No-drag frame for anomalous chiral fluid

Size: px
Start display at page:

Download "No-drag frame for anomalous chiral fluid"

Transcription

1 No-drag frame for anomalous chiral fluid M. Stephanov University of Illinois at Chicago M. Stephanov (UIC) No-drag frame UCLA / 15

2 Based on arxiv: with Ho-Ung Yee. M. Stephanov (UIC) No-drag frame UCLA / 15

3 Hydrodynamic transport Two kinds of transport in a normal fluid: convective (ideal, reversible) and dissipative (irreversible). Non-convective fluxes of charge and energy-momentum J µ nu µ + J µ diff T µν wu µ u ν + pg µν + T µν heat + T µν visc generate entropy/heat (fluid relaxes to equilibrium) T ( S) 0 + (J µ diff )2 + (T µν heat )2 + (T µν visc )2 M. Stephanov (UIC) No-drag frame UCLA / 15

4 Hydrodynamic transport Two kinds of transport in a normal fluid: convective (ideal, reversible) and dissipative (irreversible). Non-convective fluxes of charge and energy-momentum J µ nu µ + J µ diff T µν wu µ u ν + pg µν + T µν heat + T µν visc generate entropy/heat (fluid relaxes to equilibrium) T ( S) 0 + (J µ diff )2 + (T µν heat )2 + (T µν visc )2 in addition to contributing to entropy/heat transport T S µ = T su µ + µj µ diff + u νt µν heat M. Stephanov (UIC) No-drag frame UCLA / 15

5 CME/CVE equilibrium, non-dissipative transport The CME and CVE non-convective transport of charge energy and entropy (heat) J µ nu µ + J µ anom; T µν wu µ u ν + pg µν + T µν anom; S µ = su µ + S µ anom; which does not generate entropy/heat ( S) = M. Stephanov (UIC) No-drag frame UCLA / 15

6 CME/CVE equilibrium, non-dissipative transport The CME and CVE non-convective transport of charge energy and entropy (heat) J µ nu µ + J µ anom; T µν wu µ u ν + pg µν + T µν anom; S µ = su µ + S µ anom; which does not generate entropy/heat ( S) = How do we separate convective and anomalous flows? M. Stephanov (UIC) No-drag frame UCLA / 15

7 Fluxes are frame dependent J µ anom = ξ Jω ω µ + ξ JB B µ, T µν anom = (ξ T ω ω µ + ξ T B B µ )u ν + (µ ν), S µ anom = ξ Sω ω µ + ξ SB B µ. The coefficients ξ depend on the definition of u µ (comoving frame). leads, for example, to u µ u µ + α ω ω µ + α B B µ, ξ Jω ξ Jω nα ω ; ξ JB ξ JB nα B ; M. Stephanov (UIC) No-drag frame UCLA / 15

8 Fluxes are frame dependent J µ anom = ξ Jω ω µ + ξ JB B µ, T µν anom = (ξ T ω ω µ + ξ T B B µ )u ν + (µ ν), S µ anom = ξ Sω ω µ + ξ SB B µ. The coefficients ξ depend on the definition of u µ (comoving frame). leads, for example, to u µ u µ + α ω ω µ + α B B µ, ξ Jω ξ Jω nα ω ; ξ JB ξ JB nα B ; We can choose comov. frame where, e.g., J µ anom vanishes, or T µν anom or S µ anom. How do we separate convective fluxes from CVE/CME? M. Stephanov (UIC) No-drag frame UCLA / 15

9 For example, one natural choice π i T 0i = 0 (Landau, liquid at rest) ( ξ JB = C µ n µ2 + O(T 2 ) ) ; ξ T B 0. Son-Surowka 2w M. Stephanov (UIC) No-drag frame UCLA / 15

10 For example, one natural choice π i T 0i = 0 (Landau, liquid at rest) ( ξ JB = C µ n µ2 + O(T 2 ) ) ; ξ T B 0. Son-Surowka 2w but weak coupling (HTL or CKT) calculation says ξ JB = Cµ; ξ T B = 1 2 Cµ X BT 2 M. Stephanov (UIC) No-drag frame UCLA / 15

11 For example, one natural choice π i T 0i = 0 (Landau, liquid at rest) ( ξ JB = C µ n µ2 + O(T 2 ) ) ; ξ T B 0. Son-Surowka 2w but weak coupling (HTL or CKT) calculation says ξ JB = Cµ; ξ T B = 1 2 Cµ X BT 2 The fluid as a whole is not at rest in this calculational frame. What is special about that frame? Which frame is more natural. M. Stephanov (UIC) No-drag frame UCLA / 15

12 Hydrodynamics with drag Consider hydrodynamic description of the force on a test impurity, or obstacle (e.g., heavy quark): µ T µν = F νλ J λ F ν ; µ J µ = CE B. M. Stephanov (UIC) No-drag frame UCLA / 15

13 Hydrodynamics with drag Consider hydrodynamic description of the force on a test impurity, or obstacle (e.g., heavy quark): µ T µν = F νλ J λ F ν ; µ J µ = CE B. F 0 = 0 in the rest frame U of the obstacle (no work): U F = 0 (For a heavy quark, P 2 = M 2 0 = d(p P ) = MU Fdτ.) M. Stephanov (UIC) No-drag frame UCLA / 15

14 Hydrodynamics with drag Consider hydrodynamic description of the force on a test impurity, or obstacle (e.g., heavy quark): µ T µν = F νλ J λ F ν ; µ J µ = CE B. F 0 = 0 in the rest frame U of the obstacle (no work): U F = 0 (For a heavy quark, P 2 = M 2 0 = d(p P ) = MU Fdτ.) Does the second law S 0 impose constraints on F? M. Stephanov (UIC) No-drag frame UCLA / 15

15 Second law constraints Anomaly introduces 4 new terms into S: E B, E ω, B and ω. They must vanish independently. This gives 4 conditions: ξ JB µc = K B n/w, ξ Jω 2(T ξ SB + µξ JB ξ T B ) = K ω n/w; T dξ SB + µdξ JB dξ T B = K B dp/w; T dξ Sω + µdξ Jω dξ T ω = K ω dp/w; with K ω 2T ξ Sω + 2µξ Jω 3ξ T ω ; K B T ξ SB + µξ JB 2ξ T B. Two gauge degrees of freedom due to u µ u µ + α ω ω µ + α B B µ. If we fix them also (choose frame), all 6 coefficients ξ are fixed. M. Stephanov (UIC) No-drag frame UCLA / 15

16 Entropy production from drag The only remaining term: ( T ( S) = u K ) ωω + K B B F w M. Stephanov (UIC) No-drag frame UCLA / 15

17 Entropy production from drag The only remaining term: ( T ( S) = u K ) ωω + K B B F ū F w For any choice of u there is a special velocity (frame) ( ū u K ) ωω + K B B w M. Stephanov (UIC) No-drag frame UCLA / 15

18 Entropy production from drag The only remaining term: ( T ( S) = u K ) ωω + K B B F ū F w For any choice of u there is a special velocity (frame) ( ū u K ) ωω + K B B w If the particle moves with the same velocity, i.e., ū = U, then T ( S) = U F = 0. I.e. ū is the no-drag frame. It is invariant w.r.t. u µ u µ + α ω ω µ + α B B µ : K i K i + wα i M. Stephanov (UIC) No-drag frame UCLA / 15

19 No-drag frame We can thus choose u = ū (whence K i = 0) to simplify discussion. The condition U F = 0 is satisfied by F µ = λ F (u µ + U µ (u U)) M. Stephanov (UIC) No-drag frame UCLA / 15

20 No-drag frame We can thus choose u = ū (whence K i = 0) to simplify discussion. The condition U F = 0 is satisfied by F µ = λ F (u µ + U µ (u U)) Thus entropy/heat production: T ( S) = u F = λ F ((u U) 2 1) 0 requires λ F 0. In non-relativistic limit, U (1, V ) and u (1, v): F λ F (v V ) and u F λ F (v V ) 2. M. Stephanov (UIC) No-drag frame UCLA / 15

21 Anomalous coefficients in the no-drag frame The coefficients are now fixed up to 2 integration consts X B and X ω. ξ SB = X B T ξ Sω = 2X B µt + X ω T 2 ξ JB = Cµ ξ Jω = Cµ 2 + X B T 2 ξ T B = 1 2 Cµ X BT 2 ξ T ω = 2 3 Cµ3 + 2X B µt X ωt 3 Remarkable: All coefficients are polynomial in the no-drag frame. Entropy flow is not zero! No-drag frame is not entropy frame. M. Stephanov (UIC) No-drag frame UCLA / 15

22 Is anomalous flow like superfluid flow? Two fluid model of Landau (constrained by second law) J µ nu µ + J µ super; J µ super = v 2 ψ µ, ψ µ = µ φ + A µ, T µν wu µ u ν + pg µν + T µν super; T µν super = v 2 ψ µ ψ ν, S µ = T su µ + 0. (entropy frame) M. Stephanov (UIC) No-drag frame UCLA / 15

23 Is anomalous flow like superfluid flow? Two fluid model of Landau (constrained by second law) J µ nu µ + J µ super; J µ super = v 2 ψ µ, ψ µ = µ φ + A µ, T µν wu µ u ν + pg µν + T µν super; T µν super = v 2 ψ µ ψ ν, S µ = T su µ + 0. (entropy frame) The superfluid flow does not contribute to dissipation: T ( S) = M. Stephanov (UIC) No-drag frame UCLA / 15

24 Is anomalous flow like superfluid flow? Two fluid model of Landau (constrained by second law) J µ nu µ + J µ super; J µ super = v 2 ψ µ, ψ µ = µ φ + A µ, T µν wu µ u ν + pg µν + T µν super; T µν super = v 2 ψ µ ψ ν, S µ = T su µ + 0. (entropy frame) The superfluid flow does not contribute to dissipation: T ( S) = With drag: in the entropy frame T ( S) = u F. I.e., the entropy frame is the no-drag frame. There is no superfluid entropy current! M. Stephanov (UIC) No-drag frame UCLA / 15

25 The coefficient X B is proportional to mixed gauge-gravity anomaly. ξ SB a = X a BT ξ Sω = 2X a Bµ a T M. Stephanov (UIC) No-drag frame UCLA / 15

26 The coefficient X B is proportional to mixed gauge-gravity anomaly. ξ SB a = X a BT ξ Sω = 2X a Bµ a T Vanishes for any physical gauge field in the Standard Model. ξ SB = 0 due to anomaly cancellation. I.e., CME, like the superfluid flow, does not carry entropy. M. Stephanov (UIC) No-drag frame UCLA / 15

27 The coefficient X B is proportional to mixed gauge-gravity anomaly. ξ SB a = X a BT ξ Sω = 2X a Bµ a T Vanishes for any physical gauge field in the Standard Model. ξ SB = 0 due to anomaly cancellation. I.e., CME, like the superfluid flow, does not carry entropy. Example: Rajagopal-Sadofyev AdS/CFT calculation of CME drag: no drag no entropy flow. M. Stephanov (UIC) No-drag frame UCLA / 15

28 The coefficient X B is proportional to mixed gauge-gravity anomaly. ξ SB a = X a BT ξ Sω = 2X a Bµ a T Vanishes for any physical gauge field in the Standard Model. ξ SB = 0 due to anomaly cancellation. I.e., CME, like the superfluid flow, does not carry entropy. Example: Rajagopal-Sadofyev AdS/CFT calculation of CME drag: no drag no entropy flow. But if µ is not a dynamical gauge field (e.g., U(1) A in QCD), ξ Sω 0 is OK. Example: Chen et al CVE from CKT with collisions ξ Sω = 1 6 µt. M. Stephanov (UIC) No-drag frame UCLA / 15

29 CME/CVE drag on a heavy quark Rajagopal-Sadofyev M. Stephanov (UIC) No-drag frame UCLA / 15

30 CME/CVE drag on a heavy quark Rajagopal-Sadofyev Energy flow due to CME/CVE π anom = ξ T B B + ξ T ω ω 0 M. Stephanov (UIC) No-drag frame UCLA / 15

31 CME/CVE drag on a heavy quark Rajagopal-Sadofyev Energy flow due to CME/CVE π anom = ξ T B B + ξ T ω ω 0 But momentum density (= energy flow) cannot be changed by B π = wv + π anom = 0 Thus v = ξ T BB + ξ T ω ω w M. Stephanov (UIC) No-drag frame UCLA / 15

32 CME/CVE drag on a heavy quark Rajagopal-Sadofyev Energy flow due to CME/CVE π anom = ξ T B B + ξ T ω ω 0 But momentum density (= energy flow) cannot be changed by B π = wv + π anom = 0 Thus v = ξ T BB + ξ T ω ω w The drag force: F = λ F (v V ). M. Stephanov (UIC) No-drag frame UCLA / 15

33 CME/CVE drag on a heavy quark Rajagopal-Sadofyev Energy flow due to CME/CVE π anom = ξ T B B + ξ T ω ω 0 But momentum density (= energy flow) cannot be changed by B π = wv + π anom = 0 Entropy flow s = sv + ξ Sω ω Thus v = ξ T BB + ξ T ω ω w The drag force: F = λ F (v V ). M. Stephanov (UIC) No-drag frame UCLA / 15

34 Summary/Conclusions Hydrodynamics with drag is nontrivially constrained by the second law of thermodynamics. No-drag frame allows conceptually clean separation between convective and anomalous flows. simplifies the expression for the force: F = λ F (v V ); the (frame-dependent) coefficients ξ are polynomials of T and µ. CME is similar to superfluid no entropy flux, but for a non-trivial reason gauge-gravity anomaly cancellation. CVE can carry entropy without drag, unlike superfluid. M. Stephanov (UIC) No-drag frame UCLA / 15

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

Constraints on Fluid Dynamics From Equilibrium Partition Func

Constraints on Fluid Dynamics From Equilibrium Partition Func Constraints on Fluid Dynamics From Equilibrium Partition Function Nabamita Banerjee Nikhef, Amsterdam LPTENS, Paris 1203.3544, 1206.6499 J. Bhattacharya, S. Jain, S. Bhattacharyya, S. Minwalla, T. Sharma,

More information

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016)

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Hydrodynamics and quantum anomalies Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Plan of the talk Hydrodynamics Anomalies Gauge/gravity duality Hydrodynamics with anomalies (a

More information

Drag Force in a Chiral Plasma

Drag Force in a Chiral Plasma Drag Force in a Chiral Plasma A.V. Sadofyev MI January 23, 2015 A.V. Sadofyev (MI)Drag Force in a Chiral Plasma January 23, 2015 1 / 13 Probe string As it was argued a long time ago 1 one could calculate

More information

Chiral Magnetic and Vortical Effects at Weak Coupling

Chiral Magnetic and Vortical Effects at Weak Coupling Chiral Magnetic and Vortical Effects at Weak Coupling University of Illinois at Chicago and RIKEN-BNL Research Center June 19, 2014 XQCD 2014 Stonybrook University, June 19-20, 2014 Chiral Magnetic and

More information

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN)

Chiral kinetic theory and magnetic effect. Yoshimasa Hidaka (RIKEN) Chiral kinetic theory and magnetic effect Yoshimasa Hidaka (RIKEN) What is chiral kinetic theory? Relativistic Boltzmann equation (v µ @ µ + v µ F µ @ p )f = C[f] widely used in plasma physics Transport

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

Gauge/Gravity Duality and Strongly Coupled Matter. Johanna Erdmenger. Max Planck-Institut für Physik, München

Gauge/Gravity Duality and Strongly Coupled Matter. Johanna Erdmenger. Max Planck-Institut für Physik, München .. Gauge/Gravity Duality and Strongly Coupled Matter Johanna Erdmenger Max Planck-Institut für Physik, München 1 Motivation Matter under Extreme Conditions Strongly Coupled Matter Motivation Matter under

More information

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography ` Kalaydzhyan, I.K., PRL 106 (2011) 211601, Gahramanov, Kalaydzhyan, I.K. (PRD (2012)) Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography Ingo Kirsch DESY Hamburg, Germany Based on work with

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Chirality and Macroscopic Helicities

Chirality and Macroscopic Helicities Chirality and Macroscopic Helicities Andrey V. Sadofyev MIT UCLA, March, 2017 Andrey V. Sadofyev (MIT) Chirality and Macroscopic Helicities UCLA, March, 2017 1 / 29 Introduction µ ψγ µ γ 5 ψ = 1 2π 2E

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Chiral kinetic theory

Chiral kinetic theory Chiral kinetic theory. 1/12 Chiral kinetic theory M. Stehanov U. of Illinois at Chicago with Yi Yin Chiral kinetic theory. 2/12 Motivation Interesting alications of chiral magnetic/vortical effect involve

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Chiral magnetic effect and anomalous transport from real-time lattice simulations Chiral magnetic effect and anomalous transport from real-time lattice simulations Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

On the effective action in hydrodynamics

On the effective action in hydrodynamics On the effective action in hydrodynamics Pavel Kovtun, University of Victoria arxiv: 1502.03076 August 2015, Seattle Outline Introduction Effective action: Phenomenology Effective action: Bottom-up Effective

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Adiabatic Hydrodynamics and the Eightfold Way to Dissipation

Adiabatic Hydrodynamics and the Eightfold Way to Dissipation Adiabatic Hydrodynamics and the Eightfold Way to Dissipation Felix Haehl (Durham University & PI) Perimeter Institute 12 November 2015 FH, R. Loganayagam, M. Rangamani [1412.1090], [1502.00636], (see also

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Off-equilibrium Non-Gaussian Cumulants: criticality, complexity, and universality

Off-equilibrium Non-Gaussian Cumulants: criticality, complexity, and universality Off-equilibrium Non-Gaussian Cumulants: criticality, complexity, and universality Swagato Mukherjee SM, R. Venugopalan, Y. Yin: arxiv:1605.09341 & arxiv:1506.00645 June 2016, Wroclaw hope: observe something

More information

Hydrodynamics of fluids with spin

Hydrodynamics of fluids with spin Francesco Becattini, University of Florence Hydrodynamics of fluids with spin F. B., F. Piccinini, Ann. Phys. 323, 2452 (2008). F.B., L. Tinti, arxiv:0911.0864, to appear (hopefully soon) in Ann. Phys.

More information

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev QCD Chirality 2017, UCLA, March 27-30, 2017 CME Theory: what next? D. Kharzeev 1 Many new theoretical and experimental developments since QCD Chirality 2016 Excellent talks at this Workshop demonstrate

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

arxiv: v1 [nucl-th] 3 Oct 2018

arxiv: v1 [nucl-th] 3 Oct 2018 Fluid dynamics for relativistic spin-polarized media Wojciech Florkowski arxiv:1810.01709v1 [nucl-th] 3 Oct 2018 Institute of Nuclear Physics, PL-31342 Kraków, Poland Jan Kochanowski University, PL-25406

More information

Probing QCD Matter with QED Fields

Probing QCD Matter with QED Fields XQCD2014, Stony Brook, June 21, 2014 Probing QCD Matter with QED Fields Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center Research Supported by NSF Outline * Brief Introduction

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

QCD critical point, fluctuations and hydrodynamics

QCD critical point, fluctuations and hydrodynamics QCD critical point, fluctuations and hydrodynamics M. Stephanov M. Stephanov QCD critical point, fluctuations and hydro Oxford 2017 1 / 32 History Cagniard de la Tour (1822): discovered continuos transition

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

AdS/CFT and Second Order Viscous Hydrodynamics

AdS/CFT and Second Order Viscous Hydrodynamics AdS/CFT and Second Order Viscous Hydrodynamics Micha l P. Heller Institute of Physics Jagiellonian University, Cracow Cracow School of Theoretical Physics XLVII Course Zakopane, 20.06.2007 Based on [hep-th/0703243]

More information

Transport Properties in Magnetic Field

Transport Properties in Magnetic Field University of Illinois at Chicago/ RIKEN-BNL Research Center The Phases of Dense Matter, July 11-Aug 12 INT, July 28, 2016 The magnetic field in heavy-ion collisions In heavy-ion collisions, two magnetic

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

Relativistic hydrodynamics for heavy-ion physics

Relativistic hydrodynamics for heavy-ion physics heavy-ion physics Universität Heidelberg June 27, 2014 1 / 26 Collision time line 2 / 26 3 / 26 4 / 26 Space-time diagram proper time: τ = t 2 z 2 space-time rapidity η s : t = τ cosh(η s ) z = τ sinh(η

More information

Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae Sin(APCTP) and Yumi Ko(APCTP)

Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae Sin(APCTP) and Yumi Ko(APCTP) 09-18 April 2012 Third Year of APCTP-WCU Focus program From dense matter to compact stars in QCD and in hqcd,apctp, Pohang, Korea Kyung Kiu Kim(Kyung-Hee University, CQUeST) With Youngman Kim(APCTP), Ik-jae

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Fluctuations and the QCD Critical Point

Fluctuations and the QCD Critical Point Fluctuations and the QCD Critical Point M. Stephanov UIC M. Stephanov (UIC) Fluctuations and the QCD Critical Point Weizmann 2017 1 / 15 Outline 1 QCD phase diagram, critical point and fluctuations Critical

More information

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

How to build a holographic liquid crystal? Piotr Surówka Vrije Universiteit Brussel

How to build a holographic liquid crystal? Piotr Surówka Vrije Universiteit Brussel How to build a holographic liquid crystal? Piotr Surówka Vrije Universiteit Brussel Euler Symposium On Theoretical And Mathematical Physics, St. Petersburg 17.07.2013 Motivation Hydrodynamics is an effective

More information

Fundamental equations of relativistic fluid dynamics

Fundamental equations of relativistic fluid dynamics CHAPTER VI Fundamental equations of relativistic fluid dynamics When the energy density becomes large as may happen for instance in compact astrophysical objects, in the early Universe, or in high-energy

More information

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25

Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: , /25 2017 8 28 30 @ Collaborators: Aleksas Mazeliauskas (Heidelberg) & Derek Teaney (Stony Brook) Refs: 1606.07742, 1708.05657 1/25 1. Introduction 2/25 Ultra-relativistic heavy-ion collisions and the Bjorken

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Building a holographic liquid crystal

Building a holographic liquid crystal Building a holographic liquid crystal Piotr Surówka Vrije Universiteit Brussel Ongoing work with R. Rahman and G. Compère Gauge/Gravity Duality, Munich, 01.08.2013 Motivation Hydrodynamics is an effective

More information

arxiv: v1 [nucl-th] 7 Dec 2016

arxiv: v1 [nucl-th] 7 Dec 2016 Study of chiral vortical and magnetic effects in the anomalous transport model Yifeng Sun 1, and Che Ming Ko 1, 1 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

Effective Field Theory of Dissipative Fluids

Effective Field Theory of Dissipative Fluids Effective Field Theory of Dissipative Fluids Hong Liu Paolo Glorioso Michael Crossley arxiv: 1511.03646 Conserved quantities Consider a long wavelength disturbance of a system in thermal equilibrium non-conserved

More information

Shock waves in strongly coupled plasmas

Shock waves in strongly coupled plasmas Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arxiv:1004.3803 (S. Khlebnikov, G. Michalogiorgakis, M.K.) Q uantum G ravity in the Southern Cone V, Buenos A ires,2010

More information

Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy Current Outlook. The Entropy Current. Yaron Oz (Tel-Aviv University)

Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy Current Outlook. The Entropy Current. Yaron Oz (Tel-Aviv University) The Entropy Current Yaron Oz (Tel-Aviv University) International Symposium Ahrenshoop on the Theory of Elementary Particles 2012 Outline Principles of Hydrodynamics Fluid/Gravity Correspondence The Entropy

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Previous lecture: Elementary excitations above condensate are phonons in the low energy limit. This lecture Rotation of superfluid helium. Hess-Fairbank effect and persistent currents

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram

Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram Kibble-Zurek dynamics and off-equilibrium scaling of critical cumulants in the QCD phase diagram Raju Venugopalan BNL/Heidelberg arxiv:1310.1600 [cond-mat.stat-mech] Heidelberg Seminar, June 8 th, 2016

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

Classical-statistical simulations and the Chiral Magnetic Effect

Classical-statistical simulations and the Chiral Magnetic Effect Classical-statistical simulations and the Chiral Magnetic Effect Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji, R. Venugopalan

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Relativistic Acoustic Geometry

Relativistic Acoustic Geometry Relativistic Acoustic Geometry arxiv:gr-qc/9908002v1 31 Jul 1999 February 7, 2008 Neven Bilić Rudjer Bošković Institute, 10001 Zagreb, Croatia E-mail: bilic@thphys.irb.hr February 7, 2008 Abstract Sound

More information

Termodynamics and Transport in Improved Holographic QCD

Termodynamics and Transport in Improved Holographic QCD Termodynamics and Transport in Improved Holographic QCD p. 1 Termodynamics and Transport in Improved Holographic QCD Francesco Nitti APC, U. Paris VII Large N @ Swansea July 07 2009 Work with E. Kiritsis,

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution QGP life time 10 fm/c 3 10-23

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam)

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam) The holographic approach to critical points Johannes Oberreuter (University of Amsterdam) Scale invariance power spectrum of CMB P s (k) / k n s 1 Lambda archive WMAP We need to understand critical points!

More information

Quark matter under strong magnetic fields

Quark matter under strong magnetic fields Quark matter under strong magnetic fields Mei Huang Theoretical Physics Division Institute of High Energy Physics, CAS Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions, UCLA, Mar.27-29,2017

More information

Phase diagram of QCD: the critical point

Phase diagram of QCD: the critical point Phase diagram of QCD: the critical point p. 1/1 Phase diagram of QCD: the critical point M. Stephanov U. of Illinois at Chicago Phase diagram of QCD: the critical point p. 2/1 Phase Diagram of QCD Basic

More information

Recent lessons about hydrodynamics from holography

Recent lessons about hydrodynamics from holography Recent lessons about hydrodynamics from holography Michał P. Heller m.p.heller@uva.nl University of Amsterdam, The Netherlands & National Centre for Nuclear Research, Poland (on leave) based on 03.3452

More information

Non-equilibrium mixtures of gases: modeling and computation

Non-equilibrium mixtures of gases: modeling and computation Non-equilibrium mixtures of gases: modeling and computation Lecture 1: and kinetic theory of gases Srboljub Simić University of Novi Sad, Serbia Aim and outline of the course Aim of the course To present

More information

Introduction to Relativistic Hydrodynamics

Introduction to Relativistic Hydrodynamics Introduction to Relativistic Hydrodynamics Heavy Ion Collisions and Hydrodynamics modified from B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011), http://www.physics.mcgill.ca/ schenke/,

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

QCD and a Holographic Model of Hadrons

QCD and a Holographic Model of Hadrons QCD and a Holographic Model of Hadrons M. Stephanov U. of Illinois at Chicago AdS/QCD p.1/18 Motivation and plan Large N c : planar diagrams dominate resonances are infinitely narrow Effective theory in

More information

Relativistic distribution function of particles with spin at local thermodynamical equilibrium (Cooper Frye with spin)

Relativistic distribution function of particles with spin at local thermodynamical equilibrium (Cooper Frye with spin) Francesco Becattini, University of Florence and FIAS Franfkurt Relativistic distribution function of particles with spin at local thermodynamical equilibrium (Cooper Frye with spin) F. B., V. Chandra,

More information

Autonomous Underwater Vehicles: Equations of Motion

Autonomous Underwater Vehicles: Equations of Motion Autonomous Underwater Vehicles: Equations of Motion Monique Chyba - November 18, 2015 Departments of Mathematics, University of Hawai i at Mānoa Elective in Robotics 2015/2016 - Control of Unmanned Vehicles

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas

Hydrodynamics in the Dirac fluid in graphene. Andrew Lucas Hydrodynamics in the Dirac fluid in graphene Andrew Lucas Stanford Physics Fluid flows from graphene to planet atmospheres; Simons Center for Geometry and Physics March 20, 2017 Collaborators 2 Subir Sachdev

More information

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Infrared Propagators and Confinement: a Perspective from Lattice Simulations Infrared Propagators and Confinement: a Perspective from Lattice Simulations Tereza Mendes University of São Paulo & DESY-Zeuthen Work in collaboration with Attilio Cucchieri Summary Lattice studies of

More information

Department of Physics

Department of Physics Department of Physics Early time dynamics in heavy ion collisions from AdS/CFT correspondence Anastasios Taliotis taliotis.1@osu.edu based on work done with Yuri Kovchegov arxiv: 0705.1234[hep-ph] The

More information

From Critical Phenomena to Holographic Duality in Quantum Matter

From Critical Phenomena to Holographic Duality in Quantum Matter From Critical Phenomena to Holographic Duality in Quantum Matter Joe Bhaseen TSCM Group King s College London 2013 Arnold Sommerfeld School Gauge-Gravity Duality and Condensed Matter Physics Arnold Sommerfeld

More information

Pulsar glitch dynamics in general relativity

Pulsar glitch dynamics in general relativity Pulsar glitch dynamics in general relativity Jérôme Novak (jerome.novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel &

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

QCD quasi-particle model with widths and Landau damping

QCD quasi-particle model with widths and Landau damping QCD quasi-particle model with widths and Landau damping R. Schulze collaborators: M. Bluhm, D. Seipt, B. Kämpfer 13.03.2007 R. Schulze (TU Dresden) QCD QP model with widths 13.03.2007 1 / 19 Motivation

More information

Meson-Nucleon Coupling. Nobuhito Maru

Meson-Nucleon Coupling. Nobuhito Maru Meson-Nucleon Coupling from AdS/QCD Nobuhito Maru (Chuo Univ.) with Motoi Tachibana (Saga Univ.) arxiv:94.3816 (Accepted in in EPJC) 7/9/9 workshop@yitp Plan 1: Introduction : Meson sector (review) 3:

More information

Geometric responses of Quantum Hall systems

Geometric responses of Quantum Hall systems Geometric responses of Quantum Hall systems Alexander Abanov December 14, 2015 Cologne Geometric Aspects of the Quantum Hall Effect Fractional Quantum Hall state exotic fluid Two-dimensional electron gas

More information

arxiv:nucl-th/ v2 2 Dec 2003

arxiv:nucl-th/ v2 2 Dec 2003 Causal Theories of Dissipative Relativistic Fluid Dynamics for Nuclear Collisions. Azwinndini Muronga School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA (February

More information