J. Sjöberg et al. (1995):Non-linear Black-Box Modeling in System Identification: a Unified Overview, Automatica, Vol. 31, 12, str

Size: px
Start display at page:

Download "J. Sjöberg et al. (1995):Non-linear Black-Box Modeling in System Identification: a Unified Overview, Automatica, Vol. 31, 12, str"

Transcription

1 Dynamic Systems Identification Part - Nonlinear systems Reference: J. Sjöberg et al. (995):Non-linear Black-Box Modeling in System Identification: a Unified Overview, Automatica, Vol. 3,, str Systems modelling from data

2 Nonlinear dynamic systems u(k) Static models Input/output data Interpolation or extrapolation Dynamic model Input/output data expanded with delayed input and output data Learning for one-stepahead prediction Validation for multi-stepahead prediction yˆ ( k ) = f ( yˆ( k ), yˆ( k ),..., u( k ),...) Z. Z - -n u(k-) u(k-n). Nonlinear model Gaussian Process Model ^ y(k-) ^ y(k) ^ y(k-n) Systems modelling from data Z Z. Z - -n y(k) ^

3 RBF network Example 7 I/O data, basis functions distributed randomly in operating area Original function Approksimation with basis functions Systems modelling from data 3

4 Experimental modelling ling of nonlinear systems 99s: ANN = nonlinear systems identification Rule: Do not estimate what you already know! white box model, grey box model (physical modelling, semi-physical modelling), black box model Nonlinear black-box box models: artificial neural networks, fuzzy models, wavelet models, etc. Systems modelling from data 4

5 Experimental modelling ling of nonlinear systems Used terms (system theory vs. ANN/Machine learning: estimate, identify = train, learn validate = generalize model structure = network estimation data, identification data = training set validation data = generalization set overfit = overtraining Systems modelling from data 5

6 Some practical concerns about nonlinear systems identification Identification procedure cannot/must not be fully automatised! Neccessary: S/W, I/O data. We need experience on similar identification cases. Computer simulations of similar cases. Systems modelling from data 6

7 Experimental modelling ling of nonlinear systems Nonlinear systems identification problem: y ( k) = g( u( k ), u( k ),..., y( k ), y( k ),...) + v( k) yˆ ( k θ ) = g ( ψ ( k ), θ ) ψ(t) ) = ve vector of regressors θ = vector of parameters subproblems Selection of regressors ψ(k) Selection of nonlinear mapping g(ϕ) Systems modelling from data 7

8 Regressors linear systems A( z ) y( z B( z ) C( z ) ) = u( z ) + e( z F ( z ) D ( z ) ) FIR (A=F=D=,C=) ARX (F=C=D=) OE (A=C=D=) ARMAX (F=D=) BJ (A=) State-space x k) Ax ( = ( k ) + Bu( k ) T yˆ( k) =θψ( k, θ) Systems modelling from data 8

9 Regressorssors nonlinear systems regressorssors ψ determine different models: NFIR: NARX: NOE: NARMAX: NBJ: State-space u ( k i ) u ( k i ), y ( k i ) u ( k i ), yˆ ( k i ) yˆ( k) = g( ψ( k), θ) u ( k i ), y ( k i ), ε ( k i ) = y ( k i ) yˆ ( k i ) u( k i), y( k i), ε ( k i), ε ( k i) = y( k n) yˆ ( k i) n n other possible regressors Systems modelling from data 9

10 Nonlinear mappings g( ψθ, ) = α g ( ψ) Fourier series (scalar case) g k (ψ) is a basis function Known structures: wavelet functions B splines ARTIFICIAL NEURAL NETWORKS Multilayer perceptron radial basis function network etc FUZZY MODELS k k Systems modelling from data

11 Forms of known structures: Neural networks with sigmoid activation function g σ β γ ( ψ) = ( ψ + ) k k k Radial basis function networks Fuzzy models g r β γ ( ψ) = ( ( ψ )) k k k = j j g( ψ) y ( µ ( ψ)) A γ - position β - direction scale Systems modelling from data

12 u(k) Multilayer networks Recurrent networks Z. Z - -n u(k-) u(k-n). Nonline ar Process Mode l y(k) ^ ϕ ( k) = g( ψ( k i), θ) Algorithms for estimation of parameters: ^ y(k-) ^ y(k) y(k-n) ^ Gauss-Newton algorithms are very efficient, Off-line identification, as well as on-line (recursive), Gradient optimisation methods time consuming. Z Z. - Z -n Systems modelling from data

13 Subproblems: Systematic selection of regressors u(k) - static nonlinearity u(k-i) u(k-i),y( ),y(k-i)... Selection of basis function Most of them are universal approximators There exist no exact criteria for basis function selection except subjective ones Radial functions for low number of regressors (e.g. wavelet function for max. 3 regressors) ridge functions for larger number of regressors (e.g. neural networks with sigmoid functions) Fuzzy models, where heuristic knowledge exsists. Models order (n+, Takan s theorem); Systems modelling from data 3

14 Measures of model quality Measure of model quality (example) V ( θ) = E y( t) g( ψ( t), θ) = λ + E g ( ψ( t)) g( ψ( t), θ) Three sources of differences with true system: noise e(t); ; variance λ=e(e (t)) bias V = E g t g t ˆ * ( θν, ψ( )) ( ψ( )) Variance of estimation V = λ dimθ N Systems modelling from data 4

15 There is always a limitation to model fit. Performance Bias Variance # parameters Systems modelling from data 5

16 Recommendatins for practice: Look at the data (detection of nonlinearity, time constants). Try simple things first (try simple structures and model orders first, at first linear models and small number of estimation parameters). Look into the physics (ideas for regressor ors). Validation and estimation data. Center and scale the data. The bias-variance trade-of off. f. The notion of efficient number of parameters (shrinking). Systems modelling from data 6

17 Sampling time selection (same rule as for linear systems). Sampling time should be selected to grasp all interesting process dynamics. Input signal selection (look at magnitude distribution and input/output distribution of the data).5 Input/output Vhodno /ihodni pairs pari podatkov of data y u Systems modelling from data 7

18 Model validation yˆ ( k) One-step-ahead prediction = g( y( k ), y( k ),... u( k ), u( k ),...) Simulation nnvalid yˆ ( k) = g( yˆ( k ), yˆ( k ),... u( k ), u( k ),...) nnsimul crossco hist Systems modelling from data 8

19 Model validation Validation of residuals for one-step-ahead Auto correlation function of prediction error prediction 8 Histogram of prediction errors lag Cross correlation fct of u and prediction error lag Systems modelling from data 9

20 Model validation yˆ ( k) yˆ ( k) The consistency of input/output response One-step-ahead prediction = g( y( k ), y( k ),... u( k ), u( k ),...) Simulation = g( yˆ( k ), yˆ( k ),... u( k ), u( k ),...) 3 Output (dashed) and simulated output (solid) time (samples) Systems modelling from data

21 Model validation Modela reduction (pruning) 4 Network after having pruned 59 weights 3 Model purposiveness or usefulness Systems modelling from data

22 Example of identification of st order system Mathematical model of the process with parameters ( 3 ) ( ) ( ) y( k) = y( k ).5tanh y k + u k u input signal y output signal Systems modelling from data

23 Nonlinearity of the system 4 ) y(k+) -4 y(k) -3 - u(k) 3 Systems modelling from data 3

24 Estimation signal and response Validation signal and response Input estimation signal Vhodni signal za identifikacijo Time Cas Odziv sistema Response za identifikacijo - Input validation signal Vhodni signal za vrednotenje Time Cas Time Cas Odziv sistema Response za vrednotenje Cas Systems modelling from data 4 Time

25 Histograms of magnitudes and input/output data 3 Estimation input signal histogram Porazdelitev amplitud na vhodnem signalu za identifikacijo 35 Validation input signal histogram Porazdelitev amplitud na vhodnem signalu za vrednotenje Amplituda signala Magnitude Amplituda signala Magnitude 4 y(k+) -4 y(k) Systems modelling from u(k) data 5

26 Neural network, regressors, structure and parameters Used software: NNSYSID Toolbox for Matlab Regressors: y(k-), u(k-) Structure: ARX (model error method) Optimisation method: Levenberg-Marquardt W = W = [ ] Systems modelling from data 6

27 Model validation (one-step-ahead prediction) 4 4 y(k+) y(k+) -4-4 y(k) -3 - u(k) 3 y(k) -3 - u(k) 3 Systems modelling from data 7

28 Validation of residuals (one-step-ahead prediction).5 napaka y(k) -3 - u(k) 3 Systems modelling from data 8

29 Model response and original system s response on validation data (simulation, not one-step-ahead prediction) Odziv sistema Simulation na signal za response vrednotenje - simulacija Systems modelling Time Cas from data 9

30 Residuals of simulated valdiation data 4 8 Porazdelitev pogreška Residuals Avtokorelacija autocorrelation izhodnega pogreška Cross-correlation between e and u Križna korelacija vhodnega signala in izhodnega pogreška Tau [s] Tau [s] Systems modelling from data 3

31 Examination assignment Select a discrete nonlinear system of the st order, identify it and make a written report. The report should contain the following items: mathematical model of the original system with all parameters; Simulation scheme or Matlab code that enables rerun of data acquisition (no masks); Show the nonlinearity of the system in 3D plot; Estimation signal and response, sampling time; Validation signal and response, sampling time; Systems modelling from data 3

32 Histograms of magnitudes and input/output data pairs; Type of neural network and optimisation method; Figure of the final network structure; Values of parameters (weights); Figure of comparison between original system simulation response and model simulation response on validation signal. Simulation residuals validation on validation data (the figure of residuals, residuals histogram, φee, φue ). Eksperiments should be repeatable based on your report only. Reports should not be longer than 6 pages. Systems modelling from data 3

Chapter 4 Neural Networks in System Identification

Chapter 4 Neural Networks in System Identification Chapter 4 Neural Networks in System Identification Gábor HORVÁTH Department of Measurement and Information Systems Budapest University of Technology and Economics Magyar tudósok körútja 2, 52 Budapest,

More information

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET Identification of Linear and Nonlinear Dynamical Systems Theme : Nonlinear Models Grey-box models Division of Automatic Control Linköping University Sweden General Aspects Let Z t denote all available

More information

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Nonlinear System Identification Given a data set Z N = {y(k),

More information

Learning strategies for neuronal nets - the backpropagation algorithm

Learning strategies for neuronal nets - the backpropagation algorithm Learning strategies for neuronal nets - the backpropagation algorithm In contrast to the NNs with thresholds we handled until now NNs are the NNs with non-linear activation functions f(x). The most common

More information

Identification of ARX, OE, FIR models with the least squares method

Identification of ARX, OE, FIR models with the least squares method Identification of ARX, OE, FIR models with the least squares method CHEM-E7145 Advanced Process Control Methods Lecture 2 Contents Identification of ARX model with the least squares minimizing the equation

More information

Designing Dynamic Neural Network for Non-Linear System Identification

Designing Dynamic Neural Network for Non-Linear System Identification Designing Dynamic Neural Network for Non-Linear System Identification Chandradeo Prasad Assistant Professor, Department of CSE, RGIT,Koderma Abstract : System identification deals with many subtleties

More information

Control Systems Lab - SC4070 System Identification and Linearization

Control Systems Lab - SC4070 System Identification and Linearization Control Systems Lab - SC4070 System Identification and Linearization Dr. Manuel Mazo Jr. Delft Center for Systems and Control (TU Delft) m.mazo@tudelft.nl Tel.:015-2788131 TU Delft, February 13, 2015 (slides

More information

Data Driven Modelling for Complex Systems

Data Driven Modelling for Complex Systems Data Driven Modelling for Complex Systems Dr Hua-Liang (Leon) Wei Senior Lecturer in System Identification and Data Analytics Head of Dynamic Modelling, Data Mining & Decision Making (3DM) Lab Complex

More information

NONLINEAR GAS TURBINE MODELING USING FEEDFORWARD NEURAL NETWORKS. Neophytos Chiras, Ceri Evans and David Rees

NONLINEAR GAS TURBINE MODELING USING FEEDFORWARD NEURAL NETWORKS. Neophytos Chiras, Ceri Evans and David Rees Proceedings of ASME TURBO EXPO 22 June 3-6, 22, Amsterdam, The etherlands GT-22-335 OLIEAR GAS TURBIE MODELIG USIG FEEDFORWARD EURAL ETWORKS eophytos Chiras, Ceri Evans and David Rees University of Glamorgan,

More information

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz In Neurocomputing 2(-3): 279-294 (998). A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models Isabelle Rivals and Léon Personnaz Laboratoire d'électronique,

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

Using Neural Networks for Identification and Control of Systems

Using Neural Networks for Identification and Control of Systems Using Neural Networks for Identification and Control of Systems Jhonatam Cordeiro Department of Industrial and Systems Engineering North Carolina A&T State University, Greensboro, NC 27411 jcrodrig@aggies.ncat.edu

More information

NONLINEAR PLANT IDENTIFICATION BY WAVELETS

NONLINEAR PLANT IDENTIFICATION BY WAVELETS NONLINEAR PLANT IDENTIFICATION BY WAVELETS Edison Righeto UNESP Ilha Solteira, Department of Mathematics, Av. Brasil 56, 5385000, Ilha Solteira, SP, Brazil righeto@fqm.feis.unesp.br Luiz Henrique M. Grassi

More information

Analysis of Fast Input Selection: Application in Time Series Prediction

Analysis of Fast Input Selection: Application in Time Series Prediction Analysis of Fast Input Selection: Application in Time Series Prediction Jarkko Tikka, Amaury Lendasse, and Jaakko Hollmén Helsinki University of Technology, Laboratory of Computer and Information Science,

More information

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS Karima Amoura Patrice Wira and Said Djennoune Laboratoire CCSP Université Mouloud Mammeri Tizi Ouzou Algeria Laboratoire MIPS Université

More information

USING WAVELET NEURAL NETWORK FOR THE IDENTIFICATION OF A BUILDING STRUCTURE FROM EXPERIMENTAL DATA

USING WAVELET NEURAL NETWORK FOR THE IDENTIFICATION OF A BUILDING STRUCTURE FROM EXPERIMENTAL DATA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 241 USING WAVELET NEURAL NETWORK FOR THE IDENTIFICATION OF A BUILDING STRUCTURE FROM EXPERIMENTAL DATA

More information

2 Chapter 1 A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics.

2 Chapter 1 A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. 1 SOME ASPECTS O OLIEAR BLACK-BOX MODELIG I SYSTEM IDETIFICATIO Lennart Ljung Dept of Electrical Engineering, Linkoping University, Sweden, ljung@isy.liu.se 1 ITRODUCTIO The key problem in system identication

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads

Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads Journal of Ecological Engineering Received: 2017.10.02 Accepted: 2017.10.28 Published: 2018.01.01 Volume 19, Issue 1, January 2018, pages 113 121 https://doi.org/10.12911/22998993/79411 Comparative Application

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature

Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature Support Vector Regression (SVR) Descriptions of SVR in this discussion follow that in Refs. (2, 6, 7, 8, 9). The literature suggests the design variables should be normalized to a range of [-1,1] or [0,1].

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 9 - Parameter estimation in linear models Model structures Parameter estimation via prediction error minimization Properties of the estimate: bias and variance

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Professor Q.J. Zhang Department of Electronics Carleton University, Ottawa, Canada www.doe.carleton.ca/~qjz, qjz@doe.carleton.ca A Quick Illustration

More information

Neuro-Fuzzy Comp. Ch. 4 March 24, R p

Neuro-Fuzzy Comp. Ch. 4 March 24, R p 4 Feedforward Multilayer Neural Networks part I Feedforward multilayer neural networks (introduced in sec 17) with supervised error correcting learning are used to approximate (synthesise) a non-linear

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. VI - Identification of NARMAX and Related Models - Stephen A. Billings and Daniel Coca

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. VI - Identification of NARMAX and Related Models - Stephen A. Billings and Daniel Coca IDENTIFICATION OF NARMAX AND RELATED MODELS Stephen Department of Automatic Control and Systems Engineering, University of Sheffield, UK Keywords: Activation function, Artificial neural network, Correlation

More information

Chapter 2 System Identification with GP Models

Chapter 2 System Identification with GP Models Chapter 2 System Identification with GP Models In this chapter, the framework for system identification with GP models is explained. After the description of the identification problem, the explanation

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Eung Je Woo Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea ejwoo@khu.ac.kr Neuron and Neuron Model McCulloch and Pitts

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Input Selection for Long-Term Prediction of Time Series

Input Selection for Long-Term Prediction of Time Series Input Selection for Long-Term Prediction of Time Series Jarkko Tikka, Jaakko Hollmén, and Amaury Lendasse Helsinki University of Technology, Laboratory of Computer and Information Science, P.O. Box 54,

More information

Discussion Papers in Economics. Ali Choudhary (University of Surrey and State Bank of Pakistan) & Adnan Haider (State Bank of Pakistan) DP 08/08

Discussion Papers in Economics. Ali Choudhary (University of Surrey and State Bank of Pakistan) & Adnan Haider (State Bank of Pakistan) DP 08/08 Discussion Papers in Economics NEURAL NETWORK MODELS FOR INFLATION FORECASTING: AN APPRAISAL By Ali Choudhary (University of Surrey and State Bank of Pakistan) & Adnan Haider (State Bank of Pakistan) DP

More information

NONLINEAR IDENTIFICATION ON BASED RBF NEURAL NETWORK

NONLINEAR IDENTIFICATION ON BASED RBF NEURAL NETWORK DAAAM INTERNATIONAL SCIENTIFIC BOOK 2011 pp. 547-554 CHAPTER 44 NONLINEAR IDENTIFICATION ON BASED RBF NEURAL NETWORK BURLAK, V. & PIVONKA, P. Abstract: This article is focused on the off-line identification

More information

Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization

Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization Jacob Roll, Alexander Nazin, Lennart Ljung Division of Automatic Control Department of Electrical Engineering Linköpings universitet,

More information

Multi-layer Neural Networks

Multi-layer Neural Networks Multi-layer Neural Networks Steve Renals Informatics 2B Learning and Data Lecture 13 8 March 2011 Informatics 2B: Learning and Data Lecture 13 Multi-layer Neural Networks 1 Overview Multi-layer neural

More information

Linear Models for Regression. Sargur Srihari

Linear Models for Regression. Sargur Srihari Linear Models for Regression Sargur srihari@cedar.buffalo.edu 1 Topics in Linear Regression What is regression? Polynomial Curve Fitting with Scalar input Linear Basis Function Models Maximum Likelihood

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Computer Exercise 1 Estimation and Model Validation

Computer Exercise 1 Estimation and Model Validation Lund University Time Series Analysis Mathematical Statistics Fall 2018 Centre for Mathematical Sciences Computer Exercise 1 Estimation and Model Validation This computer exercise treats identification,

More information

Matlab software tools for model identification and data analysis 10/11/2017 Prof. Marcello Farina

Matlab software tools for model identification and data analysis 10/11/2017 Prof. Marcello Farina Matlab software tools for model identification and data analysis 10/11/2017 Prof. Marcello Farina Model Identification and Data Analysis (Academic year 2017-2018) Prof. Sergio Bittanti Outline Data generation

More information

Simple neuron model Components of simple neuron

Simple neuron model Components of simple neuron Outline 1. Simple neuron model 2. Components of artificial neural networks 3. Common activation functions 4. MATLAB representation of neural network. Single neuron model Simple neuron model Components

More information

Multivariable and Multiaxial Fatigue Life Assessment of Composite Materials using Neural Networks

Multivariable and Multiaxial Fatigue Life Assessment of Composite Materials using Neural Networks Multivariable and Multiaxial Fatigue Life Assessment of Composite Materials using Neural Networks Mas Irfan P. Hidayat Abstract In the present paper, multivariable and multiaxial fatigue life assessment

More information

The Perceptron Algorithm

The Perceptron Algorithm The Perceptron Algorithm Greg Grudic Greg Grudic Machine Learning Questions? Greg Grudic Machine Learning 2 Binary Classification A binary classifier is a mapping from a set of d inputs to a single output

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification

Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification Advanced Process Control Tutorial Problem Set 2 Development of Control Relevant Models through System Identification 1. Consider the time series x(k) = β 1 + β 2 k + w(k) where β 1 and β 2 are known constants

More information

Study on the use of neural networks in control systems

Study on the use of neural networks in control systems Study on the use of neural networks in control systems F. Rinaldi Politecnico di Torino & Italian Air Force, Italy Keywords: neural networks, automatic control Abstract The purpose of this report is to

More information

Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Neural Network Modeling

Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Neural Network Modeling Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification Neural Network Modeling What is Mathematical Model? A set of mathematical equations

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Neural Network Control

Neural Network Control Neural Network Control Daniel Eggert 24th February 2003 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Lyngby, Denmark Phone +45 4525 3351, Fax +45 4588 2673

More information

Optimal transfer function neural networks

Optimal transfer function neural networks Optimal transfer function neural networks Norbert Jankowski and Włodzisław Duch Department of Computer ethods Nicholas Copernicus University ul. Grudziądzka, 87 Toru ń, Poland, e-mail:{norbert,duch}@phys.uni.torun.pl

More information

GL Garrad Hassan Short term power forecasts for large offshore wind turbine arrays

GL Garrad Hassan Short term power forecasts for large offshore wind turbine arrays GL Garrad Hassan Short term power forecasts for large offshore wind turbine arrays Require accurate wind (and hence power) forecasts for 4, 24 and 48 hours in the future for trading purposes. Receive 4

More information

Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina

Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina Matlab software tools for model identification and data analysis 11/12/2015 Prof. Marcello Farina Model Identification and Data Analysis (Academic year 2015-2016) Prof. Sergio Bittanti Outline Data generation

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION

NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION Mikhail V. Egorchev, Dmitry S. Kozlov, Yury V. Tiumentsev Moscow Aviation Institute (MAI), Moscow, Russia Keywords: aircraft,

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Experiments with neural network for modeling of nonlinear dynamical systems: Design problems

Experiments with neural network for modeling of nonlinear dynamical systems: Design problems Experiments with neural network for modeling of nonlinear dynamical systems: Design problems Ewa Skubalska-Rafaj lowicz Wroc law University of Technology, Wroc law, Wroc law, Poland Summary Introduction

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 16, 2013 Outline Univariate

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Prediction of Hourly Solar Radiation in Amman-Jordan by Using Artificial Neural Networks

Prediction of Hourly Solar Radiation in Amman-Jordan by Using Artificial Neural Networks Int. J. of Thermal & Environmental Engineering Volume 14, No. 2 (2017) 103-108 Prediction of Hourly Solar Radiation in Amman-Jordan by Using Artificial Neural Networks M. A. Hamdan a*, E. Abdelhafez b

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Nonlinear System Identification using Support Vector Regression

Nonlinear System Identification using Support Vector Regression Nonlinear System Identification using Support Vector Regression Saneej B.C. PhD Student Department of Chemical and Materials Engineering University of Alberta Outline 2 1. Objectives 2. Nonlinearity in

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Neuro-Fuzzy Methods for Modeling and Identification

Neuro-Fuzzy Methods for Modeling and Identification Neuro-Fuzzy Methods for Modeling and Identification Robert Babuška Delft University of Technology,Faculty of Information Technology and Systems Control Systems Engineering Group, P.O.Box 5031, 2600 GA

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 3 Additive Models and Linear Regression Sinusoids and Radial Basis Functions Classification Logistic Regression Gradient Descent Polynomial Basis Functions

More information

CSTR CONTROL USING MULTIPLE MODELS

CSTR CONTROL USING MULTIPLE MODELS CSTR CONTROL USING MULTIPLE MODELS J. Novák, V. Bobál Univerzita Tomáše Bati, Fakulta aplikované informatiky Mostní 39, Zlín INTRODUCTION Almost every real process exhibits nonlinear behavior in a full

More information

Neural Network Based System Identification TOOLBOX Version 2

Neural Network Based System Identification TOOLBOX Version 2 eural etwork Based System Identification OOLBOX Version 2 For Use with MALAB ^ y(t 2) ^ y(t ) ^ y(t) u(t 2) u(t ) Magnus ørgaard Department of Automation Department of Mathematical Modelling echnical Report

More information

T Machine Learning and Neural Networks

T Machine Learning and Neural Networks T-61.5130 Machine Learning and Neural Networks (5 cr) Lecture 11: Processing of Temporal Information Prof. Juha Karhunen https://mycourses.aalto.fi/ Aalto University School of Science, Espoo, Finland 1

More information

Different Criteria for Active Learning in Neural Networks: A Comparative Study

Different Criteria for Active Learning in Neural Networks: A Comparative Study Different Criteria for Active Learning in Neural Networks: A Comparative Study Jan Poland and Andreas Zell University of Tübingen, WSI - RA Sand 1, 72076 Tübingen, Germany Abstract. The field of active

More information

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Mehmet Önder Efe Electrical and Electronics Engineering Boðaziçi University, Bebek 80815, Istanbul,

More information

Development of Nonlinear Black Box Models using Orthonormal Basis Filters: A Review*

Development of Nonlinear Black Box Models using Orthonormal Basis Filters: A Review* Development of Nonlinear Black Box Models using Orthonormal Basis Filters: A Review* Sachin C. atwardhan Abstract Over the last two decades, there has been a growing interest in the use of orthonormal

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

Identification in closed-loop, MISO identification, practical issues of identification

Identification in closed-loop, MISO identification, practical issues of identification Identification in closed-loop, MISO identification, practical issues of identification CHEM-E7145 Advanced Process Control Methods Lecture 4 Contents Identification in practice Identification in closed-loop

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone:

Neural Networks. Nethra Sambamoorthi, Ph.D. Jan CRMportals Inc., Nethra Sambamoorthi, Ph.D. Phone: Neural Networks Nethra Sambamoorthi, Ph.D Jan 2003 CRMportals Inc., Nethra Sambamoorthi, Ph.D Phone: 732-972-8969 Nethra@crmportals.com What? Saying it Again in Different ways Artificial neural network

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Research Note INTELLIGENT FORECASTING OF RAINFALL AND TEMPERATURE OF SHIRAZ CITY USING NEURAL NETWORKS *

Research Note INTELLIGENT FORECASTING OF RAINFALL AND TEMPERATURE OF SHIRAZ CITY USING NEURAL NETWORKS * Iranian Journal of Science & Technology, Transaction B, Vol. 28, No. B1 Printed in Islamic Republic of Iran, 24 Shiraz University Research Note INTELLIGENT FORECASTING OF RAINFALL AND TEMPERATURE OF SHIRAZ

More information

Identification of Non-linear Dynamical Systems

Identification of Non-linear Dynamical Systems Identification of Non-linear Dynamical Systems Linköping University Sweden Prologue Prologue The PI, the Customer and the Data Set C: I have this data set. I have collected it from a cell metabolism experiment.

More information

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

NONLINEAR IDENTIFICATION WITH NEURAL NETWORKS AND FUZZY LOGIC

NONLINEAR IDENTIFICATION WITH NEURAL NETWORKS AND FUZZY LOGIC VRIJE UNIVERSITEIT BRUSSEL SCI EN T I A V INCERE T ENE BRA S VRIJE UNIVERSITEIT BRUSSEL FACULTEIT TOEGEPASTE WETENSCHAPPEN Dienst Algemene Elektriciteit & Instrumentatie (ELEC) Pleinlaan 2, B-050 Brussel,

More information

Identification of two-mass system parameters using neural networks

Identification of two-mass system parameters using neural networks 3ème conférence Internationale des énergies renouvelables CIER-2015 Proceedings of Engineering and Technology - PET Identification of two-mass system parameters using neural networks GHOZZI Dorsaf 1,NOURI

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Rozwiązanie zagadnienia odwrotnego wyznaczania sił obciąŝających konstrukcje w czasie eksploatacji

Rozwiązanie zagadnienia odwrotnego wyznaczania sił obciąŝających konstrukcje w czasie eksploatacji Rozwiązanie zagadnienia odwrotnego wyznaczania sił obciąŝających konstrukcje w czasie eksploatacji Tadeusz Uhl Piotr Czop Krzysztof Mendrok Faculty of Mechanical Engineering and Robotics Department of

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data January 17, 2006 Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Other Artificial Neural Networks Samy Bengio IDIAP Research Institute, Martigny, Switzerland,

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville Chapter 6 :Deep Feedforward Networks Benoit Massé Dionyssos Kounades-Bastian Benoit Massé, Dionyssos Kounades-Bastian Deep Feedforward

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

10 NEURAL NETWORKS Bio-inspired Multi-Layer Networks. Learning Objectives:

10 NEURAL NETWORKS Bio-inspired Multi-Layer Networks. Learning Objectives: 10 NEURAL NETWORKS TODO The first learning models you learned about (decision trees and nearest neighbor models) created complex, non-linear decision boundaries. We moved from there to the perceptron,

More information

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I

Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I Learning From Data Lecture 15 Reflecting on Our Path - Epilogue to Part I What We Did The Machine Learning Zoo Moving Forward M Magdon-Ismail CSCI 4100/6100 recap: Three Learning Principles Scientist 2

More information

Transformer Top-Oil Temperature Modeling and Simulation

Transformer Top-Oil Temperature Modeling and Simulation Transformer Top-Oil Temperature Modeling and Simulation T. C. B. N. Assunção, J. L. Silvino, and P. Resende Abstract The winding hot-spot temperature is one of the most critical parameters that affect

More information

Lecture 5: Recurrent Neural Networks

Lecture 5: Recurrent Neural Networks 1/25 Lecture 5: Recurrent Neural Networks Nima Mohajerin University of Waterloo WAVE Lab nima.mohajerin@uwaterloo.ca July 4, 2017 2/25 Overview 1 Recap 2 RNN Architectures for Learning Long Term Dependencies

More information

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1

output dimension input dimension Gaussian evidence Gaussian Gaussian evidence evidence from t +1 inputs and outputs at time t x t+2 x t-1 x t+1 To appear in M. S. Kearns, S. A. Solla, D. A. Cohn, (eds.) Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 999. Learning Nonlinear Dynamical Systems using an EM Algorithm Zoubin

More information

*** (RASP1) ( - ***

*** (RASP1) (  - *** 8-95 387 0 *** ** * 87/7/4 : 8/5/7 :. 90/ (RASP).. 88. : (E-mail: mazloumzadeh@gmail.com) - - - - * ** *** 387 0.(5) 5--4-. Hyperbolic Tangent 30 70.. 0/-0/ -0- Sigmoid.(4).(7). Hyperbolic Tangent. 3-3-3-.(8).(

More information