contact line dynamics

Size: px
Start display at page:

Download "contact line dynamics"

Transcription

1 contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line

2 static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic Young s law (1805): γ cos θ e = γ sv - γ sl

3 static vs dynamic receding moving contact lines advancing

4 static vs dynamic receding moving contact lines advancing hydrodynamic forces down to molecular scales!! multi-scale problem

5 outline part 1: basic ideas simple model for flow near the contact line singularity microscopic physics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory forced wetting

6 outline part 1: basic ideas simple model for flow near the contact line singularity microscopic physics literature: Huh & Scriven, J. Colloid Interface Sci, 35, 85 (1971) Bonn, Eggers, Indekeu, Meunier, Rolley, to appear Rev. Mod. Phys. (2009)

7 corner flow Huh & Scriven 1971: - assume corner geometry -> straight interface - Stokes flow (no inertia) no shear stress no slip

8 corner flow Huh & Scriven 1971: - assume corner geometry -> straight interface - Stokes flow (no inertia) co-moving with contact line (receding)

9 corner flow Huh & Scriven 1971 streamfunction (2D, Stokes flow): " 2 (" 2 #) = 0 r φ

10 corner flow Huh & Scriven 1971 streamfunction (2D, Stokes flow): " 2 (" 2 #) = 0 r φ (note that for irrotational flow " 2 # = 0 )

11 corner flow Huh & Scriven 1971 streamfunction (2D): " 2 (" 2 #) = 0 r φ biharmonic equation

12 corner flow Huh & Scriven 1971 streamfunction: " = r( Asin# + Bcos# + C# sin# + D# cos# ) r φ constants A, B, C, D from boundary conditions

13 corner flow Huh & Scriven 1971 streamfunction: " = r( Asin# + Bcos# + C# sin# + D# cos# ) r φ θ = 120 θ = 60

14 corner flow Huh & Scriven 1971 streamfunction: " = r( Asin# + Bcos# + C# sin# + D# cos# ) r φ what happens as r 0? θ = 120 θ = 60

15 singularity at r=0 Huh & Scriven velocity at r = 0 multi-valued - infinite pressure and shear stress

16 exercise dimensional analysis: speed U position r viscosity η F shear

17 exercise dimensional analysis: speed U position r viscosity η 1. scaling shear stress τ with r? 2. total shear force F shear on plate? F shear F shear ~ dr"(r) x # r= 0

18 hydrodynamics fails when reaching molecular scales! Huh & Scriven 1971:

19 hydrodynamics fails when reaching molecular scales!

20 hydrodynamics fails when reaching molecular scales! many different theories to regularize singularity 1. slip boundary conditions 2. van der Waals forces 3. molecular kinetic theory 4....

21 1. slip length slip boundary condition: velocity at wall ~ shear stress u wall = l slip "u "z l slip

22 1. slip length slip boundary condition: velocity at wall ~ shear stress SFA, mechanical reponse (Cottin-Bizonne et al. PRL 2005)

23 1. slip length slip boundary condition: velocity at wall ~ shear stress l slip " ~ #U l slip

24 2. van der Waals forces introducing disjoining pressure: π(h) equilibrium shape: U=0

25 2. van der Waals forces introducing disjoining pressure: π(h) equilibrium shape: U=0 precursor film, molecular scale

26 2. van der Waals forces introducing disjoining pressure: π(h) precursor film, molecular scale dynamics: " ~ #U l film

27 1. & 2. are similar both provide regularization of hydrodynamic singularity: " ~ #U l micro slip precursor film

28 3. molecular kinetic theory thermally activated hopping of molecules # freq ~ exp " E & % ( $ k B T '

29 3. molecular kinetic theory thermally activated hopping of molecules f cl ~ γ(cosθ - cosθ e ) Blake & Haynes 1969: # freq ~ exp " E ± f 2 cll micro & % ( $ k B T '

30 3. molecular kinetic theory thermally activated hopping of molecules f cl ~ γ(cosθ - cosθ e ) forward/backward: " freq ~ exp ± f 2 cll micro % $ ' # k B T & contact line speed: " U ~ sinh f 2 cll micro % $ ' # k B T &

31 3. molecular kinetic theory liquid helium (Prevost et al. PRL 1999) speed " U ~ sinh f 2 cll micro % $ ' # k B T & F cl

32 3. molecular kinetic theory liquid helium (Prevost et al. PRL 1999) speed " U ~ sinh f 2 cll micro % $ ' # k B T & F cl - another source of dissipation - important when viscous dissipation is small

33 3. molecular kinetic theory drop coalesence (Andrieu et al. JFM 2002)

34 3. molecular kinetic theory drop coalesence (Andrieu et al. JFM 2002) observed relaxation timescale: t ~ R / (10-6 m/s) viscous time: t ~ R / (70 m/s)

35 4....

36 conclusion - moving contact line: gives divergence viscous stress - multi-scale: coupling molecular physics and macroscopic flow - many different mechanisms next lecture: hydrodynamics, above ~10nm

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

contact line dynamics

contact line dynamics contact line dynamics part 2: hydrodynamics dynamic contact angle? lubrication: Cox-Voinov theory maximum speed for instability corner shape? dimensional analysis: speed U position r viscosity η pressure

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

the moving contact line

the moving contact line Molecular hydrodynamics of the moving contact line Tiezheng Qian Mathematics Department Hong Kong University of Science and Technology in collaboration with Ping Sheng (Physics Dept, HKUST) Xiao-Ping Wang

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

Drops sliding down an incline: Singular corners.

Drops sliding down an incline: Singular corners. Drops sliding down an incline: Singular corners. Laurent Limat Laboratoire Matière et Systèmes Complexes, MSC, Paris Diderot University limat@pmmh.espci.fr with: -Jean-Marc Flesselles, Thomas Podgorski

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

The lattice Boltzmann method for contact line dynamics

The lattice Boltzmann method for contact line dynamics The lattice Boltzmann method for contact line dynamics Sudhir Srivastava, J.H.M. ten Thije Boonkkamp, Federico Toschi April 13, 2011 Overview 1 Problem description 2 Huh and Scriven model 3 Lattice Boltzmann

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Solvability condition for the moving contact line

Solvability condition for the moving contact line PHYSICAL REVIEW E 78, 564 28 Solvability condition for the moving contact line L. M. Pismen 1 and Jens Eggers 2 1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex

More information

Wetting contact angle

Wetting contact angle Wetting contact angle Minh Do-Quang www.flow.kth.se Outline Statics; capillarity and wetting Dynamics; models describing dynamic wetting Hydrodynamics (Tanner-Cox-Voinov law) Molecular kinetics theory

More information

Molecular Hydrodynamics of the Moving Contact Line in Two-phase Immiscible Flows

Molecular Hydrodynamics of the Moving Contact Line in Two-phase Immiscible Flows COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 1, No. 1, pp. 1-52 Commun. Comput. Phys. February 26 Molecular Hydrodynamics of the Moving Contact Line in Two-phase Immiscible Flows Tiezheng Qian 1,, Xiao-Ping

More information

Boundary Conditions for the Moving Contact Line Problem. Abstract

Boundary Conditions for the Moving Contact Line Problem. Abstract Boundary Conditions for the Moving Contact Line Problem Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA Weinan E Department of Mathematics and PACM,

More information

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa.

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa. An original image (a1) was binarized, as shown in a2, by Canny edge detector

More information

Not even Hercules : the moving contact line problem

Not even Hercules : the moving contact line problem Not even Hercules : the moving contact line problem Carlos Chiquete Program in Applied Mathematics University of Arizona May 9, 2007 Abstract The problem of the moving contact line is described and the

More information

Kinetic Slip Condition, van der Waals Forces, and Dynamic. Contact Angle. Abstract

Kinetic Slip Condition, van der Waals Forces, and Dynamic. Contact Angle. Abstract Kinetic Slip Condition, van der Waals Forces, and Dynamic Contact Angle Len M. Pismen and Boris Y. Rubinstein Department of Chemical Engineering, Technion Israel Institute of Technology, Haifa 3000, Israel.

More information

Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation

Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation J. Fluid Mech. (7), vol. 579, pp. 63 83. c 7 Cambridge University Press doi:1.117/s117516 Printed in the United Kingdom 63 Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation

More information

Modelling and analysis for contact angle hysteresis on rough surfaces

Modelling and analysis for contact angle hysteresis on rough surfaces Modelling and analysis for contact angle hysteresis on rough surfaces Xianmin Xu Institute of Computational Mathematics, Chinese Academy of Sciences Collaborators: Xiaoping Wang(HKUST) Workshop on Modeling

More information

Relaxation of a dewetting contact line Part 1: A full-scale hydrodynamic calculation

Relaxation of a dewetting contact line Part 1: A full-scale hydrodynamic calculation Under consideration for publication in J. Fluid Mech. Relaxation of a dewetting contact line Part : A full-scale hydrodynamic calculation By JACCO H. SNOEIJER, BRUNO ANDREOTTI, GILES DELON AND MARC FERMIGIER

More information

On the Landau-Levich Transition

On the Landau-Levich Transition 10116 Langmuir 2007, 23, 10116-10122 On the Landau-Levich Transition Maniya Maleki Institute for AdVanced Studies in Basic Sciences (IASBS), Zanjan 45195, P.O. Box 45195-1159, Iran Etienne Reyssat and

More information

Relaxation of a dewetting contact line Part 2: Experiments

Relaxation of a dewetting contact line Part 2: Experiments Under consideration for publication in J. Fluid Mech. 1 Relaxation of a dewetting contact line Part 2: Experiments By GILES DELON 1, MARC FERMIGIER 1, JACCO H. SNOEIJER 1,2 AND BRUNO ANDREOTTI 1 1 Physique

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Measuring contact line dissipation in dynamic wetting

Measuring contact line dissipation in dynamic wetting Measuring contact line dissipation in dynamic wetting By Andreas Carlson, Gabriele Bellani and Gustav Amberg Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden Dynamic wetting of a solid surface

More information

Cornered drops and rivulets

Cornered drops and rivulets Cornered drops and rivulets J. H. Snoeijer 1,2, N. Le Grand-Piteira 2, L. Limat 2, H.A. Stone 3, and J. Eggers 1 1 School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle

Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle Under consideration for publication in J. Fluid Mech. 1 Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle By Jens Eggers

More information

Description of the three-phase contact line expansion

Description of the three-phase contact line expansion EPJ Web of Conferences 67, 02121 (2014) DOI: 10.1051/ epjconf/ 20146702121 C Owned by the authors, published by EDP Sciences, 2014 Description of the three-phase contact line expansion Tereza Váchová 1,a,

More information

Variational models for moving contact lines and the quasi-static approximation

Variational models for moving contact lines and the quasi-static approximation Euro. Jnl of Applied Mathematics (2005), vol. 16, pp. 1 28. c 2005 Cambridge University Press doi:10.1017/s0956792505006406 Printed in the United Kingdom 1 Variational models for moving contact lines and

More information

arxiv: v4 [physics.flu-dyn] 27 Oct 2018

arxiv: v4 [physics.flu-dyn] 27 Oct 2018 Transition in a numerical model of contact line dynamics and forced dewetting arxiv:1703.07038v4 [physics.flu-dyn] 27 Oct 2018 S. Afkhami 1a, J. Buongiorno b, A. Guion b, S. Popinet c, Y. Saade c, R. Scardovelli

More information

arxiv: v1 [cond-mat.soft] 26 Jan 2016

arxiv: v1 [cond-mat.soft] 26 Jan 2016 Relaxation of nonspherical sessile drops towards equilibrium Vadim S. Nikolayev and Daniel A. Beysens ESEME, Service des Basses Températures, CEA-Grenoble (France) (Dated: January 27, 2016) arxiv:1601.06957v1

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Modeling and simulation of moving contact line problem for two-phase complex fluids flow

Modeling and simulation of moving contact line problem for two-phase complex fluids flow Modeling and simulation of moving contact line problem for two-phase complex fluids flow Zhang Zhen Southern University of Science and Technology (SUSTech) IMS workshop on modeling and simulation of interface

More information

arxiv: v1 [physics.flu-dyn] 11 Jan 2019

arxiv: v1 [physics.flu-dyn] 11 Jan 2019 This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 arxiv:1901.03548v1 [physics.flu-dyn] 11 Jan 2019 Directional spreading of a viscous droplet on a conical

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

arxiv: v1 [physics.flu-dyn] 6 Mar 2013

arxiv: v1 [physics.flu-dyn] 6 Mar 2013 Hydrodynamics of air entrainment by moving contact lines T.S. Chan 1, S. Srivastava 2,5, A. Marchand 3, B. Andreotti 3, L. Biferale 4, F. Toschi 2,5,6 and J.H. Snoeijer 1 1 Physics of Fluids Group, Faculty

More information

Relaxation of a dewetting contact line. Part 2. Experiments

Relaxation of a dewetting contact line. Part 2. Experiments J. Fluid Mech. (28), vol. 64, pp. 55 75. c 28 Cambridge University Press doi:1.117/s221128979 Printed in the United Kingdom 55 Relaxation of a dewetting contact line. Part 2. Experiments GILES DELON 1,

More information

Cornered drops and rivulets

Cornered drops and rivulets Cornered drops and rivulets PHYSICS OF FLUIDS 19, 042104 2007 J. H. Snoeijer School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom; Laboratoire MSC, UMR 7057 of

More information

dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y

dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y dewetting initial state: continuous film of partially wetting liquid final equilibrium state: drops wit θ = θ Y driving forces dewetting mecanism? dewetting dynamics? 1 free energy vs. film tickness water

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Instabilities in the Flow of Thin Liquid Films

Instabilities in the Flow of Thin Liquid Films Instabilities in the Flow of Thin Liquid Films Lou Kondic Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Presented at Annual Meeting

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Anoosheh Niavarani and Nikolai Priezjev www.egr.msu.edu/~niavaran November 2009 A. Niavarani and N.V. Priezjev,

More information

Wetting Transitions at Fluid Interfaces and Related Topics

Wetting Transitions at Fluid Interfaces and Related Topics Wetting Transitions at Fluid Interfaces and Related Topics Kenichiro Koga Department of Chemistry, Faculty of Science, Okayama University Tsushima-Naka 3-1-1, Okayama 7-853, Japan Received April 3, 21

More information

arxiv: v1 [cond-mat.soft] 25 Jan 2016

arxiv: v1 [cond-mat.soft] 25 Jan 2016 DROPLET SPREADING ON ROUGH SURFACES: TACKLING THE CONTACT LINE BOUNDARY CONDITION N. T. Chamakos, 1 M. E. Kavousanakis, 1 A. G. Boudouvis, 1 1, a) and A. G. Papathanasiou School of Chemical Engineering,

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

ASPHALT WETTING DYNAMICS

ASPHALT WETTING DYNAMICS ASPHALT WETTING DYNAMICS Troy Pauli, Fran Miknis, Appy Beemer, Julie Miller, Mike Farrar, and Will Wiser 5 TH Annual Pavement Performance Prediction Symposium Adhesion & Cohesion of Asphalt Pavements Cheyenne,

More information

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT coorganizers: Frieder Mugele Physics of Comple Fluids Jacco Snoeier Physics of Fluids / UT University of Twente Anton Darhuber Mesoscopic Transport Phenomena / Tu/e speakers: José Bico (ESPCI Paris) Daniel

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

Contact-line dynamics and damping for oscillating free surface flows

Contact-line dynamics and damping for oscillating free surface flows PHYSICS OF FLUIDS VOLUME 16, NUMBER 3 MARCH 2004 Contact-line dynamics and damping for oscillating free surface flows Lei Jiang a) RA3-254, Logic Technology Development, Intel Corporation, 2501 NW 229th

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Capillarity and Wetting Phenomena

Capillarity and Wetting Phenomena ? Pierre-Gilles de Gennes Frangoise Brochard-Wyart David Quere Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves Translated by Axel Reisinger With 177 Figures Springer Springer New York Berlin

More information

Lecture 2: Hydrodynamics at milli micrometer scale

Lecture 2: Hydrodynamics at milli micrometer scale 1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

More information

FLOWS IN LIQUID FOAMS

FLOWS IN LIQUID FOAMS FLOWS IN LIQUID FOAMS A finite element approach A. SAUGEY, E. JANIAUD, W. DRENCKHAN, S. HUTZLER, D. WEAIRE Physics Department,, TRINITY COLLEGE DUBLIN Facing a problem of fluid flow in a physical system,

More information

Rheology of Fluids: Newtonian to Non Newtonian

Rheology of Fluids: Newtonian to Non Newtonian 0/26 Rheology of Fluids: Newtonian to Non Newtonian Ali Najafi University of Zanjan, Zanjan Instituet for advanced Studies in Basic Sciences May 2015 1/26 Agenda: Fluid: Definition Rheology: Elementary

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 228 (2009) 5370 5389 Contents lists available at ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A mesh-dependent model for

More information

Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions

Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de M. Griebel, M. Klitz Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions INS Preprint

More information

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL

THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE DISPLACEMENT MODEL International Journal of Modern Physics B, Vol. 13, No. 7 (1999) 355 359 c World Scientific Publishing Company THE MODIFIED YOUNG S EQUATION FOR THE CONTACT ANGLE OF A SMALL SESSILE DROP FROM AN INTERFACE

More information

An adhesive DPD wall model for dynamic wetting

An adhesive DPD wall model for dynamic wetting December 2007 EPL, 80 (2007) 60004 doi: 10.1209/0295-5075/80/60004 www.epljournal.org An adhesive DPD wall model for dynamic wetting B. Henrich 1,2, C. Cupelli 3, M. Moseler 2,1 and M. Santer 2,3 1 FMF-Freiburg

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Can diffuse-interface models quantitatively describe moving contact lines?

Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. Special Topics 197, 37 46 (2011) c EDP Sciences, Springer-Verlag 2011 DOI: 10.1140/epjst/e2011-01434-y THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Can diffuse-interface models

More information

spreading of drops on soft surfaces

spreading of drops on soft surfaces Supplementary Material on Electrically modulated dynamic spreading of drops on soft surfaces Ranabir Dey 1, Ashish Daga 1, Sunando DasGupta 2,3, Suman Chakraborty 1,3 1 Department of Mechanical Engineering,

More information

Wetting kinetics in forced spreading

Wetting kinetics in forced spreading Scholars' Mine Doctoral Dissertations Student Research & Creative Works 2016 Wetting kinetics in forced spreading Amer Mohammad Al-Shareef Follow this and additional works at: http://scholarsmine.mst.edu/doctoral_dissertations

More information

Lecture 6: Flow regimes fluid-like

Lecture 6: Flow regimes fluid-like Granular Flows 1 Lecture 6: Flow regimes fluid-like Quasi-static granular flows have plasticity laws, gaseous granular flows have kinetic theory -- how to model fluid-like flows? Intermediate, dense regime:

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Phase-field simulations of dynamic wetting of viscoelastic fluids

Phase-field simulations of dynamic wetting of viscoelastic fluids Phase-field simulations of dynamic wetting of viscoelastic fluids Pengtao Yue a,, James J. Feng b,c a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA b Department of Chemical and

More information

PREFACE. performance of various bearings lubricated with non-newtonian fluids.

PREFACE. performance of various bearings lubricated with non-newtonian fluids. PREFACE The present thesis deals with the theoretical study of lubrication characteristics of bearings with non-newtonian fluids. In these theoretical investigations of the problems, the Mathematical models

More information

Nearly-zero contact angle hysteresis on lubricated surfaces. Dan Daniel, IMRE, A*STAR

Nearly-zero contact angle hysteresis on lubricated surfaces. Dan Daniel, IMRE, A*STAR Nearly-zero contact angle hysteresis on lubricated surfaces Dan Daniel, IMRE, A*STAR 2011 1 mm Oleoplaning droplets on lubricated surfaces lubricant film lubricant film 2011 Lubricated repels blood and

More information

INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND IN THE PRESENCE OF HEAT AND MASS TRANSFER

INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND IN THE PRESENCE OF HEAT AND MASS TRANSFER Proceedings of the 2 nd European Conference on Microfluidics - Microfluidics 21 - Toulouse, December 8-1, 21 µflu1-212 INFLUENCE OF THE SURFACE FORCES ON THE APPARENT CONTACT ANGLE AT PARTIAL WETTING AND

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

12.1 Viscous potential flow (VPF)

12.1 Viscous potential flow (VPF) 1 Energy equation for irrotational theories of gas-liquid flow:: viscous potential flow (VPF), viscous potential flow with pressure correction (VCVPF), dissipation method (DM) 1.1 Viscous potential flow

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

On the distinguished limits of the Navier slip model of the moving contact line problem

On the distinguished limits of the Navier slip model of the moving contact line problem J. Fluid Mech. (015), vol. 77, pp. 107 16. c Cambridge University Press 015 doi:10.1017/jfm.015.173 107 On the distinguished limits of the Navier slip model of the moving contact line problem Weiqing Ren

More information

Capillarity and dynamic wetting. Andreas Carlson

Capillarity and dynamic wetting. Andreas Carlson Capillarity and dynamic wetting by Andreas Carlson March 2012 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillstånd

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Contact angle hysteresis: a review of fundamentals and applications

Contact angle hysteresis: a review of fundamentals and applications Contact angle hysteresis: a review of fundamentals and applications The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

arxiv: v1 [physics.class-ph] 13 Sep 2008

arxiv: v1 [physics.class-ph] 13 Sep 2008 1 arxiv:0809.2346v1 [physics.class-ph] 13 Sep 2008 14th Conference on Waves and Stability in Continuous Media, Baia Samuele, Sicily, Italy, 30 June - 7 July, 2007 Edited by N Manganaro, R Monaco and S

More information

The Impact of Ink-Jet Droplets on a Paper-Like Structure

The Impact of Ink-Jet Droplets on a Paper-Like Structure Copyright 2011 Tech Science Press FDMP, vol.7, no.4, pp.389-402, 2011 The Impact of Ink-Jet Droplets on a Paper-Like Structure M. Do-Quang 1 A. Carlson 1 and G. Amberg 1 Abstract: Inkjet technology has

More information

arxiv: v1 [cond-mat.soft] 22 Sep 2012

arxiv: v1 [cond-mat.soft] 22 Sep 2012 Beyond Tanner s Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film Sara L. Cormier,1 Joshua D. McGraw,1 Thomas Salez,2 Elie Raphae l,2 and Kari Dalnoki-Veress1, 1 arxiv:129.4983v1

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Multiscale simulations of sliding droplets

Multiscale simulations of sliding droplets Acta Mech https://doi.org/10.1007/s00707-018-2264-6 ORIGINAL PAPER J. J. Derksen A. E. Komrakova Multiscale simulations of sliding droplets Received: 15 February 2018 / Revised: 15 June 2018 The Author(s)

More information

FRICTION. Friction: FRICARE = to rub (Latin)

FRICTION. Friction: FRICARE = to rub (Latin) FRICTION 1 Friction: FRICARE = to rub (Latin) Resisting force (F) tangential to the interface between two bodies when, under the action of an external force, one body moves or tends to move relative to

More information

Capillary Contact Angle in a Completely Wet Groove

Capillary Contact Angle in a Completely Wet Groove Capillary Contact Angle in a Completely Wet Groove A.O. Parry, 1 A. Malijevský, 2 and C. Rascón 3 1 Department of Mathematics, Imperial College London, London SW7 2BZ, UK 2 Department of Physical Chemistry,

More information

arxiv:cond-mat/ v1 17 Jan 1994

arxiv:cond-mat/ v1 17 Jan 1994 Submitted to Journal de Physique II (December, 1993) Capillary Rise in Tubes with sharp Grooves Lei-Han Tang arxiv:cond-mat/9401031v1 17 Jan 1994 Institut für Theoretische Physik, Universität zu Köln Zülpicher

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Wall slip and viscous dissipation in sheared foams: Effect of surface mobility

Wall slip and viscous dissipation in sheared foams: Effect of surface mobility Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 129 145 Wall slip and viscous dissipation in sheared foams: Effect of surface mobility Nikolai D. Denkov, Vivek Subramanian, Daniel Gurovich,

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information