3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x)

Size: px
Start display at page:

Download "3.6 Implicit Differentiation. explicit representation of a function rule. y = f(x) y = f (x) e.g. y = (x 2 + 1) 3 y = 3(x 2 + 1) 2 (2x)"

Transcription

1 Mathematics 0110a Summar Notes page Implicit Differentiation eplicit representation of a function rule = f() = f () e.g. = ( + 1) 3 = 3( + 1) () implicit representation of a function rule f(, ) = c To find d d : 1. differentiate term b term. appl the chain rule 3. solve for d d Eample 1: Given + = 4. Find d d. solution: Solving for is not convenient. + = (diff. term b term, use chain rule) ( 4) = 4 (collect terms on the left) = 4 4 = (solve for )

2 Mathematics 0110a Summar Notes page 44 Eample : Find the slope of the tangent line to the curve = at the point (1, 1). solution: = 1 = 1 The slope of the tangent line here is m = (1) = 1/. = The relation governed b = is not a function but rather a confluence of two functions: = and =. The point (1, 1) lies on the function =. Implicit differentiation automaticall takes care of the details (placing the tangent line on the proper branch) when the value of is known. Eamples: Find d d in each of the following epressions. 3. = = 5. ( ) 3 = 10 Eample 6: Given =. Find. solution: Solving for is not convenient. Step 1. Find using implicit differentiation = 0 (diff. term b term, use chain rule)

3 Mathematics 0110a Summar Notes page 45 ( + ) = 7 3 (collect terms on the left) = 7 3 ( + ) (solve for ) Note that d d is epressed in terms of both and. Step. Repeat Step 1., to find (in terms of, and ) (use quotient rule) 6 ( + ) (7 3 )(+ ) = ( ) 4( + ) Step 3. Substitute for using the result from Step 1. = ( ) (7 3 ) ( ) + + ( ) + + 4( + ) The procedure should be clear without the need for further simplification. The idea here is simpl to epress in terms of and onl. Man relations with described implicitl are not functions but it is possible to find the slope of a tangent line because values of and identif the branch of the curve that is a function. Eample 7: Find the slope of the tangent line to the curve described b + = 4 at the point (, ). solution: + = 0 = ; so (, ) = 1. We could also have proceeded eplicitl. = 4 identifies the branch we require and is a function. It is eas to show that ( ) = 1 as before although implicit differentiation makes this easier to appl.

4 Mathematics 0110a Summar Notes page 46 Eample 8: Find using the relation in Eample 7. solution: = = = + 3 Related Rates characteristics of the problem 1. Two or more variables are related to one another b an equation.. Each of these variables are also functions of time. 3. The rate of change of a number (usuall all but one) of these variables with respect to time is known. 4. The objective is to determine the rate of change of the remaining dependent variable with respect to time. The steps necessar to solve a related rates problem are best demonstrated using an eample. Eample 9. A spotlight on the ground shines on a wall 1 m awa. If a man m tall walks from the spotlight toward the building at a speed of 1.6 m/s, how fast is his shadow on the building decreasing when he is 4 m from the building? solution: 1. Draw and label a diagram, identifing the variables of the problem. 1. Write down the remaining numerical information in terms of the appropriate variables. d = 1.6 m/s. At 4 m from the wall, = 8 m. When = 8 using similar triangles: 8/ = 1/ = 3.

5 Mathematics 0110a Summar Notes page State the objective. Find d when = 8 m. 4. Write an equation relating the variables. This is b far the most crucial step. Note that the small triangle is similar to the large one. Thus, 1 =. So = Differentiate term b term with respect to t. d + d = 0 6. Substitute for the known quantities and find the required rate. 3(1.6) = 8 d d = 3(1.6)/8 = 0.6 m/s. The shadow is decreasing at a rate of 0.6 m/s when the man is 4 m from the wall. Eample 10. A spherical balloon is being filled with water at the rate of liters per minute. At what rate is the surface area increasing in cm when the radius is 10 cm? solution: 1. Let r = radius, V = volume and S = surface area.. We want ds when r = S = 4πr = 400π at r = ds = 8πr dr. dr Clearl we need. 5. V = 4 3 πr3 dv = 4πr dr = S dr 000 = 400π dr at r = 10.

6 Mathematics 0110a Summar Notes page 48 So dr = π = 5 π at r = 10. Therefore, ds = 80π 5 π = 400 cm /min., when r = 10.

Math 113/114 Lecture 22

Math 113/114 Lecture 22 Math 113/114 Lecture 22 Xi Chen 1 1 University of Alberta October 31, 2014 Outline 1 2 (Application of Implicit Differentiation) Given a word problem about related rates, we need to do: interpret the problem

More information

Student s Printed Name:

Student s Printed Name: MATH 060 Test Fall 08 Calculus of One Variable I Version A KEY Sections.. Student s Printed Name: Instructor: XID: C Section: No questions will be answered during this eam. If ou consider a question to

More information

Implicit Differentiation

Implicit Differentiation Week 6. Implicit Differentiation Let s say we want to differentiate the equation of a circle: y 2 + x 2 =9 Using the techniques we know so far, we need to write the equation as a function of one variable

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

Math 2413 t2rsu14. Name: 06/06/ Find the derivative of the following function using the limiting process.

Math 2413 t2rsu14. Name: 06/06/ Find the derivative of the following function using the limiting process. Name: 06/06/014 Math 413 trsu14 1. Find the derivative of the following function using the limiting process. f( x) = 4x + 5x. Find the derivative of the following function using the limiting process. f(

More information

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph Ch 0 Homework Complete Solutions V Part : S. Stirling Calculus: Earl Transcendental Functions, 4e Larson WATCH for the product rule and the chain rule. If the order that our terms are in differ from the

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

MAT 137 Tutorial #6 Related rates June 12-13, 2017

MAT 137 Tutorial #6 Related rates June 12-13, 2017 MAT 137 Tutorial #6 Related rates June 12-13, 2017 1. If a (spherical) snowball melts so that its surface area decreases at a rate of 1cm 2 /min, find the rate at which the diameter decreases when the

More information

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

Name: Date: Period: Calculus Honors: 4-2 The Product Rule Name: Date: Period: Calculus Honors: 4- The Product Rule Warm Up: 1. Factor and simplify. 9 10 0 5 5 10 5 5. Find ' f if f How did you go about finding the derivative? Let s Eplore how to differentiate

More information

Almost all of the questions involving Related Rates will require one of the following relationships to link together the various changing rates:

Almost all of the questions involving Related Rates will require one of the following relationships to link together the various changing rates: Related Rates All quantities that we meet in every-day life change with time, this is especially true in scientific investigations. Related Rate problems are those in which an equation epresses some relationship

More information

4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3!

4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3! 4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3! 1) Draw a picture. Label all variables and constant values. Identify the given rate of change, the rate to be found, and when to

More information

Exam 2 Solutions October 12, 2006

Exam 2 Solutions October 12, 2006 Math 44 Fall 006 Sections and P. Achar Exam Solutions October, 006 Total points: 00 Time limit: 80 minutes No calculators, books, notes, or other aids are permitted. You must show your work and justify

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 3A Discussion Notes Week 5 October 7 and October 9, 05 Because of the mierm, we re a little behind lecture, but this week s topics will help prepare you for the quiz. Implicit Differentiation and

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Guidelines for implicit differentiation

Guidelines for implicit differentiation Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing

More information

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions 4.5: Implicit Functions We can employ implicit differentiation when an equation that defines a function is so complicated that we cannot use an explicit rule to find the derivative. EXAMPLE 1: Find dy

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

Days 3 & 4 Notes: Related Rates

Days 3 & 4 Notes: Related Rates AP Calculus Unit 4 Applications of the Derivative Part 1 Days 3 & 4 Notes: Related Rates Implicitly differentiate the following formulas with respect to time. State what each rate in the differential equation

More information

MATH1910Chapter2TestReview

MATH1910Chapter2TestReview Class: Date: MATH1910Chapter2TestReview Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the slope m of the line tangent to the graph of the function

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Implicit Differentiation an Relate Rates Up until now ou have been fining the erivatives of functions that have alrea been solve for their epenent variable. However, there are some functions that cannot

More information

Math 131. Related Rates Larson Section 2.6

Math 131. Related Rates Larson Section 2.6 Math 131. Related Rates Larson Section 2.6 There are many natural situations when there are related variables that are changing with respect to time. For example, a spherical balloon is being inflated

More information

University of Toronto Mississauga

University of Toronto Mississauga Surname: First Name: Student Number: Tutorial: Universit of Toronto Mississauga Mathematical and Computational Sciences MATY5Y Term Test Duration - 0 minutes No Aids Permitted This eam contains pages (including

More information

Math 1131Q Section 10

Math 1131Q Section 10 Math 1131Q Section 10 Section 3.9 and 3.10 Oct 19, 2010 Find the derivative of ln 3 5 e 2 ln 3 5 e 2 = ln 3 + ln 5/2 + ln e 2 = 3 ln + ( 5 ) ln + 2 2 (ln 3 5 e 2 ) = 3 + 5 2 + 2 Find the derivative of

More information

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009

MA 113 Calculus I Fall 2009 Exam 4 December 15, 2009 MA 3 Calculus I Fall 009 Eam December 5, 009 Answer all of the questions - 7 and two of the questions 8-0. Please indicate which problem is not to be graded b crossing through its number in the table below.

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Exam Review Sheets Combined

Exam Review Sheets Combined Exam Review Sheets Combined Fall 2008 1 Fall 2007 Exam 1 1. For each part, if the statement is always true, circle the printed capital T. If the statement is sometimes false, circle the printed capital

More information

3.8 Exponential Growth and Decay

3.8 Exponential Growth and Decay 3.8 Exponential Growth and Decay Suppose the rate of change of y with respect to t is proportional to y itself. So there is some constant k such that dy dt = ky The only solution to this equation is an

More information

Calculus I: Practice Midterm II

Calculus I: Practice Midterm II Calculus I: Practice Mierm II April 3, 2015 Name: Write your solutions in the space provided. Continue on the back for more space. Show your work unless asked otherwise. Partial credit will be given for

More information

( n ) n + 1 n. ( n ) n. f f ' f '' f ''' y ( u ) = ue au. n! ( 7 + x )

( n ) n + 1 n. ( n ) n. f f ' f '' f ''' y ( u ) = ue au. n! ( 7 + x ) Homework 7; Due: Friday, May 20, 1:00pm 1 Fill in the blanks. The figure shows graphs of f, f ', f '', and f '''. Identify each curve. Answer a, b, c, or d. f f ' f '' f ''' 2 y ( u ) = ue au Let. Find

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

Calculus Applications of Differentiation. Norhafizah Md Sarif Faculty of Industrial Science & Technology

Calculus Applications of Differentiation. Norhafizah Md Sarif Faculty of Industrial Science & Technology Calculus Applications of Differentiation By Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my Description Aims This chapter is aimed to : 1. introduce the concept of

More information

Related Rates. Introduction

Related Rates. Introduction Relate Rates Introuction We are familiar with a variet of mathematical or quantitative relationships, especiall geometric ones For eample, for the sies of a right triangle we have a 2 + b 2 = c 2 or the

More information

m2413c2 the limiting process. 4. Use the alternative form of the derivative to find the derivative of the function at. a. b. c. d. e.

m2413c2 the limiting process. 4. Use the alternative form of the derivative to find the derivative of the function at. a. b. c. d. e. m2413c2 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Find the derivative of the following function using the limiting process 2 Find the derivative of

More information

Name: Period: Geometry Unit 5: Trigonometry Homework. x a = 4, b= a = 7, b = a = 6, c = a = 3, b = 7

Name: Period: Geometry Unit 5: Trigonometry Homework. x a = 4, b= a = 7, b = a = 6, c = a = 3, b = 7 Name: Period: Geometr Unit 5: Trigonometr Homework Section 5.1: Pthagorean Theorem Find the value of each variable or missing side. Leave answers in simplest radical form AND as a decimal rounded to the

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

CHAPTER 2 Differentiation

CHAPTER 2 Differentiation CHAPTER Differentiation Section. The Derivative and the Slope of a Graph............. 9 Section. Some Rules for Differentiation.................. 56 Section. Rates of Change: Velocit and Marginals.............

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 31A Discussion Session Week 5 Notes February 2 and 4, 2016 This week we re going to learn how to find tangent lines to curves which aren t necessarily graphs of functions, using an approach called

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Student s Printed Name:

Student s Printed Name: MATH 1060 Test Answer Ke Spring 016 Calculus of One Variable I Version A Sections..9 Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on an portion

More information

Conic Section: Circles

Conic Section: Circles Conic Section: Circles Circle, Center, Radius A circle is defined as the set of all points that are the same distance awa from a specific point called the center of the circle. Note that the circle consists

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Assignment 7 MATH 1000 Fall 2016 SOLUTIONS 5] 1 By the Chain Rule, f 1 1 ) = 1 + ) 1 2 2 2 = 1 ) 2 1 + 1 3 4 = 2 3 + 1 = 2 4

More information

Name: Period: Geometry Honors Unit 5: Trigonometry Homework. x a = 4, b= a = 7, b = a = 6, c =

Name: Period: Geometry Honors Unit 5: Trigonometry Homework. x a = 4, b= a = 7, b = a = 6, c = Name: Period: Geometr Honors Unit 5: Trigonometr Homework Section 5.1: Pthagorean Theorem Find the value of each variable or missing side. Leave answers in simplest radical form ND as a decimal rounded

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t;

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t; Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculate the derivative of the function. Then find the value of the derivative as specified.

More information

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm.

AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. AP Calculus AB: Semester Review Notes Information in the box are MASTERY CONCEPTS. Be prepared to apply these concepts on your midterm. Name: Date: Period: I. Limits and Continuity Definition of Average

More information

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given.

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given. Calculus 1 Lia Vas Related Rates The most important reason for a non-mathematics major to learn mathematics is to be able to apply it to problems from other disciplines or real life. In this section, we

More information

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P.

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. The Derivative & Tangent Line Problem *Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. 1 The Derivative & Tangent Line Problem We can approximate using

More information

Quiz 4A Solutions. Math 150 (62493) Spring Name: Instructor: C. Panza

Quiz 4A Solutions. Math 150 (62493) Spring Name: Instructor: C. Panza Math 150 (62493) Spring 2019 Quiz 4A Solutions Instructor: C. Panza Quiz 4A Solutions: (20 points) Neatly show your work in the space provided, clearly mark and label your answers. Show proper equality,

More information

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b. Uses of differentials to estimate errors. Recall the derivative notation df d is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input at = b. Eamples.

More information

14.5 The Chain Rule. dx dt

14.5 The Chain Rule. dx dt SECTION 14.5 THE CHAIN RULE 931 27. w lns 2 2 z 2 28. w e z 37. If R is the total resistance of three resistors, connected in parallel, with resistances,,, then R 1 R 2 R 3 29. If z 5 2 2 and, changes

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

How can you write an equation of a line when you are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines

How can you write an equation of a line when you are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines .7 Writing Equations in Point-Slope Form How can ou write an equation of a line when ou are given the slope and a point on the line? ACTIVITY: Writing Equations of Lines Work with a partner. Sketch the

More information

Solve for an unknown rate of change using related rates of change.

Solve for an unknown rate of change using related rates of change. Objectives: Solve for an unknown rate of change using related rates of change. 1. Draw a diagram. 2. Label your diagram, including units. If a quantity in the diagram is not changing, label it with a number.

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Student Name: School Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Student Name: School Name: INTEGRATED ALGEBRA The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Wednesda, August 18, 2010 8:30 to 11:30 a.m., onl Student Name: School Name: Print our name

More information

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs

Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Ch 5 Alg Note Sheet Ke Chapter 5: Quadratic Equations and Functions 5.1 Modeling Data With Quadratic Functions Quadratic Functions and Their Graphs Definition: Standard Form of a Quadratic Function The

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Math 210 Midterm #2 Review

Math 210 Midterm #2 Review Math 210 Mierm #2 Review Related Rates In general, the approach to a related rates problem is to first determine which quantities in the problem you care about or have relevant information about. Then

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

Math 142 (Summer 2018) Business Calculus 5.8 Notes

Math 142 (Summer 2018) Business Calculus 5.8 Notes Math 142 (Summer 2018) Business Calculus 5.8 Notes Implicit Differentiation and Related Rates Why? We have learned how to take derivatives of functions, and we have seen many applications of this. However

More information

Related Rates. da dt = 2πrdr dt. da, so = 2. I want to find. = 2π 3 2 = 12π

Related Rates. da dt = 2πrdr dt. da, so = 2. I want to find. = 2π 3 2 = 12π Related Rates 9-22-2008 Related rates problems deal with situations in which several things are changing at rates which are related. The way in which the rates are related often arises from geometry, for

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still Notes. For

More information

Preface. Implicit Differentiation. y =

Preface. Implicit Differentiation. y = Preface Here are the solutions to the practice problems for m Calculus I notes. Some solutions will have more or less detail than other solutions. The level of detail in each solution will depend up on

More information

Math 116 First Midterm October 9, 2017

Math 116 First Midterm October 9, 2017 On m honor, as a student, I have neither given nor received unauthorized aid on this academic work. Initials: Do not write in this area Your Initials Onl: Math 116 First Midterm October 9, 217 Your U-M

More information

Chapter 3.5: Related Rates

Chapter 3.5: Related Rates Expected Skills: Chapter.5: Related Rates Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible, representing

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

College Calculus Final Review

College Calculus Final Review College Calculus Final Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the following limit. (Hint: Use the graph to calculate the limit.)

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Infinite Limits. Let f be the function given by. f x 3 x 2.

Infinite Limits. Let f be the function given by. f x 3 x 2. 0_005.qd //0 :07 PM Page 8 SECTION.5 Infinite Limits 8, as Section.5, as + f() = f increases and decreases without bound as approaches. Figure.9 Infinite Limits Determine infinite its from the left and

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

Answers to Some Sample Problems

Answers to Some Sample Problems Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)

More information

Are You Ready? Find Area in the Coordinate Plane

Are You Ready? Find Area in the Coordinate Plane SKILL 38 Are You Read? Find Area in the Coordinate Plane Teaching Skill 38 Objective Find the areas of figures in the coordinate plane. Review with students the definition of area. Ask: Is the definition

More information

Chapter 3.4 Practice Problems

Chapter 3.4 Practice Problems EXPECTED SKILLS: Chapter.4 Practice Problems Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible,

More information

Logarithmic differentiation

Logarithmic differentiation Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Logarithmic differentiation What you need to know already: All basic differentiation rules, implicit

More information

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet.

Ch 5 Alg 2 L2 Note Sheet Key Do Activity 1 on your Ch 5 Activity Sheet. Ch Alg L Note Sheet Ke Do Activit 1 on our Ch Activit Sheet. Chapter : Quadratic Equations and Functions.1 Modeling Data With Quadratic Functions You had three forms for linear equations, ou will have

More information

CSE 546 Midterm Exam, Fall 2014

CSE 546 Midterm Exam, Fall 2014 CSE 546 Midterm Eam, Fall 2014 1. Personal info: Name: UW NetID: Student ID: 2. There should be 14 numbered pages in this eam (including this cover sheet). 3. You can use an material ou brought: an book,

More information

2.8 Implicit Differentiation

2.8 Implicit Differentiation .8 Implicit Differentiation Section.8 Notes Page 1 Before I tell ou what implicit differentiation is, let s start with an example: EXAMPLE: Find if x. This question is asking us to find the derivative

More information

Compute the rate of change of one quantity in terms of the rate of change of another quantity.

Compute the rate of change of one quantity in terms of the rate of change of another quantity. 3.10 Related Rates Compute the rate of change of one quantity in terms of the rate of change of another quantity. Example 1: If x 2 y x + 4 = 0 and dx/dt = 3, find dy/dt when x = 1. Example 2: Air is being

More information

MHF 4U Unit 1 Polynomial Functions Outline

MHF 4U Unit 1 Polynomial Functions Outline MHF 4U Unit 1 Polnomial Functions Outline Da Lesson Title Specific Epectations 1 Average Rate of Change and Secants D1., 1.6, both D1.1A s - Instantaneous Rate of Change and Tangents D1.6, 1.4, 1.7, 1.5,

More information

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page Math 08 urface integrals and the differentials for flu integrals Our tet fails to eplicitl state the formulas for n dσ, instead preferring to give formulas for n and separatel But the proof on page 88

More information

Solve the equation for the specified variable. Use the distributive property to factor as necessary. 2) -9s + 8p = tp - 8 for p

Solve the equation for the specified variable. Use the distributive property to factor as necessary. 2) -9s + 8p = tp - 8 for p College Readiness Math Final Eam Review Sheet Solve the equation. 1) r + 6 = r + 8 3 6 Solve the equation for the specified variable. Use the distributive propert to factor as necessar. 2) -9s + 8p = tp

More information

M151B Practice Problems for Exam 1

M151B Practice Problems for Exam 1 M151B Practice Problems for Eam 1 Calculators will not be allowed on the eam. Unjustified answers will not receive credit. 1. Compute each of the following its: 1a. 1b. 1c. 1d. 1e. 1 3 4. 3. sin 7 0. +

More information

NATIONAL QUALIFICATIONS

NATIONAL QUALIFICATIONS H Mathematics Higher Paper Practice Paper E Time allowed hour minutes NATIONAL QUALIFICATIONS Read carefull Calculators ma NOT be used in this paper. Section A Questions ( marks) Instructions for completion

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

MHF4U - Practice Mastery #8

MHF4U - Practice Mastery #8 MHF4U - Practice Master #8 Multiple Choice Identif the choice that best completes the statement or answers the question.. If, then a. b. c. d. 2.. The graph illustrates the motion of a person walking toward

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

Learning Outcomes and Assessment Standards

Learning Outcomes and Assessment Standards Lesson 5 CALCULUS (8) Rate of change Learning Outcomes and Assessment Standards Learning Outcome : Functions and Algebra Assessment standard 1..7(e) Solve practical problems involving optimisation and

More information

10.1 Inverses of Simple Quadratic and Cubic Functions

10.1 Inverses of Simple Quadratic and Cubic Functions COMMON CORE Locker LESSON 0. Inverses of Simple Quadratic and Cubic Functions Name Class Date 0. Inverses of Simple Quadratic and Cubic Functions Essential Question: What functions are the inverses of

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Math Notes on sections 7.8,9.1, and 9.3. Derivation of a solution in the repeated roots case: 3 4 A = 1 1. x =e t : + e t w 2.

Math Notes on sections 7.8,9.1, and 9.3. Derivation of a solution in the repeated roots case: 3 4 A = 1 1. x =e t : + e t w 2. Math 7 Notes on sections 7.8,9., and 9.3. Derivation of a solution in the repeated roots case We consider the eample = A where 3 4 A = The onl eigenvalue is = ; and there is onl one linearl independent

More information

Section 2.4 The Quotient Rule

Section 2.4 The Quotient Rule Section 2.4 The Quotient Rule In the previous section, we found that the derivative of the product of two functions is not the product of their derivatives. The quotient rule gives the derivative of a

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Math Fall 08 Final Exam Review

Math Fall 08 Final Exam Review Math 173.7 Fall 08 Final Exam Review 1. Graph the function f(x) = x 2 3x by applying a transformation to the graph of a standard function. 2.a. Express the function F(x) = 3 ln(x + 2) in the form F = f

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 2 Stud Guide-Chapters 8 and 9 Name Date: Time: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all square roots of the number. ) 600 9,

More information