Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches"

Transcription

1 Iteratioal Joural of Mathematical Aalysis Vol. 8, 2014, o. 48, HIKARI Ltd, Estimatig Cofidece Iterval of Mea Usig Classical, Bayesia, ad Bootstrap Approaches Solimu Departmet of Mathematics Faculty of Mathematics ad Natural Scieces Uiversity of Brawijaya Jala Vetera Malag-Idoesia Copyright 2014 Solimu. This is a ope access article distributed uder the Creative Commos Attributio Licese, which permits urestricted use, distributio, ad reproductio i ay medium, provided the origial work is properly cited. Abstract I oe study, sometimes observed the characteristics of a populatio (eg the media, variace, media, or proportio). Give the limitatios ad costraits, it is ot possible to observe the whole of the populatio elemets. Alterative estimatio step is performed usig a populatio sample draw at radom from a populatio. I this study, the media iterval estimatio of the populatio ( ). There are three methods that will be studied is the classical method, Bayes approach, ad a bootstrap approach. This study focused o estimatig meas usig the third approach ad compare the results obtaied from the three approaches. Test results usig the data of the populatio obtaied a estimate of the value of the middle third populatio is relatively the same method, i which the bootstrap method produces the smallest cofidece iterval. Keywords: Cofidece iterval, classic, Bayes, ad Bootstrap 1 Itroductio All observatios, whether fiite or ifiite, comprise of what s kow as populatio. I a study, sometimes characteristics of a populatio are observed. Several statistical measures are used to discover the characteristics of populatios, such as mea, variace, media, or proportio.

2 2376 Solimu I statistical iferece we wat to draw coclusios o populatios, although it s impossible or impractical for us to observe all idividuals i a populatio. With various limitatios ad obstacles, it s impossible to observe the etire populatio elemets. A alterative step is estimatig populatios usig a radomly collected sample from a populatio. Oe of populatio parameter estimatio system based o sample statistics is cofidece iterval which is a system which produces represetative parameter estimatios. Statistical iferece theory icludes all methods used i drawig coclusios or geeralizig a populatio. The curret tedecy i estimatig a populatio parameter is the developmet of classical method which bases its coclusio oly o iformatio from a radom sample from the populatio. Two ew methods discussed i this study are Bayesia ad Bootstrap methods. Bayesia method uses or combies subjective kowledge o the distributio of ukow parameter opportuity with iformatio from data sample. Bootstrap method uses classical method which uses resamplig. Based o the backgroud above, the problem discussed was How is the use of iterval estimatio of the meas of a populatio usig classical method, Bayesia approach, ad bootstrap approach, ad the compariso of the three methods? The purpose of this study was usig iterval estimatio of the meas of a populatio usig classical method, Bayesia approach, ad bootstrap approach, ad the compariso of the three methods. The beefit of this study was researchers ca use Bayesia approach ad bootstrap approach as alteratives i parameter estimatio, aside from the popular classical method. 2 Materials ad Methods The populatio of a data is assumed to be ormally distributed with X N(µ, 2 ) where expectatio value of X is with mea µ ad variace 2. Populatio parameters µ ad 2 are ukow. Mea sample X ad variace s 2 are estimators of the mea ad variace of the populatio: ˆ X X i da ˆ s X i X i 1 1 where Xi is radom variable take radomly from a populatio. Expectatio value of average sample is E ( X ) = µ ad Stadard deviatio Se ( X ) =. For a small sample ( < 30) the populatio distributes ormally (X N (µ, 2 )) ad 2 is ukow ad estimated by s 2, so it ca be formulated that: i 1 2

3 Estimatig cofidece iterval of mea 2377 X µ s t-1 where t-1 is produced from t distributio with degree of freedom -1, so cofidece iterval for mea is: P( t s 1 / 2, < µ < X 1 t s 1 / 2, ) = 95% X 1 I classical approach, cofidece iterval estimatio comes from asymptotic sample drawig theory, while for Bayesia approach, cofidece iterval estimatio comes from posterior distributio from the geeratio of sample data from data ad some cocetratio of prior distributio of parameters. At the first level of the model, it s assumed that the distributio of the sample is ormal Level 1 (DATA): Xi N(µ, 2 ). At the secod level, it specifies prior distributio for μ Level 2 (PRIOR): µ N(μμ, 2 μ ). At the third or last level, it specifies hyperprior distributio for 2, μμ, 2 μ. Level 3 (HYPERPRIOR): P( 2 ), P(μμ) ad P( 2 μ). This Bayesia approach geerate a sample for uobserved parameters µ (1), µ (2),, µ (k) of distributio µ. Every sample geeratio estimates posterior distributio for µ ad calculates posterior mea. Estimator of cofidece iterval of mea with cofidece level 95% is obtaied from percetile 2.5% ad 97.5% of the simulatio. Bootstrap method uses resamplig method. It s assumed that data distributio is ukow. x1,x2,...,x is a radom sample of F which is a ukow distributio, = (F) is parameter ad ˆ T( x,..., x ) is the ˆ * * 1 1 * estimatio of. Estimator T( x,...,x ) obtaied from bootstrap sample * * ( x1,...,x ) is called bootstrap replicatio for ˆ. This study uses data of bowlig scores preseted i Table 1.

4 2378 Solimu Table 1: Data Score Bowlig Game No Score No Score Usig three method, classical, Bayesia, ad bootstrap, estimatio of cofidece level of a populatio was coducted. The software used were SPLUS ad Wibugs: 3 Result ad Discussio Figure 1 shows histogram ad data cocetratio fuctio. We ca see that the data has asymmetrical distributio. Estimator of the mea of the populatio is 88, 77 with stadard deviatio 5, 90. Cofidece iterval 95% for estimatio of the mea of the populatio is [76, 51; ] data data Figure 1: Histograms ad Desity Fuctio Data

5 Estimatig cofidece iterval of mea 2379 This Bayesia approach used software Wibugs. First, it defied model data ad estimatio of iitial value. Next, it performed simulatio with iteratio Figure 2 shows the mea obtaied i every simulatio. The fial part used aalysis based o 1001 st to th iteratios. mu iteratio Figure 2: Trace plots for the media populatio (after the disposal of the first observatio i 1000) Estimatio of cocetratio fuctio for posterior distributio for mea of the populatio is preseted i Figure 3. Estimatio of cofidece iterval of the mea of the populatio is obtaied from quatile values 2,5% ad 97,5% from the simulatio mu sample: Figure 3: Posterior desity fuctio for the distributio of the media populatio Estimator of the mea of posterior distributio is 88, 58 ad stadard deviatio is 6, 18. Cofidece iterval 95% for mea of the populatio is [76, 46; 100, 30]. Estimatio usig Maximum Likelihood i Bootstrap approach is 88, 78 with stadard deviatio 5, 75. Cofidece iterval 95% for mea of the populatio is [77, 50; 99, 95]. Figure 4 shows histogram ad cocetratio fuctio for the mea of the sample based o the result of 1000 bootstrap iteratios.

6 2380 Solimu dx$y theta.x theta Figure 4: Histograms ad Desity Fuctio Cetral Value Based o 1000 Repetitio Bootstrap Samples The results of the three methods are preseted i the followig table: Table 2: Estimatio of Cetral Value, Stadard Deviatio ad Cofidece Iterval Methods Classical, Bayes ad Bootstrap Method Cetral Value Stadard Deviatio Lower limit Hose cofidece Upper Limit Width Clasic 88,77 5,90 76,51 101,05 24,54 Bayes 88,58 6,18 76,46 100,30 23,84 Bootstrap 88,78 5,74 77,50 99,95 22,45 Table 2 shows that the mea obtaied from the three approaches were early the same, especially classical ad bootstrap methods. Similarly for stadard deviatio Bayesia method had the biggest stadard deviatio, ad Bootstrap method had the smallest stadard deviatio. Similarly for cofidece iterval, Bootstrap method had the smallest width of cofidece iterval. The mai differeces

7 Estimatig cofidece iterval of mea 2381 of the three methods were: 1) classical ad Bayesia methods required distributio assumptio to base the data, while bootstrap method did t assume data with certai distributio. 2) Classical method was derived from multiplicatio with critical value. This made the cofidece iterval produced to be symmetrical with mea estimator. While i Bayesia ad Bootstrap methods, cofidece iterval approaches used quatile 2,5% ad 97,5% which produced asymmetrical cofidece iterval. 4 Coclusio Cofidece iterval estimatio could use Classical, Bayesia ad Bootstrap methods. I the applicatio, by usig data of a populatio, three methods were relatively similar. Bootstrap method had the smallest width of cofidece iterval, idicatig that this method was more thorough ad recommeded. Ackowledgemets. May thaks to Uiversity of Brawijaya for fiacial support. Refereces [1]. Dukic, V., da Hoga, J.W. A hierarchical bayesia approach to modelig embryo implatatio followig i vitro fertilizatio. [2]. Friedma, N., Goldszmidt, M., ad Wyer, A. Data aalysis with Bayesia etworks: a bootstrap approach. [3]. Matthew, J. B., Falciai, F., Ghahramai, Z., Ragel, C., da Wild, D. L.. A Bayesia approach to recostructig geetic regulatory etworks with hidde factors. [4]. Walpole, R.E Pegatar Statistika. (I Idoesia) PT. Gramedia Pustaka Utama, Idoesia. Received: August 12, 2014 Appedix 1. Code

8 2382 Solimu Clasical Method data<-c(93,119,110,72,99,85,53,70,66,142,63,72,118,73,102,122,70,81,130,97,89,27) par(mfrow=c(1,2)) hist(data,col=0,class=7) dx<-desity(data) data<-dx$x plot(data,dx$y,type="l") s.data<-sum(data) ssq.data<-sum(data^2) <-legth(data) # histogram of replicates # desity estimate # sum the data # sum of square the data # sample size ml.x<-s.data/ mea ml.sd<-sqrt((ssq.data-s.data^2/)/(-1)) for stadard deviatio ml.se<-ml.sd/sqrt() df<--1 CIL<-ml.x-qt(0.975,df)*ml.se CIU<-ml.x+qt(0.975,df)*ml.se # maximum likelihood estimator for # maximum likelihood estimator # stadard error # degree of freedom # lower limit CI # upper limit CI ml.x ml.se CIL CIU Bayesia Approach model { } for( i i 1 : N ) { data[i] ~ dorm(mu,tau.c) } tau.c ~ dgamma(0.001,0.001) mu ~ dorm(alpha,tau.alpha) alpha ~ dorm(0.0,1.0e-6) tau.alpha ~ dgamma(0.001,0.001) list(n=22, data=c(93,119,110,72,99,85,53,70,66,142,63,72,118,73,102,122,70,81,130,97,89, 27)) list(mu=10, alpha = 0, tau.c = 1, tau.alpha = 1)

9 Estimatig cofidece iterval of mea 2383 Bootstrapig Method data<-c(93,119,110,72,99,85,53,70,66,142,63,72,118,73,102,122,70,81,130,97, 89,27) B< # umber of bootstrap theta.x<-c(1:b) # vector to keep the theta for (i i 1:B) { data.boot<-sample(data,size=,replace=t) # draw o-parametric bootstrap sample theta.x[i]<-mea(data.boot) # calculate theta } mu<-mea(theta.x) # mea of theta sd<-stdev(theta.x) # stadard deviatio of theta CIL<-quatile(theta.x,probs=0.025) # lower limit cofidece iterval CIU<-quatile(theta.x,probs=0.975) # upper limit cofidece iterval mu sd CIL CIU par(mfrow=c(1,2)) hist(theta.x,col=0,class=) dx<-desity(theta.x) theta<-dx$x plot(theta,dx$y,type="l") # histogram of replicates # desity estimate

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests Joural of Moder Applied Statistical Methods Volume 5 Issue Article --5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed Al-Ha Ebrahem

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

The (P-A-L) Generalized Exponential Distribution: Properties and Estimation

The (P-A-L) Generalized Exponential Distribution: Properties and Estimation Iteratioal Mathematical Forum, Vol. 12, 2017, o. 1, 27-37 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.610140 The (P-A-L) Geeralized Expoetial Distributio: Properties ad Estimatio M.R.

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality A goodess-of-fit test based o the empirical characteristic fuctio ad a compariso of tests for ormality J. Marti va Zyl Departmet of Mathematical Statistics ad Actuarial Sciece, Uiversity of the Free State,

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.

Exam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes. Exam II Review CEE 3710 November 15, 017 EXAM II Friday, November 17, i class. Ope book ad ope otes. Focus o material covered i Homeworks #5 #8, Note Packets #10 19 1 Exam II Topics **Will emphasize material

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

STATISTICAL method is one branch of mathematical

STATISTICAL method is one branch of mathematical 40 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL 3, NO, AUGUST 07 Optimizig Forest Samplig by usig Lagrage Multipliers Suhud Wahyudi, Farida Agustii Widjajati ad Dea Oktaviati

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

University of California, Los Angeles Department of Statistics. Hypothesis testing

University of California, Los Angeles Department of Statistics. Hypothesis testing Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Elemets of a hypothesis test: Hypothesis testig Istructor: Nicolas Christou 1. Null hypothesis, H 0 (claim about µ, p, σ 2, µ

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Final Examination Solutions 17/6/2010

Final Examination Solutions 17/6/2010 The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

This is an introductory course in Analysis of Variance and Design of Experiments.

This is an introductory course in Analysis of Variance and Design of Experiments. 1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence.

Confidence Level We want to estimate the true mean of a random variable X economically and with confidence. Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio

More information

New Results for the Fibonacci Sequence Using Binet s Formula

New Results for the Fibonacci Sequence Using Binet s Formula Iteratioal Mathematical Forum, Vol. 3, 208, o. 6, 29-266 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/imf.208.832 New Results for the Fiboacci Sequece Usig Biet s Formula Reza Farhadia Departmet

More information

Sampling, Sampling Distribution and Normality

Sampling, Sampling Distribution and Normality 4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

Chapter 1 (Definitions)

Chapter 1 (Definitions) FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple

More information

Statistical Intervals for a Single Sample

Statistical Intervals for a Single Sample 3/5/06 Applied Statistics ad Probability for Egieers Sixth Editio Douglas C. Motgomery George C. Ruger Chapter 8 Statistical Itervals for a Sigle Sample 8 CHAPTER OUTLINE 8- Cofidece Iterval o the Mea

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

NCSS Statistical Software. Tolerance Intervals

NCSS Statistical Software. Tolerance Intervals Chapter 585 Itroductio This procedure calculates oe-, ad two-, sided tolerace itervals based o either a distributio-free (oparametric) method or a method based o a ormality assumptio (parametric). A two-sided

More information

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New Secod-Order Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif

More information

Sampling Distributions, Z-Tests, Power

Sampling Distributions, Z-Tests, Power Samplig Distributios, Z-Tests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

Testing Statistical Hypotheses for Compare. Means with Vague Data

Testing Statistical Hypotheses for Compare. Means with Vague Data Iteratioal Mathematical Forum 5 o. 3 65-6 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach

More information

Simple Linear Regression

Simple Linear Regression Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio

More information

Confidence Intervals QMET103

Confidence Intervals QMET103 Cofidece Itervals QMET103 Library, Teachig ad Learig CONFIDENCE INTERVALS provide a iterval estimate of the ukow populatio parameter. What is a cofidece iterval? Statisticias have a habit of hedgig their

More information

Power Comparison of Some Goodness-of-fit Tests

Power Comparison of Some Goodness-of-fit Tests Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 7-6-2016 Power Compariso of Some Goodess-of-fit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750

More information

Introducing Sample Proportions

Introducing Sample Proportions Itroducig Sample Proportios Probability ad statistics Aswers & Notes TI-Nspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

Statistics 20: Final Exam Solutions Summer Session 2007

Statistics 20: Final Exam Solutions Summer Session 2007 1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

More information

Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?

Instructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters? CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Hidawi Publishig Corporatio Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu

More information

The Distribution of the Concentration Ratio for Samples from a Uniform Population

The Distribution of the Concentration Ratio for Samples from a Uniform Population Applied Mathematics, 05, 6, 57-70 Published Olie Jauary 05 i SciRes. http://www.scirp.or/joural/am http://dx.doi.or/0.436/am.05.6007 The Distributio of the Cocetratio Ratio for Samples from a Uiform Populatio

More information

Modified Lilliefors Test

Modified Lilliefors Test Joural of Moder Applied Statistical Methods Volume 14 Issue 1 Article 9 5-1-2015 Modified Lilliefors Test Achut Adhikari Uiversity of Norther Colorado, adhi2939@gmail.com Jay Schaffer Uiversity of Norther

More information

Testing Statistical Hypotheses with Fuzzy Data

Testing Statistical Hypotheses with Fuzzy Data Iteratioal Joural of Statistics ad Systems ISS 973-675 Volume 6, umber 4 (), pp. 44-449 Research Idia Publicatios http://www.ripublicatio.com/ijss.htm Testig Statistical Hypotheses with Fuzzy Data E. Baloui

More information

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Joural of Statistical Research 26, Vol. 37, No. 2, pp. 43-55 Bagladesh ISSN 256-422 X EDGEORTH SIZE CORRECTED, AND TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Zahirul Hoque Departmet of Statistics

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Intermittent demand forecasting by using Neural Network with simulated data

Intermittent demand forecasting by using Neural Network with simulated data Proceedigs of the 011 Iteratioal Coferece o Idustrial Egieerig ad Operatios Maagemet Kuala Lumpur, Malaysia, Jauary 4, 011 Itermittet demad forecastig by usig Neural Network with simulated data Nguye Khoa

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Topic 18: Composite Hypotheses

Topic 18: Composite Hypotheses Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes. Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (

More information

Two Topics in Number Theory: Sum of Divisors of the Factorial and a Formula for Primes

Two Topics in Number Theory: Sum of Divisors of the Factorial and a Formula for Primes Iteratioal Mathematical Forum, Vol. 2, 207, o. 9, 929-935 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.207.7088 Two Topics i Number Theory: Sum of Divisors of the Factorial ad a Formula for Primes

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

A Distributional Approach Using Propensity Scores

A Distributional Approach Using Propensity Scores A Distributioal Approach Usig Propesity Scores Zhiqiag Ta Departmet of Biostatistics Johs Hopkis School of Public Health http://www.biostat.jhsph.edu/ zta Jue 20, 2005 Outlie Itroductio Couterfactual framework

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu Hirata, Mikio Tohyama, Mitsuo

More information

Stability Analysis of the Euler Discretization for SIR Epidemic Model

Stability Analysis of the Euler Discretization for SIR Epidemic Model Stability Aalysis of the Euler Discretizatio for SIR Epidemic Model Agus Suryato Departmet of Mathematics, Faculty of Scieces, Brawijaya Uiversity, Jl Vetera Malag 6545 Idoesia Abstract I this paper we

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation Some Properties of the Exact ad Score Methods for Biomial Proportio ad Sample Size Calculatio K. KRISHNAMOORTHY AND JIE PENG Departmet of Mathematics, Uiversity of Louisiaa at Lafayette Lafayette, LA 70504-1010,

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!! A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited

More information

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics 8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These

More information

Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1

Statistics. Chapter 10 Two-Sample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 10-1 Statistics Chapter 0 Two-Sample Tests Copyright 03 Pearso Educatio, Ic. publishig as Pretice Hall Chap 0- Learig Objectives I this chapter, you lear How to use hypothesis testig for comparig the differece

More information

Confidence Intervals for the Population Proportion p

Confidence Intervals for the Population Proportion p Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

UCLA STAT 110B Applied Statistics for Engineering and the Sciences

UCLA STAT 110B Applied Statistics for Engineering and the Sciences UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles,

More information

New Entropy Estimators with Smaller Root Mean Squared Error

New Entropy Estimators with Smaller Root Mean Squared Error Joural of Moder Applied Statistical Methods Volume 4 Issue 2 Article 0 --205 New Etropy Estimators with Smaller Root Mea Squared Error Amer Ibrahim Al-Omari Al al-bayt Uiversity, Mafraq, Jorda, alomari_amer@yahoo.com

More information

Distributional Similarity Models (cont.)

Distributional Similarity Models (cont.) Distributioal Similarity Models (cot.) Regia Barzilay EECS Departmet MIT October 19, 2004 Sematic Similarity Vector Space Model Similarity Measures cosie Euclidea distace... Clusterig k-meas hierarchical

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

CTL.SC0x Supply Chain Analytics

CTL.SC0x Supply Chain Analytics CTL.SC0x Supply Chai Aalytics Key Cocepts Documet V1.1 This documet cotais the Key Cocepts documets for week 6, lessos 1 ad 2 withi the SC0x course. These are meat to complemet, ot replace, the lesso videos

More information

Estimation of the Population Mean in Presence of Non-Response

Estimation of the Population Mean in Presence of Non-Response Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for

Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for Sample questios Suppose that humas ca have oe of three bloodtypes: A, B, O Assume that 40% of the populatio has Type A, 50% has type B, ad 0% has Type O If a perso has type A, the probability that they

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

Extension of Mangat Randomized Response Model

Extension of Mangat Randomized Response Model Iteratioal Joural of Busiess ad Social Sciece Vol. 2 No. 8; May 2011 Etesio of Magat Radomized Respose Model Zawar Hussai Departmet of Statistics, Quaid-i-Azam Uiversity 45320, Islamabad 44000, Pakista

More information

Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700

Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700 Simple Regressio CS 7 Ackowledgemet These slides are based o presetatios created ad copyrighted by Prof. Daiel Measce (GMU) Basics Purpose of regressio aalysis: predict the value of a depedet or respose

More information

Analysis of Experimental Data

Analysis of Experimental Data Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both

More information

Overdispersion study of poisson and zero-inflated poisson regression for some characteristics of the data on lamda, n, p

Overdispersion study of poisson and zero-inflated poisson regression for some characteristics of the data on lamda, n, p Iteratioal Joural of Advaces i Itelliget Iformatics ISSN: 2442-6571 140 Overdispersio study of poisso ad zero-iflated poisso regressio for some characteristics of the data o lamda,, p Lili Puspita Rahayu

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information