Observation and control of ultrafast quantum interferences in atoms Béatrice Chatel

Size: px
Start display at page:

Download "Observation and control of ultrafast quantum interferences in atoms Béatrice Chatel"

Transcription

1 Observation and control of ultrafast quantum interferences in atoms Béatrice Chatel 1

2 Control using quantum paths interferences Following the wave function during the interaction.. Following and controlling the spin orbit precession : Towards non Franck-Condon transition Quantum interferences in a two-photon transition : Towards factorisation scheme

3 Control using quantum paths interferences τ Following the wave function during the interaction.. Following and controlling the spin orbit precession : Towards non Franck-Condon transition τ Quantum interferences in a two-photon transition : Towards factorisation scheme Our tools 3

4 Our tools: ultrashort pulses and pulse shaper i E() t = E() t e ϕ () t F F f f f f -1 i ( ) E ( ω) = E ( ω) e φ ω Linear passive Filter G1 L1 X M( X) L G E () E t ES () t γ E ( ω) = H( ω) E ( ω) S with i ( ) H( ω) = A( ω) e φ ω E E S ( ω) = M ( f γ ω) E E ( ω) Weiner, A.M., RSI, 71, (5),

5 Our high resolution pulse shaper Phase/Amplitude control over 640 pixels. shaping window of 35 ps. high complexity. high amplitude dynamic (30 db). 75 % power transmission. A. Monmayrant, B. Chatel. "A new phase and amplitude High Resolution Pulse Shaper." Rev. Sci. Inst. 75, 668 (004) 5

6 Observation and control of ultrafast quantum interferences in atoms Following the wave function during the interaction 6

7 Coherent transients : principle ω Fourier limited pulse t φ( ω ) = 0 ω Chirped pulse () φ τ 0 () φ φ( ω) = ( ω ωeg ) t P () t = a () t e e ( ) E ω eg P () t = a () t e e τ 0 Et () E() t τ c t (fs) eg a ( τ ) Et () e dt e τ iω t t (fs) N. V. Vitanov et al., PRA (59), 988 (1999). 7

8 Control of the CT t 1 t Perturbative solution of the Schrödinger equation 6p-5s Fluorescence (a.u.) φ " τ c 0ps on resonance Φ = fs Delay (ps) Observation of Coherent Transients in Rb vapor S. Zamith et al., PRL 87, (001). 8

9 CT Theory: Cornu Spiral P a e() t e (t) ² = ae() t Time Im(a (t)) e Before resonance : Slow variation Passage through resonance: (stationary phase) After resonance: Oscillations φ τ 0 t Re(a e (t)) t ln t i τ φ c ae () t e e dt Quadratic phase 9

10 Control of CT: π jump Time-frequency correspondence ω ω j φjump ( ω) ω eg t eg t j t 10

11 Control of CT: π jump This has been done experimentally in the rubidium a e (t) (a.u.) δt = φ π-jump 0.6 nm from resonance Experiment: Normal transients Shaped transients Theory: Normal transients Shaped transients time(fs) J. Degert et al., PRL 89, (00). W. Wohlleben et al., APB 4 (79), 004. In collaboration with Motzkus s group (Garching MPQ) 11

12 Reconstruction of the atomic wave function No signal before resonance : no information on the first part of the spiral ω ω eg t eg t Im(a (t)) e P e (t) Re(a e (t)) 0.3 1

13 Reconstruction of the atomic wave function Change the excitation scheme : Add a new Fourier Limited pulse! The two pulses have to be separated. CT behavior will depend on the relative phase at resonance A) E ( t) + E ( t) 1 CT () t a () t + a () t A e1 e Im(a (t)) e B) a e E ( t) + i E ( t) 1 CT () t a () t + i. a () t B e1 e deduced from CT A and CT B Re(a e (t)) The atom excited by the first pulse acts as a local oscillator

14 Prerequisite: A probe, the reference pulse f a f ( τ ) e τ E pr () t with iω fet Epr( t) e + τ t iω egt ae() t E( t ) e e a t dt ( ) dt Fluo g E () t 1 E () t If the probe is short enough, then it is like a delta function. a ( τ ) a ( τ ) e f 14

15 Experimental Set-up 6d, 8s 5p P 1/ 5s τ 6p Rb Fluorescence (40 nm) Two level system: 5s-5p²P1/ in Rb Red pump: resonant and chirped Yellow probe: shorter than pump and CT dynamic Fluorescence is monitored as function of the pumpprobe delay Ti:Sa Oscillator O CPA 795 nm 1kHz 1 mj 130 fs ( ω) = ( ω) ( ω) E H E I Rb Rb PM NOPA 607 nm 1kHz 5 µj 0 fs 795 nm 1kHz E5 µjω Delay line () (1) φ H( ω) = 1+ exp iθ + iφ ( ω ωp) + i ( ω ωp) / τ EI ( ω) O ( ) 15

16 Experimental Results A) B) From CT to E ( t) + E ( t) 1 CT () t a () t + a () t A e1 e E ( t) + i E ( t) 1 CT () t a () t + i. a () t B e1 e Fluorescence (arb. units) CT A CT B τ (ps) By combination of the two CT 16

17 Experimental Temporal Evolution of a e (t) By combination of the two CT the evolution of the atomic wave function A. Monmayrant et al PRL 96, (006). A. Monmayrant, et al Opt. Commun. 64, (006). 17

18 Quantum state holography Principle (Leichtle, Schleich, Averbukh, Shapiro PRL 80 (1998)): Interference between a reference and an object quantum state. Several measurements at different delays provide reconstruction of the object state by numerically inverting the matrix of the cross term. Two experiments : - Vibrationnal wave packet measurement (Walmsley, Waxer J. Phys. B 31 (1998)) - Rydberg state wave packet measurement (Weinacht, Ahn, Bucksbaum, PRL 80, 5 (1998). Weinacht, Bucksbaum, Nature 397, 33 (1999). ) 18

19 Measuring the Quantum state Parameters : - number of levels -Timedelay - phase between the two states In the quantum holography method, the time resolution is used to obtain a nonsingular matrix. Walmsley, J. Phys. B 31 (1998) Atomic wave function during free evolution In our experiment we have just one levelsowekeepthetimeevolution. Weinacht, PRL 80, 5 (1998) Atomic quantum state during DRIVEN evolution 19

20 Quantum control using pathways interferences Following and controlling the spin orbit precession : Towards non Franck-Condon transition τ 0

21 Spin orbit precession and control Condition to observe interferences: The coupled and uncoupled states should have different probe probabilities Δ φ> φ1> Coupled Uncoupled state Δ Ψc>=Ω1 φ1> + Ω φ> Ψuc>=Ω φ1> Ω1 φ> g> g> 1

22 Spin-orbit precession in Rb Rb M 0, M = 1 M L 1, M = 1 L = S = S S 61 nm L = 1, S = 1 J L S L J 5p P 3/ P 1/ 790 nm FLUO ω 5s S 1/ L= 0, S = 1 S M L 0, M = 1 = S First observed in Potassium then in Rubidium S. Zamith et al, EPJD 1, 55 (000) E. Sokell, et al, JPB 33, 005 (000)

23 Spin-orbit precession in Rb Rb M 0, M = 1 M L 1, M = 1 L = S = S S 61 nm L = 1, S = 1 J L S L J 5p 790 nm P 3/ P 1/ FLUO PM (u.a) ω 5s S 1/ L= 0, S = S M L 0, M = 1 Delay (fs) = S First observed in Potassium then in Rubidium S. Zamith et al, EPJD 1, 55 (000) E. Sokell, et al, JPB 33, 005 (000) Is it possible to populate the uncoupled state first? 3

24 Spin orbit precession and control Changing the phase to have a pi-step between both levels. 3 3 Without pi-step Coupled Uncoupled fluorescence pop(a.u.) time(fs) With pi-step Coupled Uncoupled time(fs) pop (a.u.) The uncoupled state is first populated after the pulse time(fs) 4

25 Control using quantum paths interferences Quantum interferences in a two-photon transition : Towards factorisation scheme 5

26 Na ladder climbing : Excitation scheme φ < 0 5S 3, s hν 4P 3P3 / 3P 1/ 3P 3/ 3P1/ Ti:Sa Oscillator CPA 60 nm 3S 800 nm 1 khz 1mJ 130 fs PMT 605 nm, 30 fs width 5nm 10 µj NcOPA Fluorescence 330 nm SF58 rod Fixed chirp Dressed states Stretcher Variable chirp 5 S, hν hν Fluorescence observed as a function of chirp 6

27 Na (3s 3p 5s) at 605 nm Chatel et al, Phys. Rev. A 68, (003) Phys. Rev. A 70, (004) δ θ = 1 φδ Strong enhancement with small chirp 7

28 From two to multiple intermediate states W. Merkel, W. P. Schleich, I. Averbukh, B. Girard, et al, Int. J. Mod. Phys. B 0, (006). W. Merkel, I. S. Averbukh, B. Girard, G. G. Paulus and W. P. Schleich, Fortschr Phys. 54, (006). 8

29 Optical scheme in progress Several schemes in preparation. the simplest way : Sequence of equally spaced short pulses prepared with a pulse shaper Preliminary experiments to test the feasibility Other nice results obtain in NMR based also on pulses sequence NMR experiment factors numbers with Gauss sums M. Mehring, K. Muller, I. Sh. Averbukh, W. Merkel, and W. P. Schleich arxiv:quant-ph/ v1 Sep 006 Each term of the sum is realised by a RF pulse with the appropriate phase 9

30 Summary Observation of the atomic wave function during the light interaction 0.5 fluorescence Control of the spin orbit precession time(fs) Quantum paths interferences.factorisation using Gauss sums in optical schemes spectrum (a.u.) N=105 4 pulses l 30

31 Thank you for your attention The FEMTO group: Bertrand Girard (group leader, prof.) Valérie Blanchet (associate researcher) Béatrice Chatel (associate researcher) Elsa Baynard (Laser Engineer) Jean-Benoit Hamard (Post doc) Damien Bigourd (Postdoc) Antoine Monmayrant (PhD stud now post doc.) website: Funds : CNRS Univ. P. Sabatier, Région Midi-Pyrénées Fondation Del Duca, Ministère de la Recherche 31

32 THE LAB : a key point!!!! 3

activité University of Toulouse-CNRS Bertrand Girard

activité University of Toulouse-CNRS Bertrand Girard Wavepacket dynamics and interferences in atoms and molecules Laboratoire Collisions Agrégats gats RéactivitR activité University of Toulouse-CNRS Bertrand Girard Thanks to: Damien Bigourd (post-doc) Antoine

More information

Coherent control in Atoms with ultrashort laser pulses

Coherent control in Atoms with ultrashort laser pulses Coherent control in Atoms with ultrashort laser pulses Collaborations: Antoine Monmayrant Ludger Wöste, E. Schreiber (Berlin) Jean-Christophe Delagnes Marc Vrakking (Amsterdam) Jérôme Degert Noureddine

More information

Coherent Control of spin-orbit precession with shaped laser pulses

Coherent Control of spin-orbit precession with shaped laser pulses Coherent Control of spin-orbit precession with shaped laser pulses Béatrice Chatel, Damien Bigourd, Sébastien J. Weber, Bertrand Girard To cite this version: Béatrice Chatel, Damien Bigourd, Sébastien

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY

ULTRAFAST LASER CONTROL. Of IONIZATION. Fundamentals And Applications. Thomas Baumert. Institut fuer Physik der Universitaet Kassel, GERMANY ULTRAFAST LASER CONTROL Fundamentals And Applications Of IONIZATION Thomas Baumert Institut fuer Physik der Universitaet Kassel, GERMANY H. Baumann: first permanent Laser Sculpture / since Documenta 6

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Molecular alignment, wavepacket interference and Isotope separation

Molecular alignment, wavepacket interference and Isotope separation Molecular alignment, wavepacket interference and Isotope separation Sharly Fleischer, Ilya Averbukh and Yehiam Prior Chemical Physics, Weizmann Institute Yehiam.prior@weizmann.ac.il Frisno-8, Ein Bokek,

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Simultaneous Observation of transient and final State Dynamics in ultrafast strong-field Excitation via time-resolved Photoelectron Spectroscopy

Simultaneous Observation of transient and final State Dynamics in ultrafast strong-field Excitation via time-resolved Photoelectron Spectroscopy ARTICLE TEMPLATE Simultaneous Observation of transient and final State Dynamics in ultrafast strong-field Excitation via time-resolved Photoelectron Spectroscopy H. Braun a, T. Bayer b, D. Pengel b, M.

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o Strong Field Quantum Control CAMOS Spring Meeting 2012 o p Motivation & Outline Motivation: Want to control molecular dynamics and develop control based spectroscopy 1. Controlling Molecular Dissociation

More information

A model system for adaptive strong field control

A model system for adaptive strong field control A model system for adaptive strong field control M. Wollenhaupt, T. Bayer and T. Baumert Universität Kassel Institut für Physik Principle of adaptive control 2 Shaping light: full control over the light

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Dark pulses for resonant two-photon transitions

Dark pulses for resonant two-photon transitions PHYSICAL REVIEW A 74, 023408 2006 Dark pulses for resonant two-photon transitions P. Panek and A. Becker Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden,

More information

Theory of selective excitation in stimulated Raman scattering

Theory of selective excitation in stimulated Raman scattering Theory of selective excitation in stimulated Raman scattering S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman Michigan Center for Theoretical Physics, FOCUS Center, and Department of Physics, University

More information

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 1-fs Pulse S. Koshihara, K. Onda, Y. Matsubara, T. Ishikawa, Y. Okimoto, T. Hiramatsu, G. Saito,

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Coherent THz Pulses: Source and Science at the NSLS

Coherent THz Pulses: Source and Science at the NSLS Coherent THz Pulses: Source and Science at the NSLS H. Loos, B. Sheehy, D. Arena, J.B. Murphy, X.-J. Wang and G. L. Carr Brookhaven National Laboratory carr@bnl.gov http://www.nsls.bnl.gov http://infrared.nsls.bnl.gov

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Microjoule mode-locked oscillators: issues of stability and noise

Microjoule mode-locked oscillators: issues of stability and noise Microjoule mode-locked oscillators: issues of stability and noise Vladimir L. Kalashnikov Institut für Photonik, TU Wien, Gusshausstr. 7/387, A-14 Vienna, Austria Alexander Apolonski Department für Physik

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Supporting information Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Chavdar Slavov, Helvi Hartmann, Josef Wachtveitl Institute of Physical and Theoretical

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Spin resonance. Basic idea. PSC 3151, (301)

Spin resonance. Basic idea. PSC 3151, (301) Spin Resonance Phys623 Spring 2018 Prof. Ted Jacobson PSC 3151, (301)405-6020 jacobson@physics.umd.edu Spin resonance Spin resonance refers to the enhancement of a spin flipping probability in a magnetic

More information

Introduction to optimal control theory

Introduction to optimal control theory Introduction to optimal control theory Christiane P. Koch Laboratoire Aimé Cotton CNRS, France The Hebrew University Jerusalem, Israel Outline 0. Terminology 1. Intuitive control schemes and their experimental

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

Optical manipulation of valley pseudospin

Optical manipulation of valley pseudospin Optical manipulation of valley pseudospin Ziliang Ye, Dezheng Sun, and Tony F. Heinz Departments of Applied Physics and Photon Science, Stanford University, 348 Via Pueblo Mall, Stanford, CA 9435, USA

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Ultrafast physics II

Ultrafast physics II Chair for Laser and X-ray Physics E11 Prof. Reinhard Kienberger reinhard.kienberger@tum.de PD. Hristo Iglev hristo.iglev@ph.tum.de Dr. Wolfram Helml Wolfram.Helml@tum.de Ultrafast physics II SS 2018 Thursday,

More information

American Institute of Physics 319

American Institute of Physics 319 FEMTOSECOND RAMSEY FRINGES IN STRONGLY-DRIVEN RYDBERG SYSTEMS* R.R. Jones Physics Department, University of Virginia, Charlottesville, VA 22903 C.S. Raman, D.W. Schumacher, and P.H. Bucksbaum Physics Department,

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Experimental study of the 39 K g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy

Experimental study of the 39 K g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy THE JOURNAL OF CHEMICAL PHYSICS 122, 074302 2005 Experimental study of the 39 K 2 2 3 g state by perturbation facilitated infrared-infrared double resonance and two-photon excitation spectroscopy Yizhuo

More information

Supplementary information

Supplementary information Supplementary information Quantum coherence controls the charge separation in a prototypical organic photovoltaic system Carlo Andrea Rozzi, Sarah Maria Falke 2, Nicola Spallanzani,3, Angel Rubio 4,5,

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Lecture 6 Radiative Transition in Atoms, Molecules & Insulators/Semiconductors

Lecture 6 Radiative Transition in Atoms, Molecules & Insulators/Semiconductors Lecture 6 Radiative Transition in Atoms, Molecules & Insulators/Semiconductors Read: FQ 4, FS 3 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 6 (1/28/2016) Slide 1 Textbook

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Probing the Propagation Dynamics in a Femtosecond Laser Filament

Probing the Propagation Dynamics in a Femtosecond Laser Filament Probing the Propagation Dynamics in a Femtosecond Laser Filament Transient Grating XFROG Measurements of Filament Propagation Dynamics On the Mechanism of Negative Birefringence (Nonlinear Polarizability

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Strong-field quantum control of photon absorption of atomic sodium

Strong-field quantum control of photon absorption of atomic sodium Strong-field quantum control of + photon absorption of atomic sodium Sangkyung Lee, Jongseok Lim, Chang Yong Park, and Jaewook Ahn Department of Physics, KAIST, Daejeon 5-7, Korea Korea Research Institute

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Ionization of Rydberg atoms in Intense, Single-cycle THz field

Ionization of Rydberg atoms in Intense, Single-cycle THz field Ionization of Rydberg atoms in Intense, Single-cycle THz field 4 th year seminar of Sha Li Advisor: Bob Jones Dept. of Physics, Univ. of Virginia, Charlottesville, VA, 22904 April. 15 th, 2013 Outline

More information

Coherent interaction of femtosecond extreme-uv light with He atoms

Coherent interaction of femtosecond extreme-uv light with He atoms Coherent interaction of femtosecond extreme-uv light with He atoms Daniel Strasser, Thomas Pfeifer, Brian J. Hom, Astrid M. Müller, Jürgen Plenge, and Stephen R. Leone Departments of Chemistry and Physics,

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Direct measurement of spectral phase for ultrashort laser pulses

Direct measurement of spectral phase for ultrashort laser pulses Direct measurement of spectral phase for ultrashort laser pulses Vadim V. Lozovoy, 1 Bingwei Xu, 1 Yves Coello, 1 and Marcos Dantus 1,2,* 1 Department of Chemistry, Michigan State University 2 Department

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field Interference effects on the probe absorption in a driven three-level atomic system by a coherent pumping field V. Stancalie, O. Budriga, A. Mihailescu, V. Pais National Institute for Laser, Plasma and

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes PETAR LAMBREV PREAMBLE LASERS IN LIFE SCIENCE LASERS IN MEDICINE AND LIFE SCIENCE, SZEGED 2017 2 Preamble LASERS IN MEDICINE AND LIFE

More information

Beyond the Fourier equation: Quantum hyperbolic heat transport

Beyond the Fourier equation: Quantum hyperbolic heat transport arxiv:cond-mat/0304052v [cond-mat.mtrl-sci] 2 Apr 2003 Beyond the Fourier equation: Quantum hyperbolic heat transport Miroslaw Kozlowski Institute of Experimental Physics Warsaw University Hoża 69, 00-68

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons: Experience at FLASH AMO at FLASH FELs provide unique opportunities and challenges for AMO physics due to essentially three reasons: AMO at FLASH 1. huge integrated flux dilute samples Highly charged ions

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR.

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. DANIEL ROLLES PHYSICS DEPARTMENT 2018 REU KANSAS STATE UNIVERSITY MOTIVATION

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Terahertz polarization pulse shaping with arbitrary field control Masaaki Sato,2, Takuya Higuchi 2,3,4, Natsuki Kanda 2,3,5, Kuniaki Konishi 2,6, Kosuke Yoshioka 2,4, Takayuki

More information

Coherent Nonlinear Spectroscopy: From Femtosecond Dynamics to Control

Coherent Nonlinear Spectroscopy: From Femtosecond Dynamics to Control Coherent Nonlinear Spectroscopy: From Femtosecond Dynamics to Control Annu.rev.phys.chem., 52, 639 Marcos dantus ⅠIntroduction 1. History of breaking time resolution limit mid 1950 ; microsecond time resolution.

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Pump/Probe Experiments

Pump/Probe Experiments Cheiron School 2008 Pump/Probe Experiments T. Gejo (University of Hyogo) Today s Topics Univ. of Hyogo? Where is it? General aspects of pump/probe experiments Laser/Synchrotron pump/probe experiments FEL/Laser

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

Optimizing the time resolution of supercontinuum spectral interferometry

Optimizing the time resolution of supercontinuum spectral interferometry 1476 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America B Research Article Optimizing the time resolution of supercontinuum spectral interferometry J. K. WAHLSTRAND,* S. ZAHEDPOUR,

More information

Quantum model for Impulsive Stimulated Raman Scattering (ISRS)

Quantum model for Impulsive Stimulated Raman Scattering (ISRS) Quantum model for Impulsive Stimulated Raman Scattering (ISRS) University of Trieste Trieste Junior Quantum Days May 18, 2018 Outline Introduction 1 Introduction 2 3 4 5 INCEPT INhomogenieties and fluctuations

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

Coherence. Tsuneaki Miyahara, Japan Women s Univ.

Coherence. Tsuneaki Miyahara, Japan Women s Univ. Coherence Tsuneaki Miyahara, Japan Women s Univ. 1) Description of light in the phase space First-order spatial coherence: Experiments First order temporal coherence Description of light in the 6-dimensional

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer SHG Spectroscopy Clean surfaces Oxidation SOI wafer Scan regions Idler: 730-1050 nm 1000-1400 nm Signal: 680-550 nm Ti:Sapphire: 700-1000 nm 600-500 nm SHG set-up Bergfeld, Daum, PRL 90, 2915 SHG from

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing 106 J. Phys. Chem. A 1999, 103, 106-1036 Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing Igor Pastirk, Vadim V. Lozovoy, Bruna I. Grimberg,

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information