dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y

Size: px
Start display at page:

Download "dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y"

Transcription

1 dewetting initial state: continuous film of partially wetting liquid final equilibrium state: drops wit θ = θ Y driving forces dewetting mecanism? dewetting dynamics? 1

2 free energy vs. film tickness water drop on teflon: q Y =10 water film wit tickness small volume: equilibrium configuration = drop wit c.a. q Y if is not too large large volume: equilibrium configuration = tick film stability analysis: film is always stable against perturbations wat is te critical volume (tickness) below wic te film is unstable? ow do unstable films break up?

3 global stability F flat film: 1 Ffilm ( ) = σ sl + σ lv + ρ g A film dry surface: F dry = σ sv A dry eq energy of film + dry patc: F( A dry ) 1 = σ sl + σ lv + ρ g Afilm + σ sv Adry! = min 3 partial wetting: S = σ sv sl lv ( σ + σ ) < = σ lv (cosθy 1) 0 Afilm + Adry = A = const. V = A0 = Afilm = const. = λ (1 cosθ ) = λ sin eq. c Y c Y eigt of a liquid pancake θ /

4 global stability (II) metastable films globally stable films F tangent construction! eq 0 > eq : film is globally stable 4 0 < eq : film is globally unstable against breakup but locally stable against small perturbations metastable

5 a practical experiment 5 nucleation barrier >> k B T: create defect to initiate dewetting

6 nucleated dewetting ole nucleation at defect sites (e.g. due to surface rougness, cem. eterogeneity, ) random distribution of ole locations and time of appearance 6

7 a second dewetting scenario polystyrene films on Si eterogeneous nucleation spinodal dewetting oles appear at random locations and at random times oles appear at regular distances and at te same time allmarks of a linear instability 7 Seemann et al. Pys. Rev. Lett. 001

8 wetting and long-range forces disjoining pressure and effective interface potential (II) r i >> r i : F = σ + σ sl = O(r i ) : F = F( ) = σ + σ + Φ( ) lv sl lv Φ () : effective interface potential 8

9 properties of F() Φ( ) = F( ) ( σ sl + σ lv ) : = 0 : Φ 0 Φ = σ sv ( σ lv + σ sl ) = S O(F) = O(σ) [ mj/m (typical organic liquids)] Φ() : interaction energy / unit area of adjacent interfaces dφ d = Π() force / unit area between interfaces: disjoining pressure example: van der Waals interaction Φ( ) = A 1π A: Hamaker constant A=f(n v,n l,n s,ε v,ε l,ε s ) O(A)=10-0 J (.4k B RT) 9

10 contributions to disjoining pressure van der Waals interaction Φ( ) = A/1π electrostatic interaction ( double layer forces ) structural solvation forces ydrogen bonding forces sort-range cemical forces 10

11 F and macroscopic wetting F long range wetting partial wetting omogeneous film drop + dry substrate pseudo-partial wetting drop + tin film 0 S = σ 1 cosθ lv ( Y ) θ tin film comment on stability: unstable vs stable 11

12 stability of tin wetting films tin film equation: t = 1 3µ d dx 3 ( P) x 3 0 = xx P 3µ small perturbation: ( x, t) = 0 + δ( t) cos qx δ << 0 local pressure: P( x, t) = σ xx + dφ d ( x) dφ d ( x) Φ' ( 0 ) + Φ''( 0 ) δ δ& 3 t) = 3µ ( σ q + Φ' '( )) δ( ) ( 0 q t 0 F > 0: film locally stable for all q F < 0: film locally stable for large q but unstable for small q 1

13 stability of tin wetting films (II) critical wavevector: q c = Φ' '( 0 ) /σ fastest growing mode: maximum of prefactor q * = qc / caracteristic growt time: van der Waals: τ 5 * 0 1µ 3 σ τ* = 4 0q c tin films wit an initial tickness, for wic F <0 are linearly unstable 13

14 interface potential & stability F always stable 0 S = σ 1 cosθ lv ( Y ) unstable 14

15 example of a complex interfacial potential Φ( ) = c 8 8 A air PS SiO 1π 1 1 ( + d) A 1π ( + d) air PS Si sort range cemical force vdw: air-liq.-si vdw: air-liq.-sio air polystyrene SiO Si layered substrates: SiO:Si 15 Seemann et al. J. Pys. Cond. Matt. 13, 495 (001)

16 various dewetting scenarios Seemann, Jacobs, Hermingaus 16

17 dewetting dynamics PDMS (30 µm) on fluorinated Si 17 Redon et al. Pys. Rev. Lett. 1991

18 dewetting dynamics observations: -excess material collects in rim - constant dewetting velocity v - dewetting velocity v ~ q 3 Y 18 Redon et al. Pys. Rev. Lett. 1991

19 model 0 R(t) w(t) B q D < q Y assumptions: - 0 <<w<<r; θ <<1 -rim profile is circular and symmetric -rim volume: V rim = π R 0 A dynamics: 3µ V θ D ln balance of viscous dissipation & imbalanced Young force w a = ( v) dxdz = σ (cosθ cosθ V D = µ ) z Y D σ = V ( θ Y θ D ) σ point A & B: VA = θd ( θy θ ) D 6µ l A V B σ σ 3 = θd (0 θ ) = θ D D 6µ l 6µ l B B 19 θy V A = V B : θ D = = const. V=const. ~θ 3 Y 1+ l / l A B

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa.

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. An original image (a1) was binarized, as shown in a2, by Canny edge detector

More information

Module 3: "Thin Film Hydrodynamics" Lecture 12: "" The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template

Module 3: Thin Film Hydrodynamics Lecture 12:  The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template The Lecture Contains: Linear Stability Analysis Some well known instabilities file:///e /courses/colloid_interface_science/lecture12/12_1.htm[6/16/2012 1:39:16 PM] Linear Stability Analysis This analysis

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

On the breakup of fluid films of finite and infinite extent

On the breakup of fluid films of finite and infinite extent PHYSICS OF FLUIDS 19, 072107 2007 On the breakup of fluid films of finite and infinite extent Javier A. Diez a Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

Instability and Patterning of Thin Polymer Films Prof. R. Mukherjee Department Of Chemical Engineering Indian Institute Of Technology, Kharagpur

Instability and Patterning of Thin Polymer Films Prof. R. Mukherjee Department Of Chemical Engineering Indian Institute Of Technology, Kharagpur Instability and Patterning of Thin Polymer Films Prof. R. Mukherjee Department Of Chemical Engineering Indian Institute Of Technology, Kharagpur Lecture No. # 36 Spontaneous Instability & Dewetting of

More information

On the Breakup of Patterned Nanoscale Copper. Rings into Nanoparticles: Competing Instability and. Transport Mechanisms

On the Breakup of Patterned Nanoscale Copper. Rings into Nanoparticles: Competing Instability and. Transport Mechanisms On the Breakup of Patterned Nanoscale Copper Rings into Nanoparticles: Competing Instability and Transport Mechanisms Yueying Wu, Jason D. Fowlkes, Philip D. Rack,, Javier A. Diez, and Lou Kondic Department

More information

Spinodal Dewetting of Thin Films with Large Interfacial Slip: Implications from the Dispersion Relation

Spinodal Dewetting of Thin Films with Large Interfacial Slip: Implications from the Dispersion Relation 12290 Langmuir 2008, 24, 12290-12294 Spinodal Dewetting of Thin Films with Large Interfacial Slip: Implications from the Dispersion Relation Markus Rauscher,*,, Ralf Blossey, Andreas Münch, and Barbara

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Dynamics and structure formation in thin polymer melt films

Dynamics and structure formation in thin polymer melt films INSTITUTE OF PHYSICSPUBLISHING J.Phys.: Condens. Matter 17 (2005) S267 S290 JOURNAL OFPHYSICS: CONDENSED MATTER doi:10.1088/0953-8984/17/9/001 Dynamics and structure formation in thin polymer melt films

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT coorganizers: Frieder Mugele Physics of Comple Fluids Jacco Snoeier Physics of Fluids / UT University of Twente Anton Darhuber Mesoscopic Transport Phenomena / Tu/e speakers: José Bico (ESPCI Paris) Daniel

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente

drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente drops in motion the physics of electrowetting and its applications Frieder Mugele Physics of Complex Fluids niversity of Twente 1 electrowetting: the switch on the wettability voltage outline q q q q q

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

Nano-domains formation on photoalignment thin film by self-organized dewetting

Nano-domains formation on photoalignment thin film by self-organized dewetting Nano-domains formation on photoalignment thin film by self-organized dewetting Chung-Yung Lee (SID Member) Yuet-Wing Li (SID Member) Man-Chun Tseng (SID Student Member) Vladimir G. Chigrinov (SID Fellow)

More information

Instabilities in Thin Polymer Films: From Pattern Formation to Rupture

Instabilities in Thin Polymer Films: From Pattern Formation to Rupture Instabilities in Thin Polymer Films: From Pattern Formation to Rupture John R. Dutcher*, Kari Dalnoki-Veress Η, Bernie G. Nickel and Connie B. Roth Department of Physics, University of Guelph, Guelph,

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS. Andreja [arlah 1

VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS. Andreja [arlah 1 VAN DER WAALS AND STRUCTURAL FORCES: STABILITY OF THIN LIQUID-CRYSTALLINE FILMS Andreja [arlah 1 Primo` Ziherl, 2,3 and Slobodan @umer 1,3 1. Department of Physics, Faculty of Mathematics and Physics,

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 19 15 NOVEMBER 1998 Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study Hong Liu Department of Physics, Kansas State

More information

Solid-State Dewetting: From Flat to Curved Substrates

Solid-State Dewetting: From Flat to Curved Substrates Solid-State Dewetting: From Flat to Curved Substrates Yan Wang with Prof. Weizhu Bao, Prof. David J. Srolovitz, Prof. Wei Jiang and Dr. Quan Zhao IMS, 2 May, 2018 Wang Yan (CSRC) Solid-State Dewetting

More information

THE EUROPEAN PHYSICAL JOURNAL E. Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations

THE EUROPEAN PHYSICAL JOURNAL E. Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations ur. Pys. J., 7 (3) DOI./epje/i3-9- TH UROPAN PHYSICAL JOURNAL Modelling tin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations U. Tiele,a,L.Brusc,M.Besteorn,andM.Bär

More information

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL International Journal of Modern Physics B, Vol. 13, No. 7 (1999) 355 359 c World Scientific Publishing Company THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France EUROPHYSICS LETTERS 15 July 2001 Europhys. Lett., 55 (2), pp. 214 220 (2001) Rough wetting J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France

More information

Chapter 2. Block copolymers. a b c

Chapter 2. Block copolymers. a b c Chapter 2 Block copolymers In this thesis, the lamellar orientation in thin films of a symmetric diblock copolymer polystyrene-polymethylmethacylate P(S-b-MMA) under competing effects of surface interactions

More information

On the importance of nucleation solutions for the rupture of thin liquid films

On the importance of nucleation solutions for the rupture of thin liquid films Colloids and Surfaces A: Physicochemical and Engineering Aspects 206 (2002) 135 155 www.elsevier.com/locate/colsurfa On the importance of nucleation solutions for the rupture of thin liquid films Uwe Thiele

More information

Lecture 7: quick review

Lecture 7: quick review Lecture 7: quick review We discussed the meaning of the critical r* and ΔG*: since it s unstable, if we can form a drop with r > r*, the system will keep going falling down the energy curve, trying to

More information

Coarsening: transient and self-similar dynamics in 1-D

Coarsening: transient and self-similar dynamics in 1-D Coarsening: transient and self-similar dynamics in 1-D ½ 1 5 1 4 h ln(t) Ú ¼º N 1 3 N t 2/5 1 2 1 5 1 15 x ¼ 1 ¼ ¼º ½ 1 1 4 1 8 1 12 1 16 Ü t Michael Gratton (Northwestern) and Thomas Witelsi (Due) Cahn-Hilliard

More information

Dewetting of polymer films by ion implantation

Dewetting of polymer films by ion implantation Eur. Phys. J. E 28, 273 278 (2009) DOI 10.1140/epje/i2008-10430-4 Regular Article THE EUROPEAN PHYSICAL JOURNAL E Dewetting of polymer films by ion implantation Z.J. Han a and B.K. Tay Nanoelectronics

More information

3.10. Capillary Condensation and Adsorption Hysteresis

3.10. Capillary Condensation and Adsorption Hysteresis 3.10. Capillary Condensation and Adsorption Hysteresis We shall restrict our attention to the adsorption behavior of porous solids. Hysteresis: two quantities of adsorbed material for each equilibrium

More information

Dewetting of Thin Viscoelastic Polymer Films on Slippery Substrates

Dewetting of Thin Viscoelastic Polymer Films on Slippery Substrates Dewetting of Thin Viscoelastic Polymer Films on Slippery Substrates Elie Raphael, Thomas Vilmin To cite this version: Elie Raphael, Thomas Vilmin. Dewetting of Thin Viscoelastic Polymer Films on Slippery

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 1 Supplementary Figure 1 Micro and nano-textured boiling surfaces. (a) A schematic of the textured boiling surfaces. (b) An isometric view of the square array of square micropillars.

More information

Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line.

Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line. EUROPHYSICS LETTERS Europhys. Lett., 28 (6), pp. 415-420 (1994) 20 November 1994 Contact Angle Hysteresis on a Heterogeneous Surface: Solution in the Limit of a Weakly Distorted Contact Line. J. CRASSOUS

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION S1 Transition from WZ to ZB by addition of Zinc. By p-doping with zinc, the WZ fraction in the wires changes dramatically at a partial pressure of DEZn around 4.610-5 mbar. At high dopant levels fewer

More information

Ultrathin liquid films under alternating intermolecular potential fields and capillary force

Ultrathin liquid films under alternating intermolecular potential fields and capillary force JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 13 1 OCTOBER 2002 Ultrathin liquid films under alternating intermolecular potential fields and capillary force Kahp Y. Suh and Hong H. Lee a) School of Chemical

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Sliding drops on an inclined plane

Sliding drops on an inclined plane Colloids and Surfaces A: Physicochemical and Engineering Aspects 206 (2002) 87 104 www.elsevier.com/locate/colsurfa Sliding drops on an inclined plane Uwe Thiele a, *, Kai Neuffer a,b, Michael Bestehorn

More information

PH 222-3A Spring 2007

PH 222-3A Spring 2007 PH -3A Spring 7 ELECTRIC FIELDS Lectures,3 Chapter (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter Electric Fields In this chapter we will introduce the concept of an electric

More information

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln 0. (a) Sol: Section A A refrigerator macine uses R- as te working fluid. Te temperature of R- in te evaporator coil is 5C, and te gas leaves te compressor as dry saturated at a temperature of 40C. Te mean

More information

Film rupture in the diffuse interface model coupled to hydrodynamics

Film rupture in the diffuse interface model coupled to hydrodynamics PHYSICAL REVIEW E, VOLUME 64, 031602 Film rupture in the diffuse interface model coupled to hydrodynamics Uwe Thiele and Manuel G. Velarde Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Supratelechelics: thermoreversible bonding in difunctional polymer blends

Supratelechelics: thermoreversible bonding in difunctional polymer blends Supratelechelics: thermoreversible bonding in difunctional polymer blends Richard Elliott Won Bo Lee Glenn Fredrickson Complex Fluids Design Consortium Annual Meeting MRL, UCSB 02/02/09 Supramolecular

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

Solvability condition for the moving contact line

Solvability condition for the moving contact line PHYSICAL REVIEW E 78, 564 28 Solvability condition for the moving contact line L. M. Pismen 1 and Jens Eggers 2 1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex

More information

MPIKG Public Access Author Manuscript

MPIKG Public Access Author Manuscript MPIKG Public Access Author Manuscript Max Planck Institute of of Colloids and Interfaces Author Manuscript Published in final edited form as: Stocco, A., & Möhwald, H. (2015). The influence of long-range

More information

Modelling and analysis for contact angle hysteresis on rough surfaces

Modelling and analysis for contact angle hysteresis on rough surfaces Modelling and analysis for contact angle hysteresis on rough surfaces Xianmin Xu Institute of Computational Mathematics, Chinese Academy of Sciences Collaborators: Xiaoping Wang(HKUST) Workshop on Modeling

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Surfaces and Interfaces Defining of interfacial region Types of interfaces: surface vs interface Surface

More information

Exam in Fluid Mechanics SG2214

Exam in Fluid Mechanics SG2214 Exam in Fluid Mecanics G2214 Final exam for te course G2214 23/10 2008 Examiner: Anders Dalkild Te point value of eac question is given in parentesis and you need more tan 20 points to pass te course including

More information

Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur

Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur Lecture No. # 33 Spontaneous Instability & Dewetting of Thin

More information

Morphological evolution of single-crystal ultrathin solid films

Morphological evolution of single-crystal ultrathin solid films Western Kentucky University From the SelectedWorks of Mikhail Khenner March 29, 2010 Morphological evolution of single-crystal ultrathin solid films Mikhail Khenner, Western Kentucky University Available

More information

arxiv: v2 [physics.flu-dyn] 24 Oct 2013

arxiv: v2 [physics.flu-dyn] 24 Oct 2013 Supporting Information: Short and long time drop dynamics on lubricated substrates Andreas Carlson1,3,4,, Pilnam Kim2,4, Gustav Amberg3, and Howard A. Stone4, arxiv:1309.6339v2 [physics.flu-dyn] 24 Oct

More information

Thin films in partial wetting: stability, dewetting and coarsening

Thin films in partial wetting: stability, dewetting and coarsening Thin films in partial wetting: stability, dewetting and coarsening The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France Outline IV - FORMATION OF SOLIDS FROM SOLUTIONS 1) Glass

More information

A shallow water type model to describe the dynamic. of thin partially wetting films

A shallow water type model to describe the dynamic. of thin partially wetting films A shallow water type model to describe the dynamic of thin partially wetting films J. LALLEMENT a, P. VILLEDIEU a, P. TRONTIN a, C. LAURENT a a. Onera - The French Aerospace Lab Toulouse) - ONERA - F-31055

More information

Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case

Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case Nikita Tretyakov, Marcus Müller, Desislava Todorova, and Uwe Thiele Citation: J. Chem.

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Prediction of Coating Thickness

Prediction of Coating Thickness Prediction of Coating Tickness Jon D. Wind Surface Penomena CE 385M 4 May 1 Introduction Tis project involves te modeling of te coating of metal plates wit a viscous liquid by pulling te plate vertically

More information

Line Tension Effect upon Static Wetting

Line Tension Effect upon Static Wetting Line Tension Effect upon Static Wetting Pierre SEPPECHER Université de Toulon et du Var, BP 132 La Garde Cedex seppecher@univ tln.fr Abstract. Adding simply, in the classical capillary model, a constant

More information

Effects of Size, Humidity, and Aging on Particle Removal

Effects of Size, Humidity, and Aging on Particle Removal LEVITRONIX Ultrapure Fluid Handling and Wafer Cleaning Conference 2009 February 10, 2009 Effects of Size, Humidity, and Aging on Particle Removal Jin-Goo Park Feb. 10, 2009 Department t of Materials Engineering,

More information

A thin-film equation for viscoelastic liquids of Jeffreys type

A thin-film equation for viscoelastic liquids of Jeffreys type Eur. Pys. J. E 7, 373 379 5) DOI.4/epje/i5-6-8 THE EUROPEAN PHYSICAL JOURNAL E A tin-film equation for viscoelastic liquids of Jeffreys type M. Rauscer,, A. Münc 3, B. Wagner 4, and R. Blossey 5,a Max-Planck-Institut

More information

spreading of drops on soft surfaces

spreading of drops on soft surfaces Supplementary Material on Electrically modulated dynamic spreading of drops on soft surfaces Ranabir Dey 1, Ashish Daga 1, Sunando DasGupta 2,3, Suman Chakraborty 1,3 1 Department of Mechanical Engineering,

More information

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension.

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension. ow can we measure surface tension? Surface tension, contact angles and wettability www.wikihow.com/measure-surface-tension Measuring surface tension The Wilhelmy balance F Some methods: Wilhelmy plate

More information

hal , version 1-29 Jan 2008

hal , version 1-29 Jan 2008 ENERGY OF INTERACTION BETWEEN SOLID SURFACES AND LIQUIDS Henri GOUIN L. M. M. T. Box 3, University of Aix-Marseille Avenue Escadrille Normandie-Niemen, 3397 Marseille Cedex 0 France E-mail: enri.gouin@univ-cezanne.fr

More information

2. Exploiting wetting phenomena to tailor 1D nano- and microstructures

2. Exploiting wetting phenomena to tailor 1D nano- and microstructures 2. Exploiting wetting phenomena to tailor 1D nano- and microstructures 2.1 Wetting on a macroscopic scale As a large part of the work in this thesis deals with wetting of porous materials, the phenomena

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!!

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!! Final Exam Math 222 Spring 2011 May 11, 2011 Name: Recitation Instructor s Initials: You may not use any type of calculator whatsoever. (Cell phones off and away!) You are not allowed to have any other

More information

Changes of polymer material wettability by surface discharge

Changes of polymer material wettability by surface discharge Changes of polymer material wettability by surface discharge Surface discharge and material treatment Surface treatment of materials in low temperature plasma belongs to the modern and very perspective

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Surfaces and Interfaces Defining of interfacial region Types

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

Instability of a transverse liquid rivulet on an inclined plane

Instability of a transverse liquid rivulet on an inclined plane Instability of a transverse liquid rivulet on an inclined plane Javier A. Diez, Alejandro G. González Instituto de Física Arroyo Seco, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto

More information

Nonlinear Dynamics of Wrinkle Growth and

Nonlinear Dynamics of Wrinkle Growth and Nonlinear Dynamics of Wrinkle Growth and Pattern Formation in Stressed Elastic Thin Films Se Hyuk Im and Rui Huang Center for Mechanics of Solids, Structures and Materials Department of Aerospace Engineering

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS George Adams, Ahmed A. Busnaina and Sinan Muftu the oratory Mechanical, Industrial, and Manufacturing Eng. Department Northeastern University, Boston,

More information

Ultrafast water harvesting and transport in hierarchical microchannels

Ultrafast water harvesting and transport in hierarchical microchannels SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41563-018-0171-9 In the format provided by the authors and unedited. Ultrafast water harvesting and transport in hierarchical microchannels Huawei

More information

Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading

Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading Loughborough University Institutional Repository Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading This item was submitted

More information

Thermal Bending of Circular Plates for Non-axisymmetrical Problems

Thermal Bending of Circular Plates for Non-axisymmetrical Problems Copyrigt 2 Tec Science Press SL, vol.4, no.2, pp.5-2, 2 Termal Bending of Circular Plates for Non-axisymmetrical Problems Dong Zengzu Peng Weiong and Li Suncai Abstract: Due to te complexity of termal

More information

Spreading Dynamics of Polydimethylsiloxane Drops: Crossover from Laplace to Van der Waals Spreading

Spreading Dynamics of Polydimethylsiloxane Drops: Crossover from Laplace to Van der Waals Spreading Journal of Colloid and Interface Science 234, 178 193 (2001) doi:10.1006/jcis.2000.7292, available online at http://www.idealibrary.com on Spreading Dynamics of Polydimethylsiloxane Drops: Crossover from

More information

Desalination by vacuum membrane distillation: sensitivity analysis

Desalination by vacuum membrane distillation: sensitivity analysis Separation and Purification Tecnology 33 (2003) 75/87 www.elsevier.com/locate/seppur Desalination by vacuum membrane distillation: sensitivity analysis Fawzi Banat *, Fami Abu Al-Rub, Kalid Bani-Melem

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

Wetting Transitions at Fluid Interfaces and Related Topics

Wetting Transitions at Fluid Interfaces and Related Topics Wetting Transitions at Fluid Interfaces and Related Topics Kenichiro Koga Department of Chemistry, Faculty of Science, Okayama University Tsushima-Naka 3-1-1, Okayama 7-853, Japan Received April 3, 21

More information

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK.

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK. Postprint Version G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry and M. I. Newton, Topography driven spreading, Phys. Rev. Lett. 93, Art. No. 036102 (2004); DOI: 10.1103/PhysRevLett.93.036102. The

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Thermodynamics of a symmetric toroidal section and break up of a fluid torus

Thermodynamics of a symmetric toroidal section and break up of a fluid torus Thermodynamics of a symmetric toroidal section and break up of a fluid torus Philip Lee March 1, 2016 1 Coordinate systems, and notation The toroidal section makes contact angle θ with the substrate, the

More information

EPJ E. Soft Matter and Biological Physics. EPJ.org. Thin viscoelastic dewetting films of Jeffreys type subjected to gravity and substrate interactions

EPJ E. Soft Matter and Biological Physics. EPJ.org. Thin viscoelastic dewetting films of Jeffreys type subjected to gravity and substrate interactions EPJ E Soft Matter and Biological Pysics EPJ.org your pysics journal Eur. Pys. J. E (9) : DOI./epje/i9-77- Tin viscoelastic dewetting films of Jeffreys type subjected to gravity and substrate interactions

More information

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function.

2. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture partition function. Lecture #5 1 Lecture 5 Objectives: 1. Identify athermal and residual terms from the van der Waals mixture partition function.. Derive ideal mixing and the Flory-Huggins models from the van der Waals mixture

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris? Rain droplet on a window film pinning tear 180? mercury calefaction Leidenfrost point, T = 150

More information

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface.

5.2 Surface Tension Capillary Pressure: The Young-Laplace Equation. Figure 5.1 Origin of surface tension at liquid-vapor interface. 5.2.1 Capillary Pressure: The Young-Laplace Equation Vapor Fo Fs Fs Fi Figure 5.1 Origin of surface tension at liquid-vapor interface. Liquid 1 5.2.1 Capillary Pressure: The Young-Laplace Equation Figure

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information