Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage

Size: px
Start display at page:

Download "Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage"

Transcription

1 Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage Jairo Sinova Johannes Gutenberg Universität Mainz 17th of September 2017 Magnetism: from fundamental to spin based technology Bad Honnef, Germany 1

2 Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage I. Introduction II. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques Intrinsic SOT in GaMnAs SOT in NiMnSb III. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque IV.Topological Dirac Fermion + Antiferromagnets + Neel SOTs 2

3 Using charge and spin in information technology Transistors CHARGE SPIN Magnets S gate insulator semiconductor substrate D HIGH tunability of electronic current All electrons line up together The first spintronics revolution comes in information storage 3

4 Evolution in World s Storage Capacity Digital: Hard-disks, DVDs, Analog: books, video/film, MB Gutenberg ( ) Analog to Digital Hilbert et al. Science (2011) 4

5 Discovery of Giant Magneto Resistance Low Resistance High Resistance From fundamental to practical Albert Fert Peter Grünberg GMR first observed in 1988 Stuart Parkin 2014 Humboldt Professor and 2014 Millennium Prize 5

6 What is next in memory storage? MRAM Magnetic Random Access Memory Spin-Transfer MRAM (2015) Heating Problems First generation did NOT combine charge and spin 6

7 Magnetization dynamics and Spin Transfer Torque d ˆM dt = ˆM ~ Heff + ˆM d ˆM dt + ~PJ 2e ( ˆM ˆM 0 ) ˆM Spin Transfer Torque Ferro 1 Spacer Ferro 2 Torque (proposed by Slonczewski, Berger 1996) 7

8 Spin-Transfer-Torque MRAM MTJ excellent scaling lower power no crosstalk problem simpler fabrication ~ 30 μa STT mechanism: 8

9 use SPIN CURRENTS instead of electric currents! CHARGE SPIN + particles/antiparticles & spin quantum mechanics special relativity Dirac equation e - = Connects the motion of an electron to a spin dependent force 9

10 spin-orbit coupling interaction (one of the few echoes of relativistic physics in the solid state) e Impurity potential V(r) Produces an electric field ~E = 1 rv (~r ) e Motion of an electron effective magnetic field in moving electron s rest frame ~B eff = ~~ k mc ~ E ~E H SO = ~µ B ~B eff ~ Beff ~ k 10

11 spin-orbit coupling interaction (one of the few echoes of relativistic physics in the solid state) e Impurity potential V(r) Produces an electric field ~E = 1 rv (~r ) e Motion of an electron effective magnetic field in moving electron s rest frame ~B eff = ~~ k mc ~ E ~E Consequence #1: Spin or the bandstructure Bloch states are linked to the momentum. H SO = ~µ B ~B eff ~ Beff ~B eff ~ k ~E ~ k 11

12 spin-orbit coupling interaction (one of the few echoes of relativistic physics in the solid state) e Impurity potential V(r) Produces an electric field ~E = 1 rv (~r ) e Motion of an electron effective magnetic field in moving electron s rest frame ~B eff = ~~ k mc ~ E ~E H SO = ~µ B ~B eff ~ Beff ~ k Consequence #2 Mott scattering 12

13 Spin-orbitronics Spin-orbit Torques New magnetic materials Caloritronics Nanotransport Spinorbitronics Spintronic Hall effects Topological transport effects 13

14 Anomalous Hall Effect: the basics Spin dependent force deflects like-spin particles ρ H =R 0 B +4π R s M Electrical measurement of spin polarization (n -n ) InMnA AH xy B + A xx Intrinsic (scattering independent) Nagaosa, JS, et al, Rev. Mod. Phys Scattering dependent 14

15 Spin Hall effect Transverse spin-current generation in paramagnets Intrinsic `Berry Phase, interband coherence [Murakami et al, Sinova et al 2003] Extrinsic `Skew Scattering, Occupation # Response [Dyakonov 1971, Hirsch, S.F. Zhang 2000] Wunderlich, JS, PRL 05 Kato,et al Science Nov 04 15

16 Intrinsic spin-hall effect: the Rashba SOC example H R = ~2 k 2 2m µ B~ ~B eff ( ~ k) = ~2 k 2 2m + R( x k y y k x ) ky [010] [010] +sz Δp eet kx [100] S=0 ~E [100] ~B eff ( ~ k) / ~s eq -sz B eff pŷ 16

17 Current induced polarization Inverse Spin Galvanic Effect or Edelstein Effect ky kx δsy 0 δs=0 J x Wunderlich, Jungwirth, JS, et al PRL/PRB 2003/

18 Anomalous/Spin Hall effects: more than meets the eye Anomalous Hall Effect Spin Hall Effect spin-current generator Inverse SHE spin-current detector Intrinsic Extrinsic Topological Insulators Mesoscopic Spin Hall Effect SHE Transistor SHE/SOT MRAM HE V Intrinsi Kane and Mele PRL 05 Brune,JS, Molenkamp, et al Nature Physics 2010 Wunderlich, Irvine, JS, Jungwirth, et al, Nature Physics 09, Science 2011 Buhrman,et al., Science 2012 Kubayashi, JS, et al, Nature Nanotech

19 Spin-Transfer-Torque MRAM MTJ excellent scaling lower power no crosstalk problem simpler fabrication ~ 30 μa STT mechanism: 3" 19

20 in-plane-current switching MRAM MTJ If switching can be done by an in-plane current then a key issue in STT-MRAM is resolved 4" 20

21 Experiments of in-plane current Miron et al., Nature 11 spin-orbit torque at PM/FM interface ky Buhrman,et al., Science 12 SHE as spin-current generator + STT δs=0 δsy 0 kx J x d ~ M dt intrinsic SHE + STT! = P ˆM (ˆn ˆM) SHE STT h SOT z J d ~ M dt! SOT = J ex ~ ~ M ~s Intrinsic SHE in paramagnet acts as the external polarizer 21

22 Experiments of in-plane current magnetic switching spin-orbit torque at PM/FM interface SHE as spin-current generator + STT Miron et al., Nature 11 Buhrman,et al., Science 12 h SOT z J d ~ M dt! SOT = J ex ~ ~ M ~s intrinsic SHE + STT d M ~! = P dt ˆM (ˆn ˆM) SHE STT Gordon Research Conference - Jairo Sinova 22

23 Spin-orbit Torques in Bilayer Systems Make a ferromagnet behave like a cat: SOC (broken bulk inversion)+ferromagnetism? Spin Hall Rashba Courtesy of P. Gambardella 23

24 Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC ~M [001] Δp eet [100] ~E eq B ~ M eff d ˆM dt ˆM s z ẑ B eff pŷ maximum s z ẑ for M! E! 24

25 Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC [001] Δp eet [001 [100] [100 ~E M eq B ~ M eff M B eq eff d ˆM dt ~ M d ˆM dt B eff pŷ anti-damping ˆM s zero for M! E! z ẑ s z ẑ ˆM s z ẑ s z ẑ ( ~ E ẑ) ˆM cos( M E ) 25

26 Intrinsic (Berry phase) spin-orbit torque in GaMnAs [010] [010] [110] [110] GaMnAs Rashba [100] GaMnAs GaAs Dresselhaus [100] d ˆM dt! SOT = ˆM s z ( M E )ẑ angle between M and current direction current direction 26

27 Measuring spin-orbit fields: electrical induced/detected FMR Landau-Lifshitz-Gilbert equation h z h y h x V dc (μv) Because h so =-J pd Δs μ 0 H 0 (T) the V amplitudes contain spin-orbit fields information. 27

28 Torque types and line-shapes Vsym Vasy Anti-damping torque Τ in-plane (or h z ) V sym = C 1 h z (θ M-E ) sin (2θ M-E ) Kurebayashi, Sinova et al., Nature Nanotech. (2014) Fang et al., Nature Nanotech. (2011) Sample: 18 or 25 nm-thick GaMnAs 4 mm-wide 28

29 The out-of-plane SO field the out-of-plane field the symmetric line-shape V sym (θ M-E ) ~ h z (θ M-E ) sin (2θ M-E ) 10 5 sin2θ I M hz V sym (µv) θ (degree) M-dependent h z sinθ symmetry for 100 direction. h z (µt) I h z M θ (degree) 29

30 Comparison to Theory µ 0 h z [ µt ] [100] [010] µ 0 h z [ µt ] [1-10] [110] θ M-J θ M-J 30

31 Comparison to Theory Dash line: Calculations replacing H KL with a parabolic model, i.e. no (J.k) 2 term µ 0 h z [ µt ] [100] [010] [010] S // M [100] µ 0 h z [ µt ] [1-10] [110] θ M-J θ M-J 31

32 Discovery of anti-damping spin-orbit torques Solid line: Calculations with H KL (captures higher harmonics) µ 0 h z [ µt ] [100] [010] [010] S // M [100] µ 0 h z [ µt ] [1-10] [110] θ M-J θ M-J Kurebayashi, JS, et al., Nat. Nanot. (2014) 32

33 SOT in metals: dominated by field like term NiMnSb Z&[001]& [1#10]& I [110] φ& M S (φ) I [110] Kubo Scattering Formalism Jacob Gayles Z&[001]& B y& I [110] In Plane B x& M S (ϕ) & [1/10]& Z&[001]& I [110] Out of Plane B y& B x& M S (ϕ) & [1/10]& 33

34 Room-temperature SOT in NiMnSb Ciccarelli, et al., Nature Physics (2016) 25 μt J 2 [110] z y x J 1 [1-10] V asy V sym 10 5 V asy V sym V dc (µv) 0-5 V dc (µv) [1-10] φ (deg) The driving field is linear in current: -10 [110] φ (deg) 34

35 Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage I. Introduction II. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques Intrinsic SOT in GaMnAs SOT in NiMnSb III. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque IV.Topological Dirac Fermion + Antiferromagnets + Neel SOTs 35

36 Why antiferromagnetic spintronics Ferromagnets: Antiferromagnets: Spin-order with M Spin-order with M=0 Magneto-electronics (spintronics): non-volatility, radiation-hardness, speed, energy,... Allow for manipulation and detection by magnetic fields Do not allow for direct manipulation and detection by magnetic fields B.G. Park, et al, Nature Mater. 10 (2011) Magnetic fields not used in advanced ferromagnetic spintronics Perturbed by <Tesla Produce ~Tesla nearby stray fields Insensitive to ~ Tesla Produce no stray fields X. Marti, et al, arxiv: X. Marti, et al, Nat. Mater. (2014) Speed limited by FM dynamics timescales Difficult to realize in semiconductors Ultrafast due to AFM dynamics timescales Many room-t semiconductors 36

37 Antiferromagnetic Spintronics Ordered spins Non-volatile Spin not charge based Radiation-hard No net moment Insensitive to magnetic fields, no fringing stray fields THz dynamics Ultra-fast switching Multiple-stable domain configurations Memory-logic bit cells Last issue of the International Technological Roadmap for Semiconductors in 2016 Materials range Insulators, semiconductors, semimetals, metals, superconductors 37

38 Antiferromagnetic AMR experiment: AFM memory SQUID experiment: AFM at room-t m (x10-3 emu) RT 400 K µ 0 H (T) Negligible stray fields from the AFM Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

39 Antiferromagnetic AMR experiment: AFM memory Transport experiment: AFM-AMR memory read-out R (Ω) step Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

40 Antiferromagnetic AMR experiment: AFM memory AFM memory with no stray fields and insensitive to magnetic field (tested up to 9 T) Comparable AMR to FM NiFeCo comparable size and read-out-time scaling Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

41 Antiferromagnetic Spin-orbitronics Writing by spin-orbit torque in a single-layer ferromagnet Magnet reversing itself : SOT Néel SOT AFM J. Zelezny, H. Gao, K. Vyborny, J. Masek, J. Zemen, A. Manchon, J. Sinova, and T. Jungwirth, PRL (2014) 41

42 Writing by spin-orbit torque in a single-layer ferromagnet Magnet reversing itself: ky Rashba Spin-orbit Torque H SOT z J kx S=0 Sy 0 J x Broken space-inversion symmetry (GaMnAs) 42

43 Writing by Néel spin-orbit torque in a single-layer antiferromagnet ky kx H SOT z J S=0 Sy 0 J x ky H SOT -z J kx S=0 Sy 0 Zelezny, Gao, Jungwirth, JS December PRL (2014) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn 2 Au) 43

44 Writing by Néel spin-orbit torque in a single-layer antiferromagnet B(mT) (per 10 7 A/cm 2 ) B(mT) (per 10 7 A/cm 2 ) B x A B x B B y A B y B Φ (Degrees) B z B B y B J x B y A B x B B x A θ (Degrees) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn 2 Au) B z A Zelezny, Gao, Jungwirth, JS December PRL (2014) 44

45 How it works - kind of 45

46 ! Experimental Observation of Néel SOT in CuMnAs $P uls e $num be r Wadley, Jungwirth et al Science (2016) CuMnAs" B" 8" 1" 2" 3" B A"D" 4" 5" ( B" $ Rashba0 field: 2 4 0!3 0 Setting P uls e )num be r $ $ ΔR t+ (m Ω) $ Figure"4""10 30 (A)"Transverse"resistance"using"orthogonal"probe"curr 20 (black)"and"3h7"(red)."(b)"dependence"of"the"change"i 0 density"of"the"seung"pulse."the"dashed"line"is"a"guide 10 resistance"afer"current"pulses"alternately"along"ortho '10 1H6)"and"with"4.4"kOe"field"applied"(pulses"7H12)."(D)"M 0 measured"by"squid"magnetometer." S e tting +c urre nt+de ns ity+(ma /c m ) " be r $P uls e $num $ ( ( 30 '10 Setting '40 ( ΔR t((m Ω) ΔR t(m Ω) 0!3 0 ΔR t(m Ω) ΔR t((m Ω) 6" 30 0 D '20 GaP" )ko e )a pplie d ) ΔR t(m Ω) 7" A ( ) 20 CuMnAs C" N o)fie ld)a pplie d 40 + A" C" PB uls~e (num r 3 mtbeper 107 Acm-2P uls e (num be r 2 N o)fie ld)a pplie d 4.4 )ko e )a pplie d 40 C" Magnetism: from fundamentals to spin based technology; Bad D" Honnef School- Jairo Sinova 0.8 ) ( 0.05 ( 46

47 From prediction, to observation, to device in 1 one year!! Electrical read/write antiferromagnetic memory Works like this but not done like this Wadley, TJ et al. Science 16, TJ, Marti, Wadley, Wunderlich, Nature Nanotech

48 Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage I. Introduction II. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques Intrinsic SOT in GaMnAs SOT in NiMnSb III. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque IV.Topological Dirac Fermion + Antiferromagnets + Neel SOTs 52

49 Dirac/Weyl semimetals 2016 Néel SOT SOT 3D TI 2D TI graphene 2003 QSHE SHE 53

50 Coexistence of Topological Dirac fermions and Néel SOT? E Relativistic fermions Topology? k Wan, PRB (2011) Magnetic order Železný, JS, Jungwirth, PRL (2014), arxiv (2016) Wadley, Science (2016) Γ X Z U Néel spin-orbit torques Smejkal, Zelezny, Sinova, Jungwirth PRL (2017) 54

51 Relativistic physics, topological semimetals and spin-orbitronics effects 55

52 Dirac and Weyl fermions Relativistic quantum field theory = spinor fields + Lorentz invariant building blocks E E k k graphene 56

53 Ab initio leading experiment: Topological Semimetal Dirac semimetals Na 3 Bi 2012/2013 Weyl semimetal Y 2 Ir 2 O 7 Weyl semimetal TaAs D Dirac semimetals Young, Kane, Mele et al. PRL (2012) 3Liu et al. Science (2014) 2Na 3 Bi candidate Wang Na3Bi PRB (2012) 57

54 Ab initio leading experiment: Topological Semimetal Dirac semimetals Na 3 Bi 2012/2013 Weyl semimetal Y 2 Ir 2 O 7 Weyl semimetal TaAs Symmetry breaking Time reversal broken Noncentrosymmetric Pyrochlore iridates Wan PRB (2011) TaAs family: Hasan group (2014/15), Weng, Bernevig PRX(2015), Lv PRX(2015), C. Felser group, Nat. Phys. (2015) 58

55 Can we control the relativistic fermions electrically?? + 59

56 Model of AFM topological semimetal B A band crossing Dirac fermions? + YES! AF spintronics Overlap of symmetry conditions 1. Two sites in unit cell [001] δs J δs inversion-partner sites staggered field B A [100] [010] 2. PT symmetry spin-degeneracy Dirac point AF spin-sublattices at inversion partner sites AF spin-orbit orque 60

57 Minimal lattice model: construction B B A A Kane-Mele spin-orbit coupling Smejkal, Zelezny, Sinova, Jungwirth PRL (2017) 61

58 Minimal lattice model: local symmetries Pseudovector/axial vector PT + A, B noncentrosymmetric x z P PT P Smejkal, Jungwirth, Sinova PSS (2017) Neel spin-orbit torque 62

59 Symmetry protection of Dirac points Mirror Translate at Gx invariant subspace [010] [100] nonsymmorphic symmetry = point group + nontrivial translation glide mirror plane Gx={Mx/(1/2,0,0)} Mx 63

60 Quasi-2D effective model (½ 0 0) A U' A' B [010] PT (½ 0 0) M [100] M' x Y M +i -i X' Г X -i +i Smejkal, Zelezny, Sinova, Jungwirth PRL (2017) 64

61 Dirac fermions in antiferromagnets CuMnAs tetra. screw axis Sz={2z/(1/2,0,1/2)} ortho. Maca, Jungwirth et al. JMMM (2012) Tang et al. Nat.Phys.(2016) Smejkal, Zelezny, Sinova, Jungwirth PRL (2017) 65

62 Electrical control of Dirac fermions tetra. Demonstration of inplane Field like torque manipulation ortho. Demonstration of (001)! inplane Field like torque Nonsymmorphic symmetry: Screw axis+glide plane 66

63 Topological metal-insulator transition 67

64 Topological magnetotransport: AMR 68

65 SUMMARY SHE and ISGE SOT in a single-layer ferromagnet ~E Kurebayashi, et al., Nature Nanotech (2014) JS,Valenzuela, Wunderlich, Back, Jungwirth RMP (2015) M B eq eff ~ M B eff pŷ Kurebayashi, et al., Nature Physics (2016) Néel SOT in a singlelayer antiferromagnet Electrical control of Dirac fermions and topological phases Topological Dirac Semi Metal+ AFM (i) Neel SOT physics (ii) J. Zelezny, et al, PRL (2014) J. Zelezny, et al, PRB (2016) O. Gomonay, et al, PRL (2016) Wadley, et al Science (2016) Libor Smejkal, et al PRL (2017) 69

66 THANK YOU Smejkal, Gayles, Zeledny, Gao, Masek, Kurebayashi, Fang, Irvine, Wunderlich Zarbo, Vyborny, Ferguson, Gomonay, Abanov, and Jungwirth Institute of Physics ASCR Prague Charles Univ. Prague, Czech Rep. Univ. of Nottingham, UK Hitachi and Univ. of Cambridge, UK JGU Mainz

67 9 th JEMS Conference 2018 Joint European Magnetic Symposia 3 rd -7 th of September Mainz, Germany

68 Spin Phenomena Interdisciplinary Center 72

69 Sign up to the youtube channel 73

70 Sign up to the youtube channel 74

Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions

Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions Jairo Sinova Johannes Gutenberg Universität Mainz 1th of October 216 Nanoscience and Quantum Transport Kiev, Ukraine Sinova et al

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Expecting the unexpected in the spin Hall effect: from fundamental to practical Expecting the unexpected in the spin Hall effect: from fundamental to practical JAIRO SINOVA Texas A&M University Institute of Physics ASCR Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Hitachi

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

Antiferromagnetic Spintronics

Antiferromagnetic Spintronics Lecture II Antiferromagnetic Spintronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) Interesting but useless! Nobel Lectures

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING CURRENT-INDUCED SPIN POLARIZATION AND SPIN - ORBIT TORQUE IN GRAPHENE Anna Dyrdał, Łukasz Karwacki, Józef Barnaś Mesoscopic Physics Division,

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

Physics in Quasi-2D Materials for Spintronics Applications

Physics in Quasi-2D Materials for Spintronics Applications Physics in Quasi-2D Materials for Spintronics Applications Topological Insulators and Graphene Ching-Tzu Chen IBM TJ Watson Research Center May 13, 2016 2016 C-SPIN Topological Spintronics Device Workshop

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory Center for Spintronic Materials, Interfaces, and Novel Architectures Voltage Controlled Antiferromagnetics and Future Spin Memory Maxim Tsoi The University of Texas at Austin Acknowledgments: H. Seinige,

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime JAIRO SINOVA Texas A&M University Institute of Physics ASCR Texas A&M University Xiong-Jun Liu, Xin Liu (Nankai)

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin Introduction to Spintronics and Spin Caloritronics Tamara Nunner Freie Universität Berlin Outline Format of seminar How to give a presentation How to search for scientific literature Introduction to spintronics

More information

Electrical switching of an antiferromagnet arxiv: v2 [cond-mat.mes-hall] 20 Jul 2015

Electrical switching of an antiferromagnet arxiv: v2 [cond-mat.mes-hall] 20 Jul 2015 Electrical switching of an antiferromagnet arxiv:1503.03765v2 [cond-mat.mes-hall] 20 Jul 2015 Peter Wadley, 1,#, Bryn Howells, 1, Jakub Železný, 2,3 Carl Andrews, 1 Victoria Hills, 1 Richard P. Campion,

More information

Gauge Concepts in Theoretical Applied Physics

Gauge Concepts in Theoretical Applied Physics Gauge Concepts in Theoretical Applied Physics Seng Ghee Tan, Mansoor BA Jalil Data Storage Institute, A*STAR (Agency for Science, Technology and Research) Computational Nanoelectronics and Nano-device

More information

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Hyunsoo Yang Electrical and Computer Engineering, National University of Singapore eleyang@nus.edu.sg Outline Spin-orbit torque (SOT) engineering

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 2 Today s Topics 2.1 Anomalous Hall effect and spin Hall effect 2.2 Spin Hall effect measurements 2.3 Interface effects Anomalous Hall

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Observation of an anti-damping spin-orbit torque originating from the Berry curvature

Observation of an anti-damping spin-orbit torque originating from the Berry curvature Observation of an anti-damping spin-orbit torque originating from the Berry curvature H. Kurebayashi, 1, 2, Jairo Sinova, 3, 4, 5 D. Fang, 1 A. C. Irvine, 1 T. D. Skinner, 1 J. Wunderlich, 5, 6 V. Novák,

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Spin injection and absorption in antiferromagnets

Spin injection and absorption in antiferromagnets Spin injection and absorption in antiferromagnets L. Frangou (PhD), P. Merodio (PhD 2014), G. Forestier (Post-Doc), A. Ghosh, S. Oyarzún, S. Auffret, U. Ebels, M. Chshiev, H. Béa, L. Vila, O. Boulle, G.

More information

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser Heusler compounds: Tunable materials with non trivial topologies Claudia Felser Tunability of Heusler compounds Tuning the band gap Tuning spin orbit coupling Trivial and topological Heusler Adding spins

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Quantitative Mappings from Symmetry to Topology

Quantitative Mappings from Symmetry to Topology Z. Song, Z. Fang and CF, PRL 119, 246402 (2017) CF and L. Fu, arxiv:1709.01929 Z. Song, T. Zhang, Z. Fang and CF arxiv:1711.11049 Z. Song, T. Zhang and CF arxiv:1711.11050 Quantitative Mappings from Symmetry

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems J. Wunderlich, 1 B. Kästner, 1,2 J. Sinova, 3 T. Jungwirth 4,5 1 Hitachi Cambridge Laboratory, Cambridge

More information

THz electrical writing speed in an antiferromagnetic memory

THz electrical writing speed in an antiferromagnetic memory arxiv:1711.08444v1 [physics.app-ph] 24 Oct 2017 THz electrical writing speed in an antiferromagnetic memory K. Olejník, 1,# T. Seifert, 2 Z. Kašpar, 1,3 V. Novák, 1 P. Wadley, 4 R. P. Campion, 4 M. Baumgartner,

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Yuanyuan Li 1, Y. F. Cao 1, G. N. Wei 1, Yanyong Li 1, Y. i and K. Y. Wang 1,* 1 SKLSM, Institute of Semiconductors,

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University See also talks online by Tokura, Tchernyshyov Magnetic skyrmions Rembert Duine with Marianne Knoester (UU) Jairo Sinova (Texas A&M, Mainz) ArXiv 1310.2850 Institute for Theoretical Physics Utrecht University

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Weyl fermions and the Anomalous Hall Effect

Weyl fermions and the Anomalous Hall Effect Weyl fermions and the Anomalous Hall Effect Anton Burkov CAP congress, Montreal, May 29, 2013 Outline Introduction: Weyl fermions in condensed matter, Weyl semimetals. Anomalous Hall Effect in ferromagnets

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors Mon., Feb. 04 & Wed., Feb. 06, 2013 A few more instructive slides related to GMR and GMR sensors Oscillating sign of Interlayer Exchange Coupling between two FM films separated by Ruthenium spacers of

More information

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Structure and Topology of Band Structures in the 1651 Magnetic Space Groups Haruki Watanabe University of Tokyo [Noninteracting] Sci Adv (2016) PRL (2016) Nat Commun (2017) (New) arxiv:1707.01903 [Interacting]

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

Weyl semi-metal: a New Topological State in Condensed Matter

Weyl semi-metal: a New Topological State in Condensed Matter Weyl semi-metal: a New Topological State in Condensed Matter Sergey Savrasov Department of Physics, University of California, Davis Xiangang Wan Nanjing University Ari Turner and Ashvin Vishwanath UC Berkeley

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Physics and applications (I)

Physics and applications (I) Spintronics: Physics and applications (I) Malek Zareyan IPM, 15 TiR 1387 1 Very weak magnetic changes give rise to major differences in resistance in a GMR system (.( ١٩٨٨ GMR has made possible miniaturizing

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/24306 holds various files of this Leiden University dissertation Author: Verhagen, T.G.A. Title: Magnetism and magnetization dynamics in thin film ferromagnets

More information

Spin Hall effect and related issues. Dept of Physics Taiwan Normal Univ. Ming-Che Chang

Spin Hall effect and related issues. Dept of Physics Taiwan Normal Univ. Ming-Che Chang Spin Hall effect and related issues Dept of Physics Taiwan Normal Univ. Ming-Che Chang Basic spin interactions in semiconductors (Dyakonov, cond-mat/0401369) spin-orbit interaction required for optical

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China Microwave fields driven domain wall motions in antiferromagnetic nanowires Z. Y. Chen 1,*, Z. R. Yan 1,*, Y. L. Zhang 1, M. H. Qin 1,, Z. Fan 1, X. B. Lu 1, X. S. Gao 1, and J. M. Liu 2, 1 Institute for

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Gradient expansion formalism for generic spin torques

Gradient expansion formalism for generic spin torques Gradient expansion formalism for generic spin torques Atsuo Shitade RIKEN Center for Emergent Matter Science Atsuo Shitade, arxiv:1708.03424. Outline 1. Spintronics a. Magnetoresistance and spin torques

More information

An Intrinsic Spin Orbit Torque Nano-Oscillator

An Intrinsic Spin Orbit Torque Nano-Oscillator arxiv:188.933v1 [cond-mat.mes-hall] 28 Aug 218 An Intrinsic Spin Orbit Torque Nano-Oscillator M. Haidar, 1 A. A. Awad, 1 M. Dvornik, 1 R. Khymyn, 1 A. Houshang, 1 J. Åkerman 1,2 1 Physics Department, University

More information

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmion Dynamics and Topological Transport Phenomena Skyrmion Dynamics and Topological Transport Phenomena Yoshi Tokura RIKEN Center for Emergent Matter Science (CEMS) Department of Applied Physics, University of Tokyo skyrmion, the concept originally introduced

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Systèmes Hybrides. Norman Birge Michigan State University

Systèmes Hybrides. Norman Birge Michigan State University Systèmes Hybrides Norman Birge Michigan State University Résumé Systèmes F/N Systèmes S/N Systèmes S/F Résumé: Systèmes F/N Accumulation de spin Giant Magnetoresistance (GMR) Spin-transfer torque (STT)

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Multipole Superconductivity and Unusual Gap Closing

Multipole Superconductivity and Unusual Gap Closing Novel Quantum States in Condensed Matter 2017 Nov. 17, 2017 Multipole Superconductivity and Unusual Gap Closing Application to Sr 2 IrO 4 and UPt 3 Department of Physics, Kyoto University Shuntaro Sumita

More information

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS J. Barna Department of Physics Adam Mickiewicz University & Institute of Molecular Physics, Pozna, Poland In collaboration: M Misiorny, I Weymann, AM University,

More information