Bayesian Estimation and Prediction for. a Mixture of Exponentiated Kumaraswamy. Distributions

Size: px
Start display at page:

Download "Bayesian Estimation and Prediction for. a Mixture of Exponentiated Kumaraswamy. Distributions"

Transcription

1 Iteratioal Joural of Cotemporary Mathematial Siees Vol. 11, 2016, o. 11, HIKARI Ltd, Bayesia Estimatio ad Preditio for a Mixture of Expoetiated Kumaraswamy Distriutios Samia A. Adham Departmet of Statistis, Faulty of Siee Kig Adulaziz Uiversity Jeddah, Kigdom of Saudi Araia Afal A. ALgfary Departmet of Statistis, Faulty of Siee Qassim Uiversity Qassim, Kigdom of Saudi Araia Copyright 2016 Samia A. Adham ad Afal A. ALgfary. This artile is distriuted uder the Creative Commos Attriutio Liese, whih permits urestrited use, distriutio, ad reprodutio i ay medium, provided the origial work is properly ited. Astrat This paper deals with the Bayesia estimatio of the vetor of parameters of the fiite mixture of two-ompoet expoetiated Kumaraswamy distriutio, deoted y MEKum, whe osiderig omplete samples. I additio, Bayesia preditive desity futios of future oservatios from the MEKum distriutio, osiderig two ases, are otaied. Keywords: Mixture of distriutios; Bayesia estimatio; Bayesia preditio 1. Itrodutio The expoetiated Kumaraswamy distriutio is oe of the reetly ostruted distriutios. It has ee firstly appeared i Lemote et al. (2013) [12]. The expoetiated Kumaraswamy, deoted here y EKum, is a geeralizatio of the

2 498 Samia A. Adham ad Afal A. ALgfary Kumaraswamy distriutio, deoted y Kum. The three parameter EKum distriutio is a simple extesio of the two parameters Kum distriutio whih was firstly itrodued y Kumaraswamy i Although, the Kum distriutio is quite ew amog statistiias ad has ee little explored i the literature, the Kum distriutio was origially oeived to model hydrologial pheomea ad has ee used for this ad also for other purposes. [See, for example, Sudar ad Suiah (1989) [15], Flether ad Poamalam (1996) [6], Seifi et al. (2000) [14], Gaji et al. (2006) [7]]. Joes (2009) [10] explored the akgroud ad geesis of the Kum distriutio ad, more importatly, made lear some similarities ad differees etwee the eta ad Kum distriutios. The Kum distriutio has may of the same properties as the eta distriutio ut has some advatages. Moreover, the Kum distriutio argues that the eta distriutio does ot faithfully fit hydrologial radom variales suh as daily raifall, daily stream flow,, et. I additio, the Kumaraswamy s desities are uimodal, uiatimodal, ireasig, dereasig or ostat depedig i the same way as the eta distriutio o the values of its parameters. Further, Joes (2009) [10] highlighted several advatages of the Kum distriutio over the eta distriutio: the ormalizig ostat is very simple expliit formulae for the distriutio ad quatile futios whih do ot ivolve ay speial futios ad a simple formula for radom variate geeratio. However, the eta distriutio has the followig advatages over the Kum distriutio: simpler formulae for momets ad momet geeratig futio, a oeparameter su-family of symmetri distriutios, simpler momet estimatio ad more ways of geeratig the distriutio y meas of physial proesses. Studyig mixture of distriutios is of great iterests of may statistiias, as data sets a e osidered to e from mixture populatios. Some of the most importat referees that disussed differet types of mixtures of distriutios are the moographs y Everitt ad Had (1981) [5], Titterigto et al. (1985) [16], MLahla ad Basford (1988) [13]. The fiite mixture of two expoetiated Kumaraswamy distriutios has ee proposed y ALgfary (2015) [2]. She proved the idetifiaility of the MEKum distriutio, sie it is importat to prove the idetifiaility of the mixture distriutio efore disussig the prolem of estimatio. ALgfary (2015) [2] studied i details some of the MEKum distriutio statistial properties, as well as its speial ases, ad otaied the maximum likelihood estimates for the vetor of the parameters of the MEKum distriutio. The desity futio of the MEKum distriutio is give y: f(x) = p 1 β 1 γ 1 x 1 1 1) β 1 1 [1 1) β 1] γ 1 1 +q 2 β 2 γ 2 x 2 1 2) β 2 1 [1 2) β 2] γ 2 1. (1) where, i, β i ad γ i, i = 1,2 are positive parameters ad p is the mixig proportio, 0 p 1, q = 1 p. Let X 1, X 2,, X e a radom sample from the MEKum distriutio with desity futio give y Equatio (1), the the likelihood futio is

3 Bayesia estimatio ad preditio for a mixture 499 where, L(θ) = p 1 β 1 γ 1 x i 1 1 i 1 ) β 1 1 [1 i 1 ) β 1] γ (1 p) 2 β 2 γ 2 x i 2 1 i 2 ) β 2 1 [1 2 i ) β 2] γ 2 1, θ = ( 1, 2, β 1, β 2, γ 1, γ 2, p). (3) (2) I Setio 2, Bayesia estimatio of the vetor of parameters θ is osidered uder the squared error loss futio. Setio 3 deals with the preditive desities for two speial ases of the MEKum distriutio. Fially, olusios are disussed i Setio Bayesia Estimatio Let all the parameters i the vetor θ, i Equatio (3), are idepedet radom variales of eah others. A ojugate prior distriutio is assiged to eah of them. That is, a eta distriutio with kow parameters a 1 ad a 2 ad desity futio g 1 (p) p a 1 1 (1 p) a 2 1, 0 < p < 1. (4) is assiged as a ojugate prior distriutio for the mixig proportio parameter p. While, the prior distriutio used y AL-Hussaii ad Jahee (1992) [3], whih is a gamma desity with parameters ( 1j, 2j ), is assumed here to e the prior distriutio for the parameters β j, j = 1,2, with desity futio β j g 2j (β j ) β 1j 1 j e 2j, β j > 0. (5) Ad the gamma desity with parameters ( 1j, 2j ), j = 1,2, is take to e the prior distriutio of the parameters j with desity futio j (6) g 3j ( j ) 1j 1 j e 2j, j > 0. Whereas, the gamma desity with parameters (d 1j, d 2j ), j = 1,2, is assumed to e the prior distriutio of the parameters γ j with desity futio γ j d g 4j (γ j ) γ 1j 1 d j e 2j, γ j > 0. (7)

4 500 Samia A. Adham ad Afal A. ALgfary The the joit prior desity futio for θ = ( 1, 2, β 1, β 2, γ 1, γ 2, p) is the give y g(θ) p a 1 1 (1 p) a 2 1 β e 21 β 12 1 β 2 2 e 22 (8) e e 2 γ 1 22 d γ e d 21 d γ e γ 2 d 22. The joit posterior distriutio of the vetor of parameters θ is π(θ x) = L(θ;x) g(θ) θ L(θ;x) g(θ)dθ. (9) It follows, from (2), (8) ad (9), that the joit posterior desity futio is give y π(θ x) = δ{ p +a 1 1 (1 p) a e e 2 22 β e 21 β 12 1 β 2 γ 1 2 e 22 γ +d e d 21 γ d e i 1 ) β 1 1 [1 i 1 ) β 1] γ p a 1 1 (1 p) +a 2 1 β e γ 2 d 22 x i 1 1 where, e γ γ d e d 21 e x i 2 1 i 2 ) β 2 1 β γ 2 22 β 2 1e d 22 γ 2 +d e 1 21 [ 1 i 2 ) β 2] γ 2 1 ]}, (10) + δ = { eta(a 1 +, a 2 ) Г( + 11 )Г( + d 11 ) e (+d 11 )[l( 1 ) 1] l(x d i ) Г( ) ( 1 2 l(x i ) ) Г( 12 ) 12 d 22 Г( 12 ) d Г(d 12 ) + eta(a 1, a 2 + ) Г( + 12 )Г( + d 12 ) e (+d 12 )[l( 1 ) 1] l(x d i ) Г( 11 ) Г( 11 )d 21 d 11 Г(d 11 ) } 1 Г(m 12 + ) 12 + ) ( 1 2 l(x i ) 22 Uder the squared error loss futio, we a otai the Bayes estimators of the vetor of the parameters, θ = ( 1, 2, β 1, β 2, γ 1, γ 2, p ). Sie the parameters of

5 Bayesia estimatio ad preditio for a mixture 501 the MEKum distriutio are assumed as idepedet radom variales; hee the Bayesia estimator of eah parameter will e its posterior mea. That is the Bayesia estimator of the parameter p is p = E(p X = x) = p π(θ x) dp p 1 + = δ{eta(a , a 2 ) e e β 2 + β e 21 β e 22 +d γ e d γ 12 1 γ 2 2 e d 22 x 1 1 i γ 1 d 21 i 1 ) β 1 1 [1 1 i ) β 1] γ eta(a 1 + 1, a 2 + ) 2 β e e 22 d γ e β 2 e + 12 γ 2 22 β 2 1e γ 1 d 21 d 22 γ 2 +d e x i i ) β2 1 [1 2 i ) β 2] γ 2 1}. (11) Similarly, for l, j = 1,2, ad l j, the Bayesia estimators of the parameters j, β j ad γ j are give, respetively, y j = E( j X = x) = j π(θ x) d j j = δ(p +a1 1 (1 p) a2 1 1l 1 2 l e + 2l β 1j 1 j e β 1l 1 β γ l j l e 2l +d γ 1j 1 d j e 2j d γ 1l 1 γ l l e d 2l Г( 1j + + 1) x i [ 1 + (γ j β j 2) l(x i ) 2j ] 1j++1 β j +p a1 1 (1 p) +a 2 1 β 1j 1 j e 2j + 1l 1 l e l β j 2j 2l γ j d 1j 1 e γ j d 2j

6 502 Samia A. Adham ad Afal A. ALgfary β l e + 1l γ l 2l β l 1e x i l 1 d 2l γ l +d 1l 1 2j 1j +1 Г( 1j + 1) i l ) β l 1 [1 i l ) β l] γ l 1 }. (12) β j = E(β j X = x) = β j π(θ x) dβ j β j j = δ{p +a 1 1 (1 p) a j 1 j e 2j 1l 1 l e β l e γ j l 2l β 1l 1 β l l e 2l +d γ 1j 1 d j e 2j d γ 1l 1 γ l l e d 2l x j 1 i Г( 1j + + 1) 1j +1 2j Г( 1j + 1) j i ) [ 1 + (γ j 2) l j i ) 2j +p a1 1 (1 p) +a l 1 l l e 2l d γ 1j 1 j e j + 1l γ l 2l β l 1e d 2l +d γ 1l 1 1j 1 j e 2j l x i l 1 i l ) β l 1 [1 l i ) β l] γ l 1}. (13) j1 ++1 ] γ j d 2j γ j = E(γ j X = x) = γ j π(θ x) dγ j γ j = δ { p +a 1 1 (1 p) a 2 1 j + 1j 1 e j l 2j 1j 1 l e 2l

7 Bayesia estimatio ad preditio for a mixture 503 β j + β 1j 1 j e 2j β 1l 1 β l l e 2l d γ 1l 1 l e x i j 1 i j ) β j 1 Г( + d 1j + 1) {( 1 l[1 j d i )] 2j γ l d 2l β j} +d 1j +1 β j +p a 1 1 (1 p) +a 2 1 β 1j 1 j e 2j + 1l 1 l e + β 1l 1 γ l l e d 2l +d γ 1l 1 l 1j 1 j e j l β l 2l e 2l 2j d 2j d 1j +1 Г(d 1j + 1) x l 1 i l i ) βl 1 [1 l i ) β l] γl 1 }. i= (14) Equatios (11), (12), (13) ad (14) are o-liear system of equatios. Oe ould apply Newto-Raphso iteratio sheme to solve this o-liear system of equatios simultaeously. 3. Bayesia Preditio I may pratial prolems of statistis, oe wishes to use the iformative data to predit future oservatio from the same populatio. Oe way to do this is to ostrut a iterval, whih will otai these oservatio with a speified proaility. This iterval is alled preditio iterval. Preditio has ee applied i mediie, egieerig, usiess ad other areas as well. For details o the history of Bayesia preditio, aalysis ad appliatios, see for example, Aithiso ad Dusmore (1975) [1] ad Geisser (1993) [8]. AL-Hussaii (2003) [4] otaied Bayesia preditive desity futios whe the populatio desity is a fiite mixture of geeral ompoets. Jahee (2003) [9] osidered Bayesia preditio ouds for future oservatio from the fiite mixture of two ompoets of Gompertz distriutios ased o type-i esored samples. This setio is oered with Bayesia preditio of the MEKum distriutio. Havig θ a vetor of seve ukow parameters may ause prolems i otaiig the preditive desity. Hee, oly two ases are osidered here with the parameter γ 1 is assumed to e 1. I Case 1, the parameters p ad β 1 are assumed to e ukow; while the rest of the parameters are kow. Whereas, i Case 2, the parameters p, β 1 ad β 2 are assumed to e ukow ad the rest of the parameters are kow.

8 504 Samia A. Adham ad Afal A. ALgfary Case 1: (p ad β 1 are ukow) Let X 1, X 2,., X e sample radom sample of size draw from a populatio with desity futio f(x θ) give y Equatio (1). Let Y s = X +1 e a future oservatio from the same populatio. The, the Bayes preditive desity futio is give y: f(y s x ) = p π(p, β 1 β 1 x) f(y s p, β 1 ) dβ 1 dp, (15) where the joit posterior desity futio of p ad β 1 (whe γ 1 = 1) is give y where, π(p, β 1 x) = L(p, β 1 ; x) g(p, β 1 ) L(p, β 1 ; x) g(p, β 1 )dβ 1 dp p β 1 = δ 1 {p +a1 1 (1 p) a β e 21 x 1 1 i 1 i ) β1 1 + β e 21 p a1 1 (1 p) +a 2 1 x i 2 1 i 2 ) β 2 1 [1 2 i ) β 2] γ 1 }, δ 1 = { 1 x 1 1 i 2 β 2 γ Г( 11 + ) 1 i )[ 1 l i 1)] 21 eta(a 1 +, a 2 ) + 2 β 2 γ eta(a 1, a 2 + ) Г( 11 ) 11 + x i 2 1 i 2 ) β 2 1 (1 i 2 ) β 2) γ 1 } 1. Suh that, uder the assumptio that the parameters p ad β 1 are ukow ad idepedet radom variales ad the rest of the parameters are kow, the prior for the parameter p is assumed to e a eta distriutio with parameters a 1 ad a 2 ad give y g 1 (p) p a 1 1 (1 p) a 2 1, 0 < p < 1. (16)

9 Bayesia estimatio ad preditio for a mixture 505 The prior distriutio of β 1 is assumed to e a gamma distriutio with parameters ( 11, 21 ) ad desity futio give y The joit prior of p ad Equatio (17), g 2 (β 1 ) β 11 1 j e 21, β 1 > 0. (17) β 1 a e otaied y multiplyig Equatio (16) y g(p, β 1 ) p a 1 1 (1 p) a 2 1 β e 21. Ad the desity of Y s is f(y s p, β 1 ) = p 1 β 1 y s 1 1 (1 y s 1 ) β q 2 β 2 γ y s 2 1 (1 y s 2 ) β 2 1 [1 (1 y s 2 ) β 2] γ 1. Therefore, the Bayes preditive desity futio a e write as f(y s x ) = δ 1 { 1 +1 Beta(a , a 2 )Г( ) x 1 1 i 1 i )[ 1 l 1 i )] β 2 γ y 2 1 s (1 y 2 s ) β 2 1 [ 1 (1 y 2 s ) β 2] γ 1 Beta(a 1 +, a 2 + 1) Г( 11 + ) x 1 1 i 1 i )( 1 l 1 i ) β 2 γ 1 y 1 1 s Beta(a 1 + 1, a 2 + ) Г( ) ( 1 y 1 s ) ( 1 l(1 y 1 s )) x 2 1 i i 2 ) β i 2 ) β 2] γ Beta(a 1, a ) Г( 11 ) +1 2 β2 γ +1 y 2 1 s (1 y 2 s ) β2 1 [1 (1 y 2 s ) β 2] γ 1 ] x 2 1 i 2 i ) β2 1 [1 2 i ) β 2] γ 1 }. Case 2: (p, β 1 ad β 2 are ukow) Let X 1, X 2,., X e sample radom sample of size draw from a populatio with desity futio f(x θ) give y Equatio (1). Let Y s = X +1 e a future oservatio from the same populatio. The, the Bayes preditive desity futio is give y f(y s x ) = π(p, β 1, β 2 x) f(y s p, β 1, β 2 ) dβ 1 dβ 2 dp, p β 2 β 1 (18)

10 506 Samia A. Adham ad Afal A. ALgfary The prior distriutios of p ad β 1 are give y Equatio (16) ad Equatio (17), respetively. Ad the prior distriutios of β 2 is assumed to e a gamma desity with parameters ( 12, 22 ) give y β 2 g 3 (β 2 ) β e 22, β 2 > 0. (19) The, the joit prior of p, β 1 ad β 2 a e writte as g(p, β 1, β 2 ) p a1 1 (1 p) a2 1 β e 21 β e β (20) The joit posterior desity of the parameters p, β 1 ad β 2 is otaied from Equatios (2) ad (20), y where, ad, L(p, β 1, β 2 ; x) g(p, β 1, β 2 ) π(p, β 1, β 2 x) = L(p, β 1, β 2 ; x) g(p, β 1, β 2 )dβ 1 dβ 2 dp p β 2 β 1 = δ 2 {p a 1+ 1 (1 p) a β e 21 β e x 1 1 i x 2 1 i β β e β 2 22 i 1 ) β p a 1 1 (1 p) a β 2 21 e 22 γ i 2 ) β 2 1 [1 i 2 ) β 2] γ 1 }. δ 2 = [ Г( 12 ) 1 xi 1 1 eta(a 1 +, a 2 )Г( 11 + ) 1 i ) [ 1 l i 1)] γ e γ 1 Г( 12 + )eta(a 1, a 2 + ) Г(11 ) x 2 1 i 2 i ) [ ] 1. + (γ 2) l 2 i )] 22 f(y s p, β 1, β 2 ) = p 1 β 1 y 1 1 s (1 y 1 s ) β1 1 + q 2 β 2 γ y 2 1 s (1 y 2 s ) β 2 1 [1 (1 y 2 s ) β 2] γ 1. The, the Bayes preditive desity futio a e write as f (y s x) = δ 2 {Beta(a , a 2 ) Г( 12 ) 1 +1 y s 1 1 x 1 1 i Г( ) 1 i )(1 y 1 s )[ 1 l i 1) l (1 ys 1 )] y s 1 1 Beta(a 1 + 1, a 2 + )Г( ) ( 1 y s 1 )( 1 21 l(1 y s 1 )) Beta(a 1 +, a 2 + 1)

11 Bayesia estimatio ad preditio for a mixture a 2 γy s a 2 1 x 1 1 i Г( 11 + ) 1 i ) [ 1 l i 1)] 21 Г( ) (1 y s a 2 )[ 1 22 γ l(1 y s a 2 )] Beta(a 1, a ) Г( 11 ) +1 2 γ +1 a y 2 1 s x 2 1 i Г( ) i 2 )(1 y a s 2 )[ 1 γ l i 2 ) + l( 1 y a s Colusios )] I this paper a Bayesia estimatio of the vetor of parameters, θ, of the MEKum distriutio is studied uder the squared error loss futio ad ojugate priors. Moreover, the Bayesia preditive desity futios of the oservatios from the MEKum distriutio are otaied whe osiderig two ases. }. Referees [1] J. Aithiso ad I.R. Dusmore, Statistial Preditio Aalysis, Camridge Uiversity Press, Camridge, UK, [2] A.A. ALgfary, O Fiite Mixture of Expoetiated Kumaraswamy Distriutios, Master's thesis, Kig Adulaziz Uiversity, Jeddah-Kigdom of Saudi Araia, [3] E.K. AL-Hussaii ad Z.F. Jahee, Bayesia estimatio of the parameters, reliaility ad failure rate futios of the Burr type XII failure model, J. Statist. Comput. Simul., 41 (1992), [4] E.K. AL-Hussaii, Bayesia preditive desity of order statistis ased o fiite mixture models, J. Statist. Pla. Ifer., 113 (2003), [5] B. S. Everitt ad D. J. Had, Fiite Mixture Distriutios, Spriger, Lodo, New York, [6] S.C. Flether, K. Poamalam, Estimatio of reservoir yield ad storage distriutio usig momets aalysis, Joural of Hydrology, 182 (1996),

12 508 Samia A. Adham ad Afal A. ALgfary [7] A. Gaji, K. Poamalam, D. Khalili ad M. Karamouz, Grai yield reliaility aalysis with rop water demad uertaity, Stohasti Evirometal Researh ad Risk Assessmet, 20 (2006), o. 4, [8] S. Geisser, Preditive Iferee: A Itrodutio, Lodo, Chapma ad Hall, [9] Z.F. Jahee, Bayesia preditio uder a mixture of two-ompoet Gompertz lifetime model, Test, 12 (2003), o. 2, [10] M. Joes, Kumaraswamy s distriutio: A eta-type distriutio with some trataility advatages, Statistial Methodology, 6 (2009), o. 1, [11] P. Kumaraswamy, A geeralized proaility desity futio for douleouded radom proesses, Joural of Hydrology, 46 (1980), o. 1, [12] A. J. Lemote, W. Barreto-Souza ad G. M. Cordeiro, The expoetiated Kumaraswamy distriutio ad its log-trasform, Brazilia Joural of Proaility ad Statistis, 27 (2013), o. 1, [13] G. MLahla ad K. Basford, Mixture Models: Iferee ad Appliatios to Clusterig, Marel ad Dekker I., New York, [14] A. Seifi, K. Poamalam ad J. Vlah, Maximizatio of maufaturig yield of systems with aritrary distriutios of ompoet values, Aals of Operatios researh, 99 (2000), o. 1-4, [15] V. Sudar ad K. Suiah, Appliatio of doule ouded proaility desity futio for aalysis of oea waves, Oea egieerig, 16 (1989), o. 2, [16] D.M. Titterigto, A.F.M. Smith, ad U. E. Makov, Statistial Aalysis of Fiite Mixture Distriutios, Joh Wiley ad Sos, New York, Reeived: Novemer 15, 2016; Pulished: Deemer 27, 2016

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

Product Moments of Sample Variances and Correlation for Variables with Bivariate Normal Distribution

Product Moments of Sample Variances and Correlation for Variables with Bivariate Normal Distribution Joural of Matheatis ad Statistis Origial Researh Paper Produt Moets of Saple Variaes ad Correlatio for Variales with Bivariate Noral Distriutio Jua Roero-Padilla LNPP-Coayt, Ceter for Researh ad Teahig

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 for BST 695: Speial Topis i Statistial Theory Kui Zhag, Chapter 8 Hypothesis Testig Setio 8 Itrodutio Defiitio 8 A hypothesis is a statemet about a populatio parameter Defiitio 8 The two omplemetary

More information

The beta density, Bayes, Laplace, and Pólya

The beta density, Bayes, Laplace, and Pólya The beta desity, Bayes, Laplae, ad Pólya Saad Meimeh The beta desity as a ojugate form Suppose that is a biomial radom variable with idex ad parameter p, i.e. ( ) P ( p) p ( p) Applyig Bayes s rule, we

More information

Estimation of a Mixture of Two Weibull Distributions under Generalized Order Statistics

Estimation of a Mixture of Two Weibull Distributions under Generalized Order Statistics IOSR Joural of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 12, Issue 2 Ver V (Mar - Apr 2016), PP 25-35 wwwiosrjouralsorg Estimatio of a Mixture of Two Weibull Distributios uder Geeralized

More information

ON STEREOGRAPHIC CIRCULAR WEIBULL DISTRIBUTION

ON STEREOGRAPHIC CIRCULAR WEIBULL DISTRIBUTION htt://www.ewtheory.org ISSN: 9- Reeived:..6 Published:.6.6 Year: 6 Number: Pages: -9 Origial Artile ** ON STEREOGRAPHIC CIRCULAR WEIBULL DISTRIBUTION Phai Yedlaalli * Sagi Vekata Sesha Girija Akkavajhula

More information

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables Iteratioal Mathematical Forum, Vol., 5, o. 4, 65-73 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/imf.5.5 Weak Laws of Large Numers for Sequeces or Arrays of Correlated Radom Variales Yutig Lu School

More information

Construction of Control Chart for Random Queue Length for (M / M / c): ( / FCFS) Queueing Model Using Skewness

Construction of Control Chart for Random Queue Length for (M / M / c): ( / FCFS) Queueing Model Using Skewness Iteratioal Joural of Sietifi ad Researh Publiatios, Volume, Issue, Deember ISSN 5-5 Costrutio of Cotrol Chart for Radom Queue Legth for (M / M / ): ( / FCFS) Queueig Model Usig Skewess Dr.(Mrs.) A.R. Sudamai

More information

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator Iteratioal Joural of Pure ad Applied Mathematial Siees. ISSN 0972-9828 Volume 0, Number (207), pp. 85-97 Researh Idia Publiatios http://www.ripubliatio.om Certai ilusio properties of sublass of starlike

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 ypothesis testig Covers (most of) the followig material from hapter 8: Setio 8. Setios 8.. ad 8..3 Setio 8.3. Setio 8.3. (util defiitio 8.3.6) Ørulf Borga Departmet of Mathematis Uiversity

More information

Lecture 8. Dirac and Weierstrass

Lecture 8. Dirac and Weierstrass Leture 8. Dira ad Weierstrass Audrey Terras May 5, 9 A New Kid of Produt of Futios You are familiar with the poitwise produt of futios de ed by f g(x) f(x) g(x): You just tae the produt of the real umbers

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 7, Issue 3, Marh 2017 ISSN: 2277 128X Iteratioal Joural of Advaed Researh i Computer Siee ad Software Egieerig Researh Paper Available olie at: wwwijarsseom O Size-Biased Weighted Trasmuted Weibull

More information

The (P-A-L) Generalized Exponential Distribution: Properties and Estimation

The (P-A-L) Generalized Exponential Distribution: Properties and Estimation Iteratioal Mathematical Forum, Vol. 12, 2017, o. 1, 27-37 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610140 The (P-A-L) Geeralized Expoetial Distributio: Properties ad Estimatio M.R.

More information

Local Estimates for the Koornwinder Jacobi-Type Polynomials

Local Estimates for the Koornwinder Jacobi-Type Polynomials Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6 Issue (Jue 0) pp. 6 70 (reviously Vol. 6 Issue pp. 90 90) Appliatios ad Applied Mathematis: A Iteratioal Joural (AAM) Loal Estimates

More information

Statistical Inferences for Lomax Distribution Based on Record Values (Bayesian and Classical)

Statistical Inferences for Lomax Distribution Based on Record Values (Bayesian and Classical) Joural of Moder Applied Statistical Methods Volume Issue Article --0 Statistical Ifereces for Lomax Distriutio Based o Record Values (Bayesia ad Classical Parviz Nasiri Uiversity of Payame Noor, Tehra,

More information

International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(7), 2014, Available online through  ISSN Iteratioal Joural of Mathematical Archive-5(7), 214, 11-117 Available olie through www.ijma.ifo ISSN 2229 546 USING SQUARED-LOG ERROR LOSS FUNCTION TO ESTIMATE THE SHAPE PARAMETER AND THE RELIABILITY FUNCTION

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

Nonparametric Goodness-of-Fit Tests for Discrete, Grouped or Censored Data 1

Nonparametric Goodness-of-Fit Tests for Discrete, Grouped or Censored Data 1 Noparametri Goodess-of-Fit Tests for Disrete, Grouped or Cesored Data Boris Yu. Lemeshko, Ekateria V. Chimitova ad Stepa S. Kolesikov Novosibirsk State Tehial Uiversity Departmet of Applied Mathematis

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION ANOTHER PROOF FOR FERMAT S LAST THEOREM Mugur B. RĂUŢ Correspodig author: Mugur B. RĂUŢ, E-mail: m_b_raut@yahoo.om Abstrat I this paper we propose aother proof for Fermat s Last Theorem (FLT). We foud

More information

Basic Probability/Statistical Theory I

Basic Probability/Statistical Theory I Basi Probability/Statistial Theory I Epetatio The epetatio or epeted values of a disrete radom variable X is the arithmeti mea of the radom variable s distributio. E[ X ] p( X ) all Epetatio by oditioig

More information

Comparison of Methods for Estimation of Sample Sizes under the Weibull Distribution

Comparison of Methods for Estimation of Sample Sizes under the Weibull Distribution Iteratioal Joural of Applied Egieerig Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 14273-14278 Research Idia Publicatios. http://www.ripublicatio.com Compariso of Methods for Estimatio of Sample

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Optimal design of N-Policy batch arrival queueing system with server's single vacation, setup time, second optional service and break down

Optimal design of N-Policy batch arrival queueing system with server's single vacation, setup time, second optional service and break down Ameria. Jr. of Mathematis ad Siees Vol., o.,(jauary Copyright Mid Reader Publiatios www.jouralshub.om Optimal desig of -Poliy bath arrival queueig system with server's sigle vaatio, setup time, seod optioal

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions America Joural of heoretical ad Applied Statistics 6; 5(4): -7 http://www.sciecepublishiggroup.com/j/ajtas doi:.648/j.ajtas.654.6 ISSN: 6-8999 (Prit); ISSN: 6-96 (Olie) Miimax Estimatio of the Parameter

More information

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY Sulema Nasiru, MSc. Departmet of Statistics, Faculty of Mathematical Scieces, Uiversity for Developmet Studies, Navrogo, Upper East Regio, Ghaa,

More information

Computer Science 188 Artificial Intelligence. Introduction to Probability. Probability Ryan Waliany

Computer Science 188 Artificial Intelligence. Introduction to Probability. Probability Ryan Waliany Computer Siee 88 Artifiial Itelligee Rya Waliay Note: this is meat to be a simple referee sheet ad help studets uder the derivatios. If there s aythig that seems shaky or iorret do t hesitate to email

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution METRON - Iteratioal Joural of Statistics 004, vol. LXII,. 3, pp. 377-389 NAGI S. ABD-EL-HAKIM KHALAF S. SULTAN Maximum likelihood estimatio from record-breakig data for the geeralized Pareto distributio

More information

A New Lifetime Distribution For Series System: Model, Properties and Application

A New Lifetime Distribution For Series System: Model, Properties and Application Joural of Moder Applied Statistical Methods Volume 7 Issue Article 3 08 A New Lifetime Distributio For Series System: Model, Properties ad Applicatio Adil Rashid Uiversity of Kashmir, Sriagar, Idia, adilstat@gmail.com

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Bounds for the Positive nth-root of Positive Integers

Bounds for the Positive nth-root of Positive Integers Pure Mathematical Scieces, Vol. 6, 07, o., 47-59 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/pms.07.7 Bouds for the Positive th-root of Positive Itegers Rachid Marsli Mathematics ad Statistics Departmet

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

A New Generalized Burr Family of Distributions Based on Quantile Function

A New Generalized Burr Family of Distributions Based on Quantile Function J. Stat. Appl. Pro. 6, No. 3, 499-504 (2017) 499 Joural of Statistis Appliatios & Probability A Iteratioal Joural http://d.doi.org/10.18576/jsap/060306 A New Geeralized Burr Family of Distributios Based

More information

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory 6th Iteratioal Workshop o Aalysis of Dyamic Measuremets Jue -3 0 Göteorg Swede A Simplified Derivatio of Scalar Kalma Filter usig Bayesia Proaility Theory Gregory Kyriazis Imetro - Electrical Metrology

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall Iteratioal Mathematical Forum, Vol. 9, 04, o. 3, 465-475 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/imf.04.48 Similarity Solutios to Usteady Pseudoplastic Flow Near a Movig Wall W. Robi Egieerig

More information

Department of Mathematics

Department of Mathematics Departmet of Mathematics Ma 3/103 KC Border Itroductio to Probability ad Statistics Witer 2017 Lecture 19: Estimatio II Relevat textbook passages: Larse Marx [1]: Sectios 5.2 5.7 19.1 The method of momets

More information

ε > 0 N N n N a n < ε. Now notice that a n = a n.

ε > 0 N N n N a n < ε. Now notice that a n = a n. 4 Sequees.5. Null sequees..5.. Defiitio. A ull sequee is a sequee (a ) N that overges to 0. Hee, by defiitio of (a ) N overges to 0, a sequee (a ) N is a ull sequee if ad oly if ( ) ε > 0 N N N a < ε..5..

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 2009 Problems 1: Solution sketches Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

More information

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES Sadro Adriao Fasolo ad Luiao Leoel Medes Abstrat I 748, i Itrodutio i Aalysi Ifiitorum, Leohard Euler (707-783) stated the formula exp( jω = os(

More information

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches Iteratioal Joural of Mathematical Aalysis Vol. 8, 2014, o. 48, 2375-2383 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.49287 Estimatig Cofidece Iterval of Mea Usig Classical, Bayesia,

More information

Summation Method for Some Special Series Exactly

Summation Method for Some Special Series Exactly The Iteratioal Joural of Mathematis, Siee, Tehology ad Maagemet (ISSN : 39-85) Vol. Issue Summatio Method for Some Speial Series Eatly D.A.Gismalla Deptt. Of Mathematis & omputer Studies Faulty of Siee

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

The new class of Kummer beta generalized distributions

The new class of Kummer beta generalized distributions The ew class of Kummer beta geeralized distributios Rodrigo Rossetto Pescim 12 Clarice Garcia Borges Demétrio 1 Gauss Moutiho Cordeiro 3 Saralees Nadarajah 4 Edwi Moisés Marcos Ortega 1 1 Itroductio Geeralized

More information

Sample Size Requirements For Stratified Random Sampling Of Pond Water With Cost Considerations Using A Bayesian Methodology

Sample Size Requirements For Stratified Random Sampling Of Pond Water With Cost Considerations Using A Bayesian Methodology Sample Size Requiremets For Stratified Radom Samplig Of Pod Water Wit Cost Cosideratios Usig A Bayesia Metodology A.A. Bartolui a, A.D. Bartolui b, ad K.P. Sig a Departmet of Biostatistis, Uiversity of

More information

Statistical Theory MT 2008 Problems 1: Solution sketches

Statistical Theory MT 2008 Problems 1: Solution sketches Statistical Theory MT 008 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. a) Let 0 < θ < ad put fx, θ) = θ)θ x ; x = 0,,,... b) c) where α

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Akaike Information Criterion and Fourth-Order Kernel Method for Line Transect Sampling (LTS)

Akaike Information Criterion and Fourth-Order Kernel Method for Line Transect Sampling (LTS) Appl. Math. If. Sci. 10, No. 1, 267-271 (2016 267 Applied Mathematics & Iformatio Scieces A Iteratioal Joural http://dx.doi.org/10.18576/amis/100127 Akaike Iformatio Criterio ad Fourth-Order Kerel Method

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1

f(x i ; ) L(x; p) = i=1 To estimate the value of that maximizes L or equivalently ln L we will set =0, for i =1, 2,...,m p x i (1 p) 1 x i i=1 Parameter Estimatio Samples from a probability distributio F () are: [,,..., ] T.Theprobabilitydistributio has a parameter vector [,,..., m ] T. Estimator: Statistic used to estimate ukow. Estimate: Observed

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Analog Filter Synthesis

Analog Filter Synthesis 6 Aalog Filter Sythesis Nam Pham Aubur Uiversity Bogda M. Wilamowsi Aubur Uiversity 6. Itrodutio...6-6. Methods to Sythesize Low-Pass Filter...6- Butterworth Low-Pass Filter Chebyshev Low-Pass Filter Iverse

More information

An Introduction to the Theory of Imprecise Soft Sets

An Introduction to the Theory of Imprecise Soft Sets IJ Itelliget Systems ad Appliatios 22 75-83 Published Olie Otober 22 i MECS (http://wwwmes-pressorg/) DOI: 585/isa229 A Itrodutio to the Theory of Impreise Soft Sets Tridiv Jyoti eog Dept of Mathematis

More information

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function Australia Joural of Basic ad Applied Scieces, (6) November 26, Pages: 24-248 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:99-878 EISSN: 239-844 Joural home page: www.ajbasweb.com Bayesia iferece

More information

Questions and Answers on Maximum Likelihood

Questions and Answers on Maximum Likelihood Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

More information

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2 Beroulli Numbers Beroulli umbers are amed after the great Swiss mathematiia Jaob Beroulli5-705 who used these umbers i the power-sum problem. The power-sum problem is to fid a formula for the sum of the

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

Stat 319 Theory of Statistics (2) Exercises

Stat 319 Theory of Statistics (2) Exercises Kig Saud Uiversity College of Sciece Statistics ad Operatios Research Departmet Stat 39 Theory of Statistics () Exercises Refereces:. Itroductio to Mathematical Statistics, Sixth Editio, by R. Hogg, J.

More information

Bayesian Control Charts for the Two-parameter Exponential Distribution

Bayesian Control Charts for the Two-parameter Exponential Distribution Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com 2 Uiversity of the Free State Abstract By usig data that are the mileages

More information

Optimal Penalty Functions Based on MCMC for Testing Homogeneity of Mixture Models

Optimal Penalty Functions Based on MCMC for Testing Homogeneity of Mixture Models Resear Joural of Applied Siees, Egieerig ad Teology 4(4: 04-09, 0 ISSN: 040-7467 Maxwell Sietifi Orgaizatio, 0 Submitted: Otober 5, 0 Aepted: November 5, 0 Publised: July 5, 0 Optimal Pealty Futios Based

More information

POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES*

POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES* Kobe Uiversity Ecoomic Review 50(2004) 3 POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES* By HISASHI TANIZAKI There are various kids of oparametric

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION Petros Maravelakis, Joh Paaretos ad Stelios Psarakis Departmet of Statistics Athes Uiversity of Ecoomics ad Busiess 76 Patisio St., 4 34, Athes, GREECE. Itroductio

More information

Non Linear Dynamics of Ishikawa Iteration

Non Linear Dynamics of Ishikawa Iteration Iteratioal Joural of Computer Appliatios (975 8887) Volume 7 No. Otober No Liear Dyamis of Ishiawa Iteratio Rajeshri Raa Asst. Professor Applied Siee ad Humaities Departmet G. B. Pat Egg. College Pauri

More information

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution Chapter V ODE V.4 Power Series Solutio Otober, 8 385 V.4 Power Series Solutio Objetives: After the ompletio of this setio the studet - should reall the power series solutio of a liear ODE with variable

More information

5. Likelihood Ratio Tests

5. Likelihood Ratio Tests 1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,

More information

4.5 Multiple Imputation

4.5 Multiple Imputation 45 ultiple Imputatio Itroductio Assume a parametric model: y fy x; θ We are iterested i makig iferece about θ I Bayesia approach, we wat to make iferece about θ from fθ x, y = πθfy x, θ πθfy x, θdθ where

More information

Pass-Fail Testing: Statistical Requirements and Interpretations

Pass-Fail Testing: Statistical Requirements and Interpretations Joural of Researh of the Natioal Istitute of Stadards ad Tehology [J. Res. Natl. Ist. Stad. Tehol. 4, 95-99 (2009)] Pass-Fail Testig: Statistial Requiremets ad Iterpretatios Volume 4 Number 3 May-Jue 2009

More information

PROBABILITY DISTRIBUTION RELATIONSHIPS. Y.H. Abdelkader, Z.A. Al-Marzouq 1. INTRODUCTION

PROBABILITY DISTRIBUTION RELATIONSHIPS. Y.H. Abdelkader, Z.A. Al-Marzouq 1. INTRODUCTION STATISTICA, ao LXX,., 00 PROBABILITY DISTRIBUTION RELATIONSHIPS. INTRODUCTION I spite of the variety of the probability distributios, may of them are related to each other by differet kids of relatioship.

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

Number Of Real Zeros Of Random Trigonometric Polynomial

Number Of Real Zeros Of Random Trigonometric Polynomial Iteratioal Joral of Comtatioal iee ad Mathematis. IN 97-389 Volme 7, Nmer (5),. 9- Iteratioal Researh Pliatio Hose htt://www.irhose.om Nmer Of Real Zeros Of Radom Trigoometri Polyomial Dr.P.K.Mishra, DR.A.K.Mahaatra,

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker

SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker SOME THEORY AND PRACTICE OF STATISTICS by Howard G. Tucker CHAPTER 9. POINT ESTIMATION 9. Covergece i Probability. The bases of poit estimatio have already bee laid out i previous chapters. I chapter 5

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

What is a Hypothesis? Hypothesis is a statement about a population parameter developed for the purpose of testing.

What is a Hypothesis? Hypothesis is a statement about a population parameter developed for the purpose of testing. What is a ypothesis? ypothesis is a statemet about a populatio parameter developed for the purpose of testig. What is ypothesis Testig? ypothesis testig is a proedure, based o sample evidee ad probability

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

New Results for the Fibonacci Sequence Using Binet s Formula

New Results for the Fibonacci Sequence Using Binet s Formula Iteratioal Mathematical Forum, Vol. 3, 208, o. 6, 29-266 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/imf.208.832 New Results for the Fiboacci Sequece Usig Biet s Formula Reza Farhadia Departmet

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

On generalized Simes critical constants

On generalized Simes critical constants Biometrial Joural 56 04 6, 035 054 DOI: 0.00/bimj.030058 035 O geeralized Simes ritial ostats Jiagtao Gou ad Ajit C. Tamhae, Departmet of Statistis, Northwester Uiversity, 006 Sherida Road, Evasto, IL

More information

independence of the random sample measurements, we have U = Z i ~ χ 2 (n) with σ / n 1. Now let W = σ 2. We then have σ 2 (x i µ + µ x ) 2 i =1 ( )

independence of the random sample measurements, we have U = Z i ~ χ 2 (n) with σ / n 1. Now let W = σ 2. We then have σ 2 (x i µ + µ x ) 2 i =1 ( ) MATH 48 Chi-Square Aalysis of a Normal Stadard Deviatio Dr Neal, WKU We ow shall use the chi-square distriutios to aalyze the stadard deviatio of a measuremet that is kow to e ormally distriuted The proof

More information

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution America Joural of Theoretical ad Applied Statistics 05; 4(: 6-69 Published olie May 8, 05 (http://www.sciecepublishiggroup.com/j/ajtas doi: 0.648/j.ajtas.05040. ISSN: 6-8999 (Prit; ISSN: 6-9006 (Olie Mathematical

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information