Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions

Size: px
Start display at page:

Download "Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions"

Transcription

1 Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions Jairo Sinova Johannes Gutenberg Universität Mainz 1th of October 216 Nanoscience and Quantum Transport Kiev, Ukraine Sinova et al RMP 215, Zelezny et al PRL 214/PRB 216, Ciccarelli, Gayles, et al Nature Physics 216, Gomonay, et al PRL 216, Smejkal, et al in prepration (216) Gayles, Zelezny, Smejkal, Ciccarelli, Gomonay, Jungwirth, Molenkamp, Yuan, Kurebayashi, Ferguson, Mukrausov Institute of Physics Prague Univ. of Nottingham Univ. of Cambridge Univ. of Würzburg

2 Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state IV.SPICE Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) Sinova,et al RMP (215) Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) Smejkal, et al in prepration (216) 2

3 Spin-current and spin-polarization generation by currents Inverse Spin Galvanic Effect or Edelstein Effect (Reverse process of circular photo-galvanic effect, Ganichev et al., 21) ky kx δs δs= y J x Spin Hall Effect in p-gaas Effective fields 1-1 T Spin polarizations 1-1% Wunderlich et at. arxiv 4, PRL 5 3

4 Experiments of in-plane current switching Miron et al., Nature 11 spin-orbit torque at PM/FM interface ky Buhrman,et al., Science 12 SHE as spin-current generator + STT kx J x δs= δsy hsot z J ~ dm dt! = SOT ~ dm dt! intrinsic SHE + STT SHE ST T = P M (n M ) Jex ~ M ~s ~ Intrinsic SHE in paramagnet acts as the external polarizer 4

5 Measuring spin-orbit fields: electrical induced/detected FMR Landau-Lifshitz-Gilbert equation h z h y h x V dc (μv) Because h so =-J pd Δs μ H (T) the V amplitudes contain spin-orbit fields information. 5

6 Torque types and line-shapes Vsym Vasy Anti-damping torque Τ in-plane (or h z ) V sym = C 1 h z (θ M-E ) sin (2θ M-E ) + Field-like/Rashba torque Τ out-of-plane (h x & h y ) V asy = C 2 sin(2θ M-E ) (-h x (θ M-E )sin(θ M-E ) +h y (θ M-E )cos(θ M-E )) Kurebayashi, Sinova et al., Nature Nanotech. (214) Fang et al., Nature Nanotech. (211) 6

7 Spin-orbit Torques in Bilayer Systems Spin Hall Rashba Courtesy of P. Gambardella 7

8 Linear response I. (condensed matter class) Boltzmann theory: non-equilibrium distribution function and equilibrium states Extrinsic (skew-scattering) SHE X 1 ~js = ~js (~k)g~ k V Field-like SOT 1 X ~ ~s = ~s(k)g~k V ~ k ~ k jc δsy J x Dyakonov and Perel 1971 Hirsch PRL 99 Kato et al., Science 4 g! n,k = f! n,k f (E )! n,k ~ dm dt! = SOT Jex ~ M ~s ~ 8

9 Linear response II. (condensed matter class) Perturbation theory: equilibrium distribution function and non-equilibrium states Intrinsic SHE from linear response II z ĵ y E x j z y = X ~k ~k i = ~ kie ie ~ k t + e i! h ~k (t) ĵ z y ~k if (E ~k ) X ~ kn6=n ~ kn h i ~ kn E ~ ˆv ~ kni E ~kn E ~kn + ~! e i(e ~ +!)t kn + Murakami,et al, Science 3 Sinova, et al. PRL 4 Wunderlich et al. Phys. Rev. Lett. 5 Werake et al., PRL 11 Scattering-independent anti-damping SOT from linear response II. 9

10 Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC ~ M [1] Δp eet [1] ~ E eq eff B ~ M dm M sz z maximum dt Bef f py!! sz z for M E 1

11 Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC [1] Δp eet [1 [1] [1 ~E M eq B ~ M eff M B eq eff d ˆM dt ~ M d ˆM dt B eff pŷ anti-damping ˆM s zero for M! E! z ẑ s z ẑ ˆM s z ẑ s z ẑ ( ~ E ẑ) ˆM cos( M E ) 11

12 Intrinsic (Berry phase) spin-orbit torque in GaMnAs [1] [1] [11] [11] GaMnAs Rashba [1] GaMnAs GaAs Dresselhaus [1] d ˆM dt! SOT = ˆM s z ( M E )ẑ angle between M and current direction current direction 12

13 Comparison of Experiment -Theory Solid line: Calculations with H KL (captures higher harmonics) µ h z [ µt ] [1] [1] [1] S // M [1] µ h z [ µt ] [1-1] [11] θ M-J θ M-J Kurebayashi, et al., Nature Nanotech (214) 13

14 Other Materials: Half Heuslers NiMnSb Tc = 73 K in bulk 15

15 SOT Torque: dominated by field like term NiMnSb Z&[1]& MS(φ) I [11] φ& [1#1]& Kubo I [11] Scattering Formalism Jacob Gayles Z&[1]& I [11] By& In Plane Bx& MS(ϕ)& [1/1]& Z&[1]& I [11] By& Out of Plane Bx& MS(ϕ)& [1/1]& 15

16 Room-temperature SOT in NiMnSb Ciccarelli, et al., Nature Physics (216) 25 μt J 2 [11] z y x J 1 [1-1] V asy V sym 1 5 V asy V sym V dc (µv) -5 V dc (µv) -5-1 [1-1] φ (deg) The driving field is linear in current: -1 [11] φ (deg) 16

17 Antiferromagnetic Spintronics: Neél spin-orbit torques to Diract fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state IV.SPICE Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) Sinova,et al RMP (215) Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) Smejkal, et al in prepration (216) 17

18 Antiferromagnetic Spintronics Need Spin-Orbit Torques Reviews: MacDonald & Tsoi Phil. Trans. R. Soc. A 369, 398 (211) Gomonay & Loktev Low Temp. Phys. 4, 17 (214) TJ, Marti, Wadley, Wunderlich Nature Nanotech. 11, 231 (216) Baltz, Manchon, Tsoi, Moriyama, Ono, Tserkovnyak

19 Why antiferromagnetic spintronics Ferromagnets Antiferromagnet Spin-order with M Spin-order with M= Magneto-electronics (spintronics): non-volatility, radiation-hardness, speed, energy,... Allow for manipulation and detection by magnetic fields Do not allow for direct manipulation and detection by magnetic fields B.G. Park, et al, Nature Mater. 1 (211) Magnetic fields not used in advanced ferromagnetic spintronics Perturbed by <Tesla Produce ~Tesla nearby stray fields Insensitive to ~1-1 Tesla Produce no stray fields X. Marti, et al, arxiv: X. Marti, et al, Nat. Mater. (214) Speed limited by FM dynamics timescales Ultrafast due to AFM dynamics timescales Difficult to realize in semiconductors Many room-t semiconductors Reviews: Gomonay & Loktev Low Temp. Phys. 4, 17 (214); Jungwirth et al, Nature Nanotech. 11, 231 (216); Baltz, et al 19

20 Antiferromagnetic AMR experiment: AFM memory SQUID experiment: AFM at room-t m (x1-3 emu) RT 4 K -1 1 µ H (T) Negligible stray fields from the AFM Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

21 Antiferromagnetic AMR experiment: AFM memory Transport experiment: AFM-AMR memory read-out R (Ω) step Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

22 Antiferromagnetic AMR experiment: AFM memory AFM memory with no stray fields and insensitive to magnetic field (tested up to 9 T) Comparable AMR to FM NiFeCo comparable size and read-out-time scaling Marti, Fina,Jungwirth et al. Nature Mater. 14, EP , US

23 Antiferromagnetic Spin-orbitronics Writing by spin-orbit torque in a single-layer ferromagnet Magnet reversing itself : SOT STT SOT Néel SOT AFM J. Zelezny, et al, PRL (214) What type of current-induced polarisation can we generate? 23

24 Néel spin-orbit torque in a single-layer antiferromagnet ky HSOT z J kx S= Sy J x ky HSOT -z J kx S= Sy Zelezny, Gao, JS, Jungwirth, PRL (214) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn2Au) 24

25 Néel spin-orbit torque in a single-layer antiferromagnet B(mT) (per 1 7 A/cm 2 ) B(mT) (per 1 7 A/cm 2 ) B x A B x B B y A B y B Φ (Degrees) B z B B y B J x B y A B x B B x A θ (Degrees) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn 2 Au) B z A Zelezny, Gao, JS, Jungwirth, PRL (214) 25

26 How it works - kind of Frank Freimuth 26

27 !3 Néel SOT in CuMnAs Wadley et al, Science 216 CuMnAs" B" 8" 1" 2" 3" 4" 5" A"D" D Setting ( '4 12 $ 22 2 P uls e (num be r Acm-2 C" 1 $ ( (! P uls e (num be r P uls e )num be r + Figure"4""1 3 (A)"Transverse"resistance"using"orthogonal"probe"curr 2 (black)"and"3h7"(red)."(b)"dependence"of"the"change"in density"of"the"seung"pulse."the"dashed"line"is"a"guide 1 resistance"afer"current"pulses"alternately"along"ortho '1 1H6)"and"with"4.4"kOe"field"applied"(pulses"7H12)."(D)"M measured"by"squid"magnetometer." S e tting +c urre nt+de ns ity+(ma /c m ) " be r $P uls e $num $ $ 3 Rashba field: ΔR t+ (m Ω)!3 4 ( ΔR t((m Ω) ΔR t(m Ω) Setting 1-5 B" $ 3 ΔR t(m Ω) ΔR t((m Ω) 6" ( B ~ 3 mt per 4.4 )ko e )a pplie d '2 GaP" 17 ) ) ΔR t(m Ω) 7" B ' $P uls e $num be r 2 A 1 4 N o)fie ld)a pplie d 4 CuMnAs C" 2 + A" C" 4 N o)fie ld)a pplie d ) 4.4 )ko e )a pplie d D" ( (

28 XMLD microscopy and spectroscopy J write [1] [1] 1 µm XMLD (a.u.) XMLD (%) 1-1 Experiment Theory Photon energy 28

29 From prediction, to observation, to device in 1 one year!! Works like this but not done like this Electrical read/write antiferromagnetic memory Wadley, TJ et al. Science 16, TJ, Marti, Wadley, Wunderlich, Nature Nanotech

30 How to use the Neel SOT? Gomonay, Jungwirth, JS PRL (216) M1 θ M2 Ω Speeds of ~ 5 km/sec!! x 3

31 Writing by Néel spin-orbit torque in a single-layer antiferromagnet 2D Antiferromagnet with Rashba SOC intrinsic Néel SOT can be much larger than FM SOTs!! BUT intrinsic Néel SOT Φ (Degrees) extrinsic/rashba Néel SOT= B z A B z B B(mT) (per.1 A/cm) Antiferromagnet with broken global space-inversion symmetry: 2D-AFM+Rashba B x B B z B B z A B x A θ (Degrees) B(mT) (per.1 A/cm) 31

32 Writing by Néel spin-orbit torque in a single-layer antiferromagnet 2D Antiferromagnet with Rashba SOC intrinsic Néel SOT can be much larger than FM SOTs!! E(eV) E(eV) X Γ X M Γ k X Γ X M Γ k DOS(states ev -1 nm -2 ) Antiferromagnet with broken global space-inversion symmetry: 2D-AFM+Rashba 32

33 Antiferromagnetic Spintronics: Neél spin-orbit torques to Diract fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state Smejkal, et al in prepration (216) Sinova,et al RMP (215) 33

34 216 Dirac/Weyl semimetals Néel SOT SOT 3D TI QSHE 2D TI graphene 23 SHE 34

35 Coexistence of Topological Dirac fermions and Néel SOT? E Relativistic fermions Topology? k Wan, PRB (211) Magnetic order Železný, JS, Jungwirth, PRL (214), arxiv (216) Wadley, Science (216) Γ X Z U Néel spin-orbit torques Libor Smejkal, et al (216) 35

36 Relativistic physics, topological semimetals and spinorbitronics effects 36

37 Dirac and Weyl fermions Relativistic quantum field theory = spinor fields + Lorentz invariant building blocks E E k k graphene ~tzipora/band_theory.html 37

38 Ab initio leading experiment: Topological Semimetal Dirac semimetals Na 3 Bi / Weyl semimetal Y 2 Ir 2 O 7 Weyl semimetal TaAs , D Dirac semimetals Young, Kane, Mele et al. PRL (212) 3 Liu et al. Science (214) 2 Na 3 Bi candidate Wang Na3Bi PRB (212) 38

39 Ab initio leading experiment: Topological Semimetal Dirac semimetals Na3Bi 2121/ Weyl semimetal Y2Ir2O7 Weyl semimetal TaAs , Symmetry breaking Time reversal broken Pyrochlore iridates Wan PRB (211) Noncentrosymmetric TaAs family: 5,7 Hasan group (214/15), 6Weng, Bernevig PRX(215), 8Lv PRX(215), 9 C. Felser group, Nat. Phys. (215) 39

40 Large mobilities Liang, Nature Materials (215) Ultrahigh mobility and giant magnetoresistance in Dirac semimetal Cd3As2 Bi nanowires Mechanism? Suppression of backscattering? 9 16 cm2 V 1 s 1 at 5 K Si 4

41 Can we control the relativistic fermions electrically? Libor Smejkal 41

42 Model of AFM topological semimetal B A δs B PT δs A [1] J [1] [1] 42

43 Quasi-2D variant (½ ) A U' A' B [1] PT (½ ) M [1] M' x Y M +i -i X' Г X -i +i 43

44 Dirac fermions in antiferromagnets CuMnX (X=As/P) tetra. ortho. Full potential ELK code DFT(FLAPW)+PBE+SOC Nonsymmorphic symmetry 44

45 Electrical control of Dirac fermions Demonstration of inplane Field like torque manipulation Demonstration of (1)! inplane Field like torque Nonsymmorphic symmetry: Screw axis+glide plane 45

46 Electrical control of phases Dirac semimetal SOC (1) Semiconductor SOC (11) 46

47 SUMMARY SHE and ISGE SOT in a single-layer ferromagnet Kurebayashi, et al., Nature Nanotech (214) ~ E JS,Valenzuela, Wunderlich, Back, Jungwirth RMP (215) Néel SOT in a singlelayer antiferromagnet J. Zelezny, et al, PRL (214) J. Zelezny, et al, PRB (216) O. Gomonay, et al, PRL (216) Wadley, Jungwirth et al Science (216) Bef f M eq Beff ~ M py Kurebayashi, et al., Nature Physics (216) Electrical control of Dirac fermions and topological phases Topological Dirac Semi Metal+ AFM (i) Neel SOT physics (ii) Libor Smejkal, et al (216) 47

Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage

Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage Jairo Sinova Johannes Gutenberg Universität Mainz 17th of September 2017

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Antiferromagnetic Spintronics

Antiferromagnetic Spintronics Lecture II Antiferromagnetic Spintronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) Interesting but useless! Nobel Lectures

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Spin injection and absorption in antiferromagnets

Spin injection and absorption in antiferromagnets Spin injection and absorption in antiferromagnets L. Frangou (PhD), P. Merodio (PhD 2014), G. Forestier (Post-Doc), A. Ghosh, S. Oyarzún, S. Auffret, U. Ebels, M. Chshiev, H. Béa, L. Vila, O. Boulle, G.

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Expecting the unexpected in the spin Hall effect: from fundamental to practical Expecting the unexpected in the spin Hall effect: from fundamental to practical JAIRO SINOVA Texas A&M University Institute of Physics ASCR Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Hitachi

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Electrical switching of an antiferromagnet arxiv: v2 [cond-mat.mes-hall] 20 Jul 2015

Electrical switching of an antiferromagnet arxiv: v2 [cond-mat.mes-hall] 20 Jul 2015 Electrical switching of an antiferromagnet arxiv:1503.03765v2 [cond-mat.mes-hall] 20 Jul 2015 Peter Wadley, 1,#, Bryn Howells, 1, Jakub Železný, 2,3 Carl Andrews, 1 Victoria Hills, 1 Richard P. Campion,

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China Microwave fields driven domain wall motions in antiferromagnetic nanowires Z. Y. Chen 1,*, Z. R. Yan 1,*, Y. L. Zhang 1, M. H. Qin 1,, Z. Fan 1, X. B. Lu 1, X. S. Gao 1, and J. M. Liu 2, 1 Institute for

More information

Physics in Quasi-2D Materials for Spintronics Applications

Physics in Quasi-2D Materials for Spintronics Applications Physics in Quasi-2D Materials for Spintronics Applications Topological Insulators and Graphene Ching-Tzu Chen IBM TJ Watson Research Center May 13, 2016 2016 C-SPIN Topological Spintronics Device Workshop

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING CURRENT-INDUCED SPIN POLARIZATION AND SPIN - ORBIT TORQUE IN GRAPHENE Anna Dyrdał, Łukasz Karwacki, Józef Barnaś Mesoscopic Physics Division,

More information

Observation of an anti-damping spin-orbit torque originating from the Berry curvature

Observation of an anti-damping spin-orbit torque originating from the Berry curvature Observation of an anti-damping spin-orbit torque originating from the Berry curvature H. Kurebayashi, 1, 2, Jairo Sinova, 3, 4, 5 D. Fang, 1 A. C. Irvine, 1 T. D. Skinner, 1 J. Wunderlich, 5, 6 V. Novák,

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Hyunsoo Yang Electrical and Computer Engineering, National University of Singapore eleyang@nus.edu.sg Outline Spin-orbit torque (SOT) engineering

More information

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser Heusler compounds: Tunable materials with non trivial topologies Claudia Felser Tunability of Heusler compounds Tuning the band gap Tuning spin orbit coupling Trivial and topological Heusler Adding spins

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime JAIRO SINOVA Texas A&M University Institute of Physics ASCR Texas A&M University Xiong-Jun Liu, Xin Liu (Nankai)

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

Gauge Concepts in Theoretical Applied Physics

Gauge Concepts in Theoretical Applied Physics Gauge Concepts in Theoretical Applied Physics Seng Ghee Tan, Mansoor BA Jalil Data Storage Institute, A*STAR (Agency for Science, Technology and Research) Computational Nanoelectronics and Nano-device

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory Center for Spintronic Materials, Interfaces, and Novel Architectures Voltage Controlled Antiferromagnetics and Future Spin Memory Maxim Tsoi The University of Texas at Austin Acknowledgments: H. Seinige,

More information

Spin-transport, spin-torque and memory in antiferromagnetic devices: Part of a collection of reviews on antiferromagnetic spintronics

Spin-transport, spin-torque and memory in antiferromagnetic devices: Part of a collection of reviews on antiferromagnetic spintronics Spin-transport, spin-torque and memory in antiferromagnetic devices: Part of a collection of reviews on antiferromagnetic spintronics J. Železný, 1* P. Wadley, 2* K. Olejník, 3 A. Hoffmann, 4 5, 6, 7,

More information

An Intrinsic Spin Orbit Torque Nano-Oscillator

An Intrinsic Spin Orbit Torque Nano-Oscillator arxiv:188.933v1 [cond-mat.mes-hall] 28 Aug 218 An Intrinsic Spin Orbit Torque Nano-Oscillator M. Haidar, 1 A. A. Awad, 1 M. Dvornik, 1 R. Khymyn, 1 A. Houshang, 1 J. Åkerman 1,2 1 Physics Department, University

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Spin torques and spin transport in antiferromagnets

Spin torques and spin transport in antiferromagnets Spin torques and spin transport in antiferromagnets M. Kläui Institut für Physik & Materials Science in Mainz Johannes Gutenberg-Universität Mainz www.klaeui-lab.de AFM spin-orbit effects: spin-orbit torques

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

1. Chiral anomaly in Na 3 Bi and the half-heusler GdPtBi 2. Thermopower of Weyl fermions 3. Prelim results on nonsymmorphic semimetal KHgSb

1. Chiral anomaly in Na 3 Bi and the half-heusler GdPtBi 2. Thermopower of Weyl fermions 3. Prelim results on nonsymmorphic semimetal KHgSb Workshop Topological Quantum Matter, KITP-UCSB Oct. 2016 The chiral anomaly in Dirac and Weyl Semimetals Jun Xiong Kushwaha Tian Liang Jason Krizan Hirschberger Zhijun Wang Quinn Gibson Cano Bradlyn S.H.

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Spin-orbit driven ferromagnetic resonance: A nanoscale magnetic characterisation technique. Abstract

Spin-orbit driven ferromagnetic resonance: A nanoscale magnetic characterisation technique. Abstract Spin-orbit driven ferromagnetic resonance: A nanoscale magnetic characterisation technique D. Fang, 1 H. Kurebayashi, 1 J. Wunderlich, 2,3 K. Výborný, 3 L. P. Zârbo, 3 arxiv:1012.2397v1 [cond-mat.mes-hall]

More information

Band Topology Theory and Topological Materials Prediction

Band Topology Theory and Topological Materials Prediction Band Topology Theory and Topological Materials Prediction Hongming Weng ( 翁红明 ) Institute of Physics,! Chinese Academy of Sciences Dec. 19-23@IOP, CAS, Beijing 2016 Nobel Prize in Physics TKNN number Haldane

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 2 Today s Topics 2.1 Anomalous Hall effect and spin Hall effect 2.2 Spin Hall effect measurements 2.3 Interface effects Anomalous Hall

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University See also talks online by Tokura, Tchernyshyov Magnetic skyrmions Rembert Duine with Marianne Knoester (UU) Jairo Sinova (Texas A&M, Mainz) ArXiv 1310.2850 Institute for Theoretical Physics Utrecht University

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Weyl fermions and the Anomalous Hall Effect

Weyl fermions and the Anomalous Hall Effect Weyl fermions and the Anomalous Hall Effect Anton Burkov CAP congress, Montreal, May 29, 2013 Outline Introduction: Weyl fermions in condensed matter, Weyl semimetals. Anomalous Hall Effect in ferromagnets

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

A Dirac nodal line metal for topological antiferromagnetic spintronics

A Dirac nodal line metal for topological antiferromagnetic spintronics A Dirac nodal line metal for topological antiferromagnetic spintronics Ding-Fu Shao, 1,* Gautam Gurung, 1 Shu-Hui Zhang, 2 and Evgeny Y. Tsymbal 1, 1 Department of Physics and Astronomy & Nebraska Center

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Spin Hall effect and related issues. Dept of Physics Taiwan Normal Univ. Ming-Che Chang

Spin Hall effect and related issues. Dept of Physics Taiwan Normal Univ. Ming-Che Chang Spin Hall effect and related issues Dept of Physics Taiwan Normal Univ. Ming-Che Chang Basic spin interactions in semiconductors (Dyakonov, cond-mat/0401369) spin-orbit interaction required for optical

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators

Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators K. Kondou 1*, R. Yoshimi 2, A. Tsukazaki 3, Y. Fukuma 1,4, J. Matsuno 1, K. S. Takahashi 1, M. Kawasaki

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA) 2013.10.24 Spintronics 2013 @ KITP, UCSB Interfacial spin-orbit coupling and chirality Hyun-Woo Lee (POSTECH, KOREA) COLLABORATORS Kyoung-Whan Kim Postech, Korea Kyung-Jin Lee Korea Univ., Korea Mark Stiles

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Spin Current and Spin Seebeck Effect

Spin Current and Spin Seebeck Effect at Rome, Italy (September 18, 2013) Spin Current and Spin Seebeck Effect Sadamichi Maekawa Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA) at Tokai and CREST-JST. Co-workers:

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

THz electrical writing speed in an antiferromagnetic memory

THz electrical writing speed in an antiferromagnetic memory arxiv:1711.08444v1 [physics.app-ph] 24 Oct 2017 THz electrical writing speed in an antiferromagnetic memory K. Olejník, 1,# T. Seifert, 2 Z. Kašpar, 1,3 V. Novák, 1 P. Wadley, 4 R. P. Campion, 4 M. Baumgartner,

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Matching domain wall configuration and spin-orbit torques for very efficient domain-wall motion

Matching domain wall configuration and spin-orbit torques for very efficient domain-wall motion Matching domain wall configuration and spin-orbit torques for very efficient domain-wall motion A.V. Khvalkovskiy 1, V. Cros 2, D. Apalkov 1, V. Nikitin 1, M. Krounbi 1, K.A. Zvezdin 3, A. Anane 2, J.

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) :Syllabus: 1. Introductory description 2. Elliott-Yafet spin relaxation and spin hot spots 3.

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Spin torque control of antiferromagnetic moments in NiO

Spin torque control of antiferromagnetic moments in NiO Spin torque control of antiferromagnetic moments in NiO Takahiro Moriyama 1,2, Kent Oda 1, and Teruo Ono 1,2 1 Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan 2 Center for

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Yuanyuan Li 1, Y. F. Cao 1, G. N. Wei 1, Yanyong Li 1, Y. i and K. Y. Wang 1,* 1 SKLSM, Institute of Semiconductors,

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Quantitative Mappings from Symmetry to Topology

Quantitative Mappings from Symmetry to Topology Z. Song, Z. Fang and CF, PRL 119, 246402 (2017) CF and L. Fu, arxiv:1709.01929 Z. Song, T. Zhang, Z. Fang and CF arxiv:1711.11049 Z. Song, T. Zhang and CF arxiv:1711.11050 Quantitative Mappings from Symmetry

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Physics and applications (I)

Physics and applications (I) Spintronics: Physics and applications (I) Malek Zareyan IPM, 15 TiR 1387 1 Very weak magnetic changes give rise to major differences in resistance in a GMR system (.( ١٩٨٨ GMR has made possible miniaturizing

More information

Weyl semi-metal: a New Topological State in Condensed Matter

Weyl semi-metal: a New Topological State in Condensed Matter Weyl semi-metal: a New Topological State in Condensed Matter Sergey Savrasov Department of Physics, University of California, Davis Xiangang Wan Nanjing University Ari Turner and Ashvin Vishwanath UC Berkeley

More information

arxiv: v1 [cond-mat.mes-hall] 7 May 2018

arxiv: v1 [cond-mat.mes-hall] 7 May 2018 Mixed topological semimetals and orbital magnetism in two-dimensional spin-orbit ferromagnets Chengwang Niu, 1, Jan-Philipp Hanke, 2, Patrick M. Buhl, 1 Hongbin Zhang, 3 Lukasz Plucinski, 4 Daniel Wortmann,

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

arxiv: v2 [cond-mat.mtrl-sci] 4 Jan 2018

arxiv: v2 [cond-mat.mtrl-sci] 4 Jan 2018 Weyl Fermions in antiferromagnetic Mn Sn and Mn Ge Jürgen Kübler 1 and Claudia Felser 2 1 Technische Universität Darmstadt, Germany and 2 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information