Result: falling satellite burns up in the atmosphere I.e., these probes made use of the gravity of several planets to redirect & accelerate them Pieces of Russian Space Station MIR during its reentry on March 23, 2001 Why do all objects fall at the same rate? It turns out that the mass of the falling object cancels out Gravity = mass x acceleration of falling object Escape Velocity Escape velocity: i.e., sufficient speed (i.e., kinetic energy) to escape the gravitational pull of a massive object 47

13 Escape Velocity Tidal Force Tidal Force Tidal Force Tidal Force: a differential gravitational force, ΔF, that tends to deform a body due to the tidal effects of its neighbor Tidal Force: a differential gravitational force, ΔF, that tends to deform a body due to the tidal effects of its neighbor

14 Tidal Force As a example, consider the Earth as being comprised of particles of mass, m. Consider 3 particles on the Earth - one at the near edge (1) to the Moon, in the center (2), and at the far edge (3). Tidal Force ΔR01 ΔR01 ΔR03 ΔR02 ΔR03 ΔR02 Tidal Force Tidal Force The gravitational force from the Moon felt by the particle on the near edge is stronger than the force felt by the particle in the center. The force from the Moon felt by the particle in the center is stronger than the force felt by the particle on the far edge. This results in a differential gravitational force, ΔF, between the particles ΔR01 ΔR01 ΔR03 ΔR02 ΔR03 ΔR02 ΔF ΔF

15 3 2 1 Tidal Force ΔR03 ΔR02 ΔR01 The larger the distance between 2 objects relative to the size of each object, ΔR02» (ΔR01 - ΔR03), the weaker the tidal force. A strong tidal force can actually tear an object apart the Sun also exerts tidal forces on the Earth 50% weaker than the Moon s tidal force because the Sun is so far away - thus the differential force is weaker New & full moon - Sun and Moon tidal forces on Earth are aligned 1st & 3rd quarter Moon - Sun and Moon tidal forces are perpendicular to each other Tidal Force Tidal Force: long-term effects Tidal Force: long-term effects Earth Moon Earth Moon Axis of greatest tidal stress Axis of greatest tidal stress No rotation No rotation: the tidal bulge is aligned with the Earth-Moon line Rotation: tidal bulge is pulled out of phase with the Earth-Moon line as the Earth attempts to pull the bulge around in the rotational direction.

16 Tidal Force: long-term effects Tidal Force: long-term effects Earth Moon Earth Moon Axis of greatest tidal stress Axis of greatest tidal stress Rotation: the tidal bulge pulls the moon forward. Rotation: the Moon s gravity tries to pull the tidal bulge back Tidal Force: long-term effects Tidal Stress As the moon orbits the planet, different parts of the moon pass through the axis of greatest tidal stress The end result is the moon is heated by friction Earth Moon Result 1: the Earth s rotation is slowing down - i.e., the Earth is losing rotational angular momentum Result 2: the Moon is gaining angular momentum Result 3: If the Moon stays in orbit around the Earth, the Earth-Moon rotation will eventually be synchronous The heat is expelled through moonquakes and volcanism Dissipation of energy slows the moon s rotation

17 Tidal Stress Tidal Stress As the moon orbits the planet, different parts of the moon pass through the axis of greatest tidal stress As the moon orbits the planet, different parts of the moon pass through the axis of greatest tidal stress The end result is the moon is heated by friction The heat is expelled through moonquakes and volcanism Earth Moon The end result is the moon is heated by friction The heat is expelled through moonquakes and volcanism Earth Dissipation of energy slows the moon s rotation Dissipation of energy slows the moon s rotation Tidal Stress Synchronous Rotation As the moon orbits the planet, different parts of the moon pass through the axis of greatest tidal stress The end result is the moon is heated by friction Earth Moon The heat is expelled through moonquakes and volcanism Dissipation of energy slows the moon s rotation orbital period = rotational period

18 Synchronous Rotation Tidal Forces: Effects on Moon & Earth Minimum frictional energy loss: when the orbital period of the Moon is equal to the rotation period I.e., the same parts of the moon are always aligned with the axis of maximum tidal stress Earth Moon The Earth s day was once much shorter The Moon was once much closer to the Earth, and it rotated much faster I.e., friction, and thus heat generation, is minimized 70 Tides and Other Objects Galilean moons exhibit synchronous rotation Pluto and Charon are both tidally locked Many binary star systems exhibit this. Mercury has a more complex configuration - 3 rotational periods = 2 orbital periods Tidal forces can drive geological activity - Oceans on Europa - Volcanoes on Io Comet Shoemaker-Levy 9 was broken apart due to tidal forces from Jupiter (Credit: Dr. Hal Weaver and T. Ed Smith (STScI), and NASA) Putting it all into context... Newton's laws - Explain Kepler's laws - Allow us to determine the mass of planets, stars in binary systems,... - Understanding of orbits and observations of transits allow us to get radius, density. Center of mass - Important for understanding how we detect extrasolar planets. Tides - Explain why the Moon shows the same face toward Earth - Important for understanding Jupiter's moons

19 Putting it all into context... Thermal energy - Important in understanding whether a planet can hold an atmosphere Angular momentum - Important for understanding the formation of the solar system

Understanding Motion, Energy & Gravity

Understanding Motion, Energy & Gravity Speed, Velocity & Acceleration Understanding Motion, Energy & Gravity Chapter 4 speed: distance traveled per unit time (e.g., m/s, mph, km/ hr) velocity: speed & direction acceleration: change in velocity

More information

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units

More information

4.1 Describing Motion

4.1 Describing Motion Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe

More information

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity

9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity 9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

Today. Laws of Motion. Conservation Laws. Gravity. tides

Today. Laws of Motion. Conservation Laws. Gravity. tides Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different

More information

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?

Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Agenda Announce: Stony Brook talk this Friday on Precision Cosmology Project Part I due in one week before class: one paragraph

More information

Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space. https://saturn.jpl.nasa.gov/mission/grand-finale/overview/

Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space. https://saturn.jpl.nasa.gov/mission/grand-finale/overview/ Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space https://saturn.jpl.nasa.gov/mission/grand-finale/overview/ Laws of Motion Conservation Laws Gravity tides Today Why are astronauts weightless

More information

4.3 Conservation Laws in Astronomy

4.3 Conservation Laws in Astronomy 4.3 Conservation Laws in Astronomy Our goals for learning: Why do objects move at constant velocity if no force acts on them? What keeps a planet rotating and orbiting the Sun? Where do objects get their

More information

Lecture: October 1, 2010

Lecture: October 1, 2010 Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on

More information

How do we describe motion?

How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727)

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Lecture Fall 2005 Astronomy 110 1

Lecture Fall 2005 Astronomy 110 1 Lecture 9 + 10 Fall 2005 Astronomy 110 1 Isaac Newton and the birth of Physics If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (1642 1727) Nature

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016 Forces, Momentum, & Gravity (Chapter 3) Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We

More information

In this chapter, you will consider the force of gravity:

In this chapter, you will consider the force of gravity: Gravity Chapter 5 Guidepost In this chapter, you will consider the force of gravity: What were Galileo s insights about motion and gravity? What were Newton s insights about motion and gravity? How does

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW: Assignment - Periodic Motion Reading: Giancoli, Chapter 5 Holt, Chapter 7 Objectives/HW: The student will be able to: 1 Define and calculate period and frequency. 2 Apply the concepts of position, distance,

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

The force of gravity holds us on Earth and helps objects in space stay

The force of gravity holds us on Earth and helps objects in space stay 96 R E A D I N G The force of gravity holds us on Earth and helps objects in space stay in orbit. The planets in the Solar System could not continue to orbit the Sun without the force of gravity. Astronauts

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Newton's Laws. Before Isaac Newton

Newton's Laws. Before Isaac Newton Newton's Laws Before Isaac Newton Newton's Laws There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 3 Force and Motion Force and Motion Cause and Effect In chapter 2 we studied motion but not its cause. In this chapter we will look at both

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

12-Feb-18. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

12-Feb-18. Newton's Laws. Newton's Laws. Prelude to Newton's Laws Newton's Laws Newton's Laws Before Isaac Newton There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

Basic Physics Content

Basic Physics Content Basic Physics Content The purpose of these 38 questions is to let me know what your initial grasp is of the material that lies ahead. This is not graded, so don t stress out. Enjoy thinking about and answering

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

More information

13-Feb-19. Newton's Laws. Newton's Laws. Prelude to Newton's Laws

13-Feb-19. Newton's Laws. Newton's Laws. Prelude to Newton's Laws Newton's Laws 1 Newton's Laws Before Isaac Newton There were facts and laws about the way the physical world worked, but no explanations After Newton There was a unified system that explained those facts

More information

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1 Astro 110-01 Lecture 12 Energy and Gravity (Cont d) 13/02/09 Habbal Astro110-01 Lecture 12 1 Energy due to movement of Kinetic Energy: object E k = ½ m v 2 13/02/09 Habbal Astro110-01 Lecture 12 2 Gravitational

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)

More information

Midterm 2 PRS Questions

Midterm 2 PRS Questions Midterm 2 PRS Questions PRS questions from the lectures after Midterm 1 but before Midterm 2 PRS Question. You want to launch a rocket into space, and you want to maximize its kinetic energy. Suppose that

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

FORCE AND MOTION CHAPTER 3

FORCE AND MOTION CHAPTER 3 FORCE AND MOTION CHAPTER 3 Review: Important Equations Chapter 2 Definitions Average speed: Acceleration: v = d t v = Δd a = Δv Δt = v v 0 t t 0 Δt = d d 0 t t 0 Derived Final velocity: Distance fallen:

More information

For each of the following questions, give clear and complete evidence for your choice in the space provided.

For each of the following questions, give clear and complete evidence for your choice in the space provided. Name (printed) First Day Stamp For each of the following questions, give clear and complete evidence for your choice in the space provided. 1. An astronomer observes that a certain heavenly body is moving

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Lecture 8. Kepler's IInd: Angular Momentum

Lecture 8. Kepler's IInd: Angular Momentum Lecture 8 Gravity and Orbits Angular Momentum Deducing the Law of Gravity Escape Orbits Orbits: common misconceptions Feb 3, 2006 Astro 100 Lecture 8 1 Kepler's IInd: Angular Momentum Kepler's IInd: (motion

More information

Newton's Laws of Motion

Newton's Laws of Motion Newton's Laws of Motion 1 Newton's Laws of Motion: First Law Law of Inertia An object at rest remains at rest unless acted upon by an outside force. - provides a qualitative definition of force. 2 An object

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil

Gravity & The Distances to Stars. Lecture 8. Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 1 Gravity & The Distances to Stars Lecture 8 Homework 2 open Exam on Tuesday in class bring ID and #2 pencil 2 Preparing for the Exam 1 Exams in this class are multiple choice, but the questions can be

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

The Newtonian Synthesis. Conceptual Physics 11 th Edition. The Universal Law of Gravity. The Universal Law of Gravity. The Newtonian Synthesis

The Newtonian Synthesis. Conceptual Physics 11 th Edition. The Universal Law of Gravity. The Universal Law of Gravity. The Newtonian Synthesis Conceptual Physics 11 th Edition Chapter 9: GRAVITY The Newtonian Synthesis In Aristotle s time, motion of planets and stars was natural not governed by the same laws as objects on Earth. Newton recognized

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Please pick up your midterms from front of class

Please pick up your midterms from front of class Please pick up your midterms from front of class Average: 70 % Test % score distribution: Top grade: 92 % Make sure you go through your test and the solutions carefully to understand where you went wrong.

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 - Gravity and Motion Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. In 1687 Isaac Newton published the Principia in which he set out his concept

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

Announce/Remind. Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back!

Announce/Remind. Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back! Announce/Remind Reading: Section 6.1, 6.2 for today. Adjusted Exam 1 Grades + buy-back results on course Grades tab. 569 points bought back! Extra Credit Opportunity if you didn t do Monsters of the Milky

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

l Register your iclicker on LON-CAPA

l Register your iclicker on LON-CAPA l LON-CAPA #3 and Mastering Physics due next Tuesday help room hours (Strosacker Help Room, 1248 BPS): M: 5-8 PM W: 5-8 PM F: 2-6 PM l Register for Mastering Physics >95% of you have l Register your iclicker

More information

Newton s Laws and the Nature of Matter

Newton s Laws and the Nature of Matter Newton s Laws and the Nature of Matter The Nature of Matter Democritus (c. 470-380 BCE) posited that matter was composed of atoms Atoms: particles that can not be further subdivided 4 kinds of atoms: earth,

More information

ASTRONAUT PUSHES SPACECRAFT

ASTRONAUT PUSHES SPACECRAFT ASTRONAUT PUSHES SPACECRAFT F = 40 N m a = 80 kg m s = 15000 kg a s = F/m s = 40N/15000 kg = 0.0027 m/s 2 a a = -F/m a = -40N/80kg = -0.5 m/s 2 If t push = 0.5 s, then v s = a s t push =.0014 m/s, and

More information

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 Summary Newton s law of gravity describes the gravitational force between A. the earth and the

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc.

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc. Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Our goals for learning: How do we describe motion? How is mass different from weight?

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

General Physical Science

General Physical Science General Physical Science Chapter 3 Force and Motion Force and Net Force Quantity capable of producing a change in motion (acceleration). Key word = capable Tug of War Balanced forces Unbalanced forces

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

Classical mechanics: Newton s laws of motion

Classical mechanics: Newton s laws of motion Classical mechanics: Newton s laws of motion Homework next week will be due on Thursday next week You will soon be receiving student evaluations Occam s razor Given two competing and equally successful

More information

Announcements. True or False: When a rocket blasts off, it pushes off the ground in order to launch itself into the air.

Announcements. True or False: When a rocket blasts off, it pushes off the ground in order to launch itself into the air. Astronomy 101, Oct. 23, 2008 Announcements Homework #4 available today at 11:00 AM (after lecture!) Due Sunday, 11/2, before midnight. Final exam date, time, and place: Monday, Dec. 15, 10:30 AM, Hasbrouck

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today)

Events. Notable. more gravity & orbits Tides. Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Today more gravity & orbits Tides Events Homework Due Next time; Exam review (Sept. 26) Exam I on Sept. 28 (one week from today) Notable Fall equinox (Sept. 22 - tomorrow at 4:02PM) Escape Velocity M r

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

Answer Key for Exam D

Answer Key for Exam D Answer Key for Exam D 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s First Law (law of inertia) An object at rest tends to stay at rest

More information

Describing Motion. Newton Newton s Laws of Motion. Position Velocity. Acceleration. Key Concepts: Lecture 9

Describing Motion. Newton Newton s Laws of Motion. Position Velocity. Acceleration. Key Concepts: Lecture 9 Key Concepts: Lecture 9 Newton Newton s Laws of Motion More on Kepler s Laws Describing Motion Position Velocity Rate of change of position (speed & direction) 80 km/hr Acceleration 40 km/hr Rate of change

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Circular Motion & Gravitation MC Question Database

Circular Motion & Gravitation MC Question Database (Questions #4,5,6,27,37,38,42 and 58 each have TWO correct answers.) 1) A record player has four coins at different distances from the center of rotation. Coin A is 1 cm away, Coin B is 2 cm away. Coin

More information

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello!

Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy. Hello! PHY131H1F - Class 13 Outline for Today: Newton s Law of Universal Gravitation The Gravitational Field Orbital Motion Gravitational Potential Energy Under the Flower of Kent apple tree in the Woolsthorpe

More information

Motion, Energy, and Gravity. Reminder to take out your clicker and turn it on!

Motion, Energy, and Gravity. Reminder to take out your clicker and turn it on! Motion, Energy, and Gravity Reminder to take out your clicker and turn it on! Attendance Quiz Are you here today? Here! (a) yes (b) no (c) Opening Day is here! x Clickers I have not been able to download

More information

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf =

(b) The period T and the angular frequency ω of uniform rotation are related to the cyclic frequency f as. , ω = 2πf = PHY 302 K. Solutions for problem set #9. Non-textbook problem #1: (a) Rotation frequency of 1 Hz means one revolution per second, or 60 revolutions per minute (RPM). The pre-lp vinyl disks rotated at 78

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information