The Definition of Differentiation

Size: px
Start display at page:

Download "The Definition of Differentiation"

Transcription

1 CALCULO DIFERENCIAL UNIVERSIDAD LIBRE FACULTAD DE INGENIEIRA DEPARTAMENTO DE CIENCIAS BASICAS LECTURAS EN INGLES The Definition of Differentiation The essence of calculus is the derivative. The derivative is the instantaneous rate of change of a function with respect to one of its variables. This is equivalent to finding the slope of the tangent line to the function at a point. Let's use the view of derivatives as tangents to motivate a geometric definition of the derivative. We want to find the slope of the tangent line to a graph at the point P. We can approximate the slope by drawing a line through the point P and another point nearby, and then finding the slope of that line, called a secant line. The slope of a line is determined using the following formula (m represents slope) : Let P = (x,y) and Q := (a,b). Let Then the slope of the line

2 Now, we chose an arbitrary interval to be Delta-x. How does the size of Delta-x affect our estimate of the slope of the tangent line? The smaller Delta-x is, the more accurate this approximation is. There is a wonderful animation of this by Douglas Arnold. Look at it here. You can see on the left of the animation how Delta-x decreases, causing the secant line the approach the tangent, where it zooms in on the right. Another animation of this (also from Douglas Arnold) is here. What we want to do is decrease the size of Delta-x as much as possible. We do this by taking the limit as Delta-x approaches zero. In the limit, assuming the limit exists, we will find the exact slope of the tangent line to the curve at the given point. This value is the derivative; There are a few different, but equivalent, versions of this definition. In more general considerations, h is often used in place of Delta-x. Or Delta-y is used in place of This leads to three commonly used ways of expressing the definition of the derivative:

3 The Notation of Differentiation Suggested Prerequesites: The definition of the derivative Often the most confusing thing for a student introduced to differentiation is the notation associated with it. Here an attempt will be made to introduce as many types of notation as possible. A derivative is always the derivative of a function with respect to a variable. When we write the definition of the derivative as we mean the derivative of the function f(x) with respect to the variable x. One type of notation for derivatives is sometimes called prime notation. The function f (x), which would be read ``f-prime of x'', means the derivative of f(x) with respect to x. If we say y = f(x), then y (read ``y-prime'') = f (x). This is even sometimes taken as far as to write things such as, for y = x 4 + 3x (for example), y = (x 4 + 3x). Higher order derivatives in prime notation are represented by increasing the number of primes. For example, the second derivative of y with respect to x would be written as

4 Beyond the second or third derivative, all those primes get messy, so often the order of the derivative is instead writen as a roman superscript in parenthesis, so that the ninth derivative of f(x) with respect to x is written as f (9) (x) or f (ix) (x). A second type of notation for derivatives is sometimes called operator notation. The operator D x is applied to a function in order to perform differentiation. Then, the derivative of f(x) = y with respect to x can be written as D x y (read ``D -- sub -- x of y'') or as D x f(x (read ``D -- sub x -- of -- f(x)''). Higher order derivatives are written by adding a superscript to D x, so that, for example the third derivative of y = (x 2 +sin(x)) with respect to x would be written as Another commonly used notation was developed by Leibnitz and is accordingly called Leibnitz notation. With this notation, if y = f(x), then the derivative of y with respect to x can be written as (his is read as ``dy -- dx'', but not ``dy minus dx'' or sometimes ``dy over dx''). Since y = f(x), we can also write This notation suggests that perhaps derivatives can be treated like fractions, which is true in limited ways in some circumstances. (For example with the chain rule.) This is also called differential notation, where dy and dx are differentials. This notation becomes very useful when dealing with differential equations. A variation of Leibnitz's differential notation is written instead as

5 which resembles the above operator notation, with (d/dx as the operator). Higher order derivatives using leibnitz notation can be written as The exponents may seem to be in strange places in the second form, but it makes sense if you look at the first form. So, those are the most commonly used notations for differentiation. It's possible that there exist other, obscure notations used by a some, but these obscure forms won't be included here. It's helpful to be familiar with the different notations. When is a function differentiable? Suggested Prerequesites: The definition of the derivative, Continuity A function is differentiable when the definition of differention can be applied in a meaningful manner to it. When would this definition not apply? It would not apply when the limit does not exist. Then, we want to look at the conditions for the limits to exist. Back to the Calculus page Back to the World Web Math top page

6 Last modified August 24, 1998 Teacher: Martha Liliana Orozco

7

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function

Slide 1. Slide 2. Slide 3 Remark is a new function derived from called derivative. 2.2 The derivative as a Function Slide 1 2.2 The derivative as a Function Slide 2 Recall: The derivative of a function number : at a fixed Definition (Derivative of ) For any number, the derivative of is Slide 3 Remark is a new function

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over, The Derivative of a Function Measuring Rates of Change of a function y f(x) f(x 0 ) P Q Secant line x 0 x x Average rate of change of with respect to over, " " " " - Slope of secant line through, and,

More information

= first derivative evaluated at that point: ( )

= first derivative evaluated at that point: ( ) Calculus 130, section 5.1-5. Functions: Increasing, Decreasing, Extrema notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! First, a quick scan of what we know

More information

Chapter 2 Overview: Introduction to Limits and Derivatives

Chapter 2 Overview: Introduction to Limits and Derivatives Chapter 2 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically. While the algebra of this process

More information

Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section:

Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section: Section 2.1: The Derivative and the Tangent Line Problem Goals for this Section: Find the slope of the tangent line to a curve at a point. Day 1 Use the limit definition to find the derivative of a function.

More information

Math Boot Camp Functions and Algebra

Math Boot Camp Functions and Algebra Fall 017 Math Boot Camp Functions and Algebra FUNCTIONS Much of mathematics relies on functions, the pairing (relation) of one object (typically a real number) with another object (typically a real number).

More information

6.2 Their Derivatives

6.2 Their Derivatives Exponential Functions and 6.2 Their Derivatives Copyright Cengage Learning. All rights reserved. Exponential Functions and Their Derivatives The function f(x) = 2 x is called an exponential function because

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

MATH 116, LECTURE 13, 14 & 15: Derivatives

MATH 116, LECTURE 13, 14 & 15: Derivatives MATH 116, LECTURE 13, 14 & 15: Derivatives 1 Formal Definition of the Derivative We have seen plenty of limits so far, but very few applications. In particular, we have seen very few functions for which

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

Tuesday, Feb 12. These slides will cover the following. [cos(x)] = sin(x) 1 d. 2 higher-order derivatives. 3 tangent line problems

Tuesday, Feb 12. These slides will cover the following. [cos(x)] = sin(x) 1 d. 2 higher-order derivatives. 3 tangent line problems Tuesday, Feb 12 These slides will cover the following. 1 d dx [cos(x)] = sin(x) 2 higher-order derivatives 3 tangent line problems 4 basic differential equations Proof First we will go over the following

More information

Chapter 5: Limits and Derivatives

Chapter 5: Limits and Derivatives Chapter 5: Limits and Derivatives Chapter 5 Overview: Introduction to Limits and Derivatives In a later chapter, maximum and minimum points of a curve will be found both by calculator and algebraically.

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

AP CALCULUS BC 2009 SCORING GUIDELINES

AP CALCULUS BC 2009 SCORING GUIDELINES AP CALCULUS BC 2009 SCORING GUIDELINES Question 5 x 2 5 8 1 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points

More information

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods.

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach DEFINITION: As x approaches

More information

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards 4.1 The Derivative Recall: For the slope of a line we need two points (x 1,y 1 ) and (x 2,y 2 ). Then the slope is given by the formula: m = y x = y 2 y 1 x 2 x 1 On a curve we can find the slope of a

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Partial Derivatives Philippe B Laval KSU March 21, 2012 Philippe B Laval (KSU) Functions of Several Variables March 21, 2012 1 / 19 Introduction In this section we extend

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2 LIMITS AND DERIVATIVES LIMITS AND DERIVATIVES 1. Equation In Section 2.7, we considered the derivative of a function f at a fixed number a: f '( a) lim h 0 f ( a h) f ( a) h In this section, we change

More information

AVERAGE VALUE AND MEAN VALUE THEOREM

AVERAGE VALUE AND MEAN VALUE THEOREM AVERAGE VALUE AND MEAN VALUE THEOREM Section 4.4A Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 3:00 AM 4.4A: Average Value and Mean Value Theorem 1 MATERIALS NEEDED A. Grid Paper B. Compass

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

2.8 Linear Approximations and Differentials

2.8 Linear Approximations and Differentials Arkansas Tech University MATH 294: Calculus I Dr. Marcel B. Finan 2.8 Linear Approximations and Differentials In this section we approximate graphs by tangent lines which we refer to as tangent line approximations.

More information

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam This outcomes list summarizes what skills and knowledge you should have reviewed and/or acquired during this entire quarter in Math 121, and what

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M.

Chapter 12: Differentiation. SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Chapter 12: Differentiation SSMth2: Basic Calculus Science and Technology, Engineering and Mathematics (STEM) Strands Mr. Migo M. Mendoza Chapter 12: Differentiation Lecture 12.1: The Derivative Lecture

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

Student Session Topic: Average and Instantaneous Rates of Change

Student Session Topic: Average and Instantaneous Rates of Change Student Session Topic: Average and Instantaneous Rates of Change The concepts of average rates of change and instantaneous rates of change are the building blocks of differential calculus. The AP exams

More information

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University

Introduction. Math Calculus 1 section 2.1 and 2.2. Julian Chan. Department of Mathematics Weber State University Math 1210 Calculus 1 section 2.1 and 2.2 Julian Chan Department of Mathematics Weber State University 2013 Objectives Objectives: to tangent lines to limits What is velocity and how to obtain it from the

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m)

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m) 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

Determining Average and Instantaneous Rates of Change

Determining Average and Instantaneous Rates of Change MHF 4UI Unit 9 Day 1 Determining Average and Instantaneous Rates of Change From Data: During the 1997 World Championships in Athens, Greece, Maurice Greene and Donovan Bailey ran a 100 m race. The graph

More information

2.4 Rates of Change and Tangent Lines Pages 87-93

2.4 Rates of Change and Tangent Lines Pages 87-93 2.4 Rates of Change and Tangent Lines Pages 87-93 Average rate of change the amount of change divided by the time it takes. EXAMPLE 1 Finding Average Rate of Change Page 87 Find the average rate of change

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Average rates of change to instantaneous rates of change Math 102 Section 106

Average rates of change to instantaneous rates of change Math 102 Section 106 Average rates of change to instantaneous rates of change Math 102 Section 106 Cole Zmurchok September 14, 2016 Math 102: Announcements Office Hours today: 3-4 pm Math Annex 1118 and Thursday: 3-4 pm in

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Topics: Announcements - section 2.6 (limits at infinity [skip Precise Definitions (middle of pg. 134 end of section)]) - sections 2.1 and 2.7 (rates of change, the derivative) - section 2.8 (the derivative

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

Review for Chapter 2 Test

Review for Chapter 2 Test Review for Chapter 2 Test This test will cover Chapter (sections 2.1-2.7) Know how to do the following: Use a graph of a function to find the limit (as well as left and right hand limits) Use a calculator

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Math 142 (Summer 2018) Business Calculus 5.8 Notes

Math 142 (Summer 2018) Business Calculus 5.8 Notes Math 142 (Summer 2018) Business Calculus 5.8 Notes Implicit Differentiation and Related Rates Why? We have learned how to take derivatives of functions, and we have seen many applications of this. However

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

Limits, Rates of Change, and Tangent Lines

Limits, Rates of Change, and Tangent Lines Limits, Rates of Change, and Tangent Lines jensenrj July 2, 2018 Contents 1 What is Calculus? 1 2 Velocity 2 2.1 Average Velocity......................... 3 2.2 Instantaneous Velocity......................

More information

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement)

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement) l Hǒpital s Rule and Limits of Riemann Sums Textbook Supplement The 0/0 Indeterminate Form and l Hǒpital s Rule Some weeks back, we already encountered a fundamental 0/0 indeterminate form, namely the

More information

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates.

Implicit Differentiation, Related Rates. Goals: Introduce implicit differentiation. Study problems involving related rates. Unit #5 : Implicit Differentiation, Related Rates Goals: Introduce implicit differentiation. Study problems involving related rates. Tangent Lines to Relations - Implicit Differentiation - 1 Implicit Differentiation

More information

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x)

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x) Handout 5, Summer 204 Math 823-7 29 May 204. Consider the following table of values: x f(x) g(x) f (x) g (x) 3 4 8 4 3 4 2 9 8 8 3 9 4 Let h(x) = (f g)(x) and l(x) = g(f(x)). Compute h (3), h (4), l (8),

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Goals: Develop natural language interpretations of the derivative Create and use linearization/tangent line formulae Describe marginal

More information

2.1 Tangent Lines and Rates of Change

2.1 Tangent Lines and Rates of Change .1 Tangent Lines and Rates of Change Learning Objectives A student will be able to: Demonstrate an understanding of the slope of the tangent line to the graph. Demonstrate an understanding of the instantaneous

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

2.2 The Derivative Function

2.2 The Derivative Function 2.2 The Derivative Function Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan Recall that a function f is differentiable at x if the following it exists f f(x + h) f(x) (x) =. (2.2.1)

More information

CHAPTER 2. The Derivative

CHAPTER 2. The Derivative CHAPTER The Derivative Section.1 Tangent Lines and Rates of Change Suggested Time Allocation: 1 to 1 1 lectures Slides Available on the Instructor Companion Site for this Text: Figures.1.1,.1.,.1.7,.1.11

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

Tvestlanka Karagyozova University of Connecticut

Tvestlanka Karagyozova University of Connecticut September, 005 CALCULUS REVIEW Tvestlanka Karagyozova University of Connecticut. FUNCTIONS.. Definition: A function f is a rule that associates each value of one variable with one and only one value of

More information

2.1 How Do We Measure Speed? Student Notes HH6ed

2.1 How Do We Measure Speed? Student Notes HH6ed 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

STEM-Prep Pathway SLOs

STEM-Prep Pathway SLOs STEM-Prep Pathway SLOs Background: The STEM-Prep subgroup of the MMPT adopts a variation of the student learning outcomes for STEM from the courses Reasoning with Functions I and Reasoning with Functions

More information

Chapter 3 Derivatives

Chapter 3 Derivatives Chapter Derivatives Section 1 Derivative of a Function What you ll learn about The meaning of differentiable Different ways of denoting the derivative of a function Graphing y = f (x) given the graph of

More information

Algebra II: Strand 2. Linear Functions; Topic 2. Slope and Rate of Change; Task 2.2.1

Algebra II: Strand 2. Linear Functions; Topic 2. Slope and Rate of Change; Task 2.2.1 1 TASK 2.2.1: AVERAGE RATES OF CHANGE Solutions One of the ways in which we describe functions is by whether they are increasing, decreasing, or constant on an interval in their domain. If the graph of

More information

Differentiation. Timur Musin. October 10, University of Freiburg 1 / 54

Differentiation. Timur Musin. October 10, University of Freiburg 1 / 54 Timur Musin University of Freiburg October 10, 2014 1 / 54 1 Limit of a Function 2 2 / 54 Literature A. C. Chiang and K. Wainwright, Fundamental methods of mathematical economics, Irwin/McGraw-Hill, Boston,

More information

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda (afreda@deerfield.edu) ) Limits a) Newton s Idea of a Limit Perhaps it may be objected, that there is no ultimate proportion of

More information

Why write proofs? Why not just test and repeat enough examples to confirm a theory?

Why write proofs? Why not just test and repeat enough examples to confirm a theory? P R E F A C E T O T H E S T U D E N T Welcome to the study of mathematical reasoning. The authors know that many students approach this material with some apprehension and uncertainty. Some students feel

More information

Warm-Up. g x. g x in the previous (current) ( ) ( ) Graph the function that agreed with. problem.

Warm-Up. g x. g x in the previous (current) ( ) ( ) Graph the function that agreed with. problem. Warm-Up ELM: Coordinate Geometry & Graphing Review: Algebra 1 (Standard 16.0) Given: f (x) = x 2 + 3x 5 Find the following function values and write the associated ordered pair: The figure above shows

More information

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Calculus Review Session Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Topics to be covered 1. Functions and Continuity 2. Solving Systems of Equations 3. Derivatives (one

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

Lecture 5 - Logarithms, Slope of a Function, Derivatives

Lecture 5 - Logarithms, Slope of a Function, Derivatives Lecture 5 - Logarithms, Slope of a Function, Derivatives 5. Logarithms Note the graph of e x This graph passes the horizontal line test, so f(x) = e x is one-to-one and therefore has an inverse function.

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Math 134 Exam 2 November 5, 2009

Math 134 Exam 2 November 5, 2009 Math 134 Exam 2 November 5, 2009 Name: Score: / 80 = % 1. (24 Points) (a) (8 Points) Find the slope of the tangent line to the curve y = 9 x2 5 x 2 at the point when x = 2. To compute this derivative we

More information

WEEK 7 NOTES AND EXERCISES

WEEK 7 NOTES AND EXERCISES WEEK 7 NOTES AND EXERCISES RATES OF CHANGE (STRAIGHT LINES) Rates of change are very important in mathematics. Take for example the speed of a car. It is a measure of how far the car travels over a certain

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES MATH90 CALCULUS - NOTES AND AFTERNOTES DR. JOSIP DERADO. Historical background Newton approach - from physics to calculus. Instantaneous velocity. Leibniz approach - from geometry to calculus Calculus

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f.

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f. Math 1410 Worksheet #27: Section 4.9 Name: Our final application of derivatives is a prelude to what will come in later chapters. In many situations, it will be necessary to find a way to reverse the differentiation

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions Math 0: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 30 Homework 4 Solutions Please write neatly, and show all work. Caution: An answer with no work is wrong! Problem A. Use Weierstrass (ɛ,δ)-definition

More information