PHYSICS 149: Lecture 7

Size: px
Start display at page:

Download "PHYSICS 149: Lecture 7"

Transcription

1 PHYSICS 149: Lecture 7 Chapter 2 28Tension Fundamental Forces Chapter Position and Displacement Lecture 7 Purdue University, Physics 149 1

2 ILQ 1 Which statement about frictional forces is not true? A) Frictional forces are contact forces parallel to the contact surface. B) When frictional forces act to resist motion, two surfaces slide across each other. C) Frictional forces are perpendicular to the surface of contact. D) Frictional forces always act opposite to the direction of motion. E) The frictional force is always proportional p to the normal force on an object. Lecture 7 Purdue University, Physics 149 2

3 Tension Definition: Magnitude of Contact Force between different segments of the string (or between an end and the object attached there) Example: P T NOTE: T can only ypull the other object T is the force on the left portion from the right portion T is the tension at point P Lecture 7 Purdue University, Physics 149 3

4 Tension At any point in the rope (or string, cable or chain), tension is the pulling force exerted on the rope on one side of the point by the rope on the other side. At its two ends, tension is the pulling force exerted on the object attached to its ends by the ropes at the ends. Note that tension can pull but not push. =T 4 =T 1 =T 2 If the chain s weight is not negligible, T 1 > T 2 > T 3 > T 4. =T 3 For example, T 1 = T 4 + chain s weight. Lecture 7 Purdue University, Physics 149 4

5 Ideal Cord An ideal cord has NO MASS Consequence: the tension is the same at ALL POINTS along the cord. Lecture 7 Purdue University, Physics 149 5

6 Tension with Ideal Cord Ideal cord : a cord that has zero mass and thus zero weight In an ideal cord, (a) the tension has the same value at all points along the cord, and (b) the tension is equal to the force that the cord exerts on the objects attached to its ends (as long as there is no external force on the cord). Note: In many cases, the weight of a cord is negligibly small compared to the weight of the objects attached to its ends, and thus we may assume that it is an ideal cord. =T 1 =TT 4 =T 3 =T 2 If the chain s weight is negligible (ideal cord), T 1 = T 2 = T 3 = T 4. Lecture 7 Purdue University, Physics 149 6

7 Ideal Pulley Pulley: A pulley serves to change the direction of a tension force, and may also (in the case of multiple-pulley systems) change its magnitude. Ideal pulley : a pulley that has no mass and no friction. The tension of an ideal cord that runs through an ideal pulley is the same on both sides of the pulley (and at all points along the cord). T= =T Lecture 7 Purdue University, Physics 149 7

8 ILQ 2 Two blocks with the same mass are connected by a lightweight cord that runs through an ideal pulley, as shown. When released, the blocks will end up A) at their current heights. eg B) at the same height. C) with left block on the ground. D) with right block on the ground. Lecture 7 Purdue University, Physics 149 8

9 ILQ 3 A heavy ball hangs from a string attached to a sturdy wooden frame. A second string (same kind) is attached to the bottom of the ball. You pull down the lower string slowly and steadily. Which string will break first? A) the top one B) the bottom one C) at the same time, because the tension is the same D) depends on the weight of the ball Lecture 7 Purdue University, Physics 149 9

10 Details of ILQ3 FBD of ball: Equilibrium ΣF y = 0 T2 ΣF y = T top T bottom W = 0 T top = T bottom + W Thus, T top > T bottom W T1 T1 NOTE: this problem is useful for CHIP problem with incline The top one receives stronger tension, so it will break first. Therefore T2 = T1+W>T1 Lecture 7 Purdue University, Physics

11 Example: Tension Given conditions: Ideal cord Tension is same. Equilibrium Net force = ΣF i = 0 Lecture 7 Purdue University, Physics

12 Tension Determine the tension in the 6 meter rope if it sags 0.12 m in the center when a gymnast with weight 250 N is standing on it. F = 0 x-direction: ΣF = m a -T L cosθ + T R cosθ = 0 y T L = T R y-direction: ΣF = m a T L sinθ + T R sinθ -W = 0 2 T sinθ = W T = W/(2 sinθ) = 3115 Ν x θ 3 m tanθ = θ = m Lecture 7 Purdue University, Physics

13 Tension y T 1 T 2 W Θ = tan -1 (0.12/3.00) = θ x y tightrope θ 3.00 m.12 m x T 1x = T 1 cosθ T 2x = T 2 cosθ W x = 0 T 1y = T 1 sinθ T 2y = T 2 sinθ W y = 250 N x-component: ΣF x = 0 ΣF x = T 1x + T 2x = T 1 cosθ + T 2 cosθ = 0 T 1 =T 2 y-component: ΣF y = 0 ΣF y = T 1y + T 2y W = T 1 sinθ + T 2 sinθ W = 2 T 1 sinθ W = 0 T 1 = T 2 = W /(2 (2 sinθ) = 250 N / [2 sin(2.291 )] 291 )] = N Lecture 7 Purdue University, Physics

14 Example: A Two-Pulley System What is the tension of the rope? FBD for Pulley L Equilibrium ΣF y = T c + T c W= 0 T c = W /2 = 902 N Since tension is the same at all points along the cord C, the person s pulling force is equal to T c. Therefore, the person pulling the rope only needs to exert a force equal to half the engine s weight. W = Lecture 7 Purdue University, Physics

15 Pulley Example T How much is T? T =100 N Explain why 200 N Lecture 7 Purdue University, Physics

16 ILQ What can you say about the tensions T1 and T2 at the two ends of the cord? (W is the weight of the cord) A) T1 > T2 B) T2 > T1 C) T1=T2 D) depends NOTE: this is NOT an ideal cord! T1 W T2 Lecture 7 Purdue University, Physics

17 ILQ If the weight W=0 then the cord is ideal. Is it true that T1=T2? A) no, T1>T2 B) yes, because of 3 rd NL C) no, T1<T2 D) yes, because of 1 st NL T1 NOTE: this IS an ideal cord! T2 Lecture 7 Purdue University, Physics

18 Gravity Fundamental Forces Acts on particles (and objects) with mass Always attractive; recall Newton s law of universal gravitation Range: unlimited The weakest of the four fundamental forces Electromagnetism Acts on particles with electric charge Binds electrons to nuclei to form atoms, and binds atoms in molecules and solid Responsible for contact forces like friction and normal force Either attractive or repulsive Range: unlimited Much stronger than gravity, 2nd strongest of the four fundamental forces Lecture 7 Purdue University, Physics

19 Fundamental Forces The Strong Force Binds together the protons and neutrons in atomic nucleus (and also quarks in combinations) Very short range: ~10-15 m (about the size of an atomic nucleus) The strongest of the four fundamental forces The Weak Force Responsible for some types of radioactive decays, sunlight Shortest range: ~10-17 m 3rd strongest of the four fundamental forces Lecture 7 Purdue University, Physics

20 Fundamental Forces Gravity Strong nuclear force Weak nuclear force Electromagnetic force Lecture 7 Purdue University, Physics

21 Zero Net Force vs. Nonzero Net Force Net Force: the vector sum of all the forces acting on an object Zero Net Force (Ch 2) When a net force on an object is zero, the velocity (both direction and magnitude) of the object does not change. Newton s First Law of Motion Nonzero Net Force (from Ch 3) When a nonzero o net force acts on an object, the velocity of the object changes. That is, either the velocity s direction or magnitude changes, or both of direction or magnitude change. Relevant to Newton s Second Law of Motion Lecture 7 Purdue University, Physics

22 Motion in One Dimension -x 0 The variables are time and distance t = 0 start of observations at a point x 0 t = t end of the observations at a point x f +x Objects are in motion and velocity is (change in distance)/time Velocity can change => acceleration (change in velocity)/time All quantities except time are vectors but the vector nature is contained in whether the quantity is positive or negative Lecture 7 Purdue University, Physics

23 Position Vector To describe position, we need a reference point (origin), a distance from the origin, and a direction from the origin. object at (x,y) Position Vector (or Position) A vector quantity that t consists of the distance and direction An arrow starting at the origin and ending with the arrowhead on the object Position vector is usually denoted by r. The x-, y-, and z- component of r are usually written simply as x, y, and z (instead of r x, r y, and r z ). Lecture 7 Purdue University, Physics

24 Position A vector quantity describing where you are relative to an origin Point A is located at x=3, y=1 or (3,1) Point B is located at (-1,-2) The vector r A indicating the position of A starts at tthe origin i and terminates t with arrowhead A Same for r B and B -3 Lecture 7 Purdue University, Physics B y 3-3 A 3 x

25 Distance vs. Displacement Distance (scalar) Total length of path traveled The path of an object does matter Displacement (vector) The change of the position vector ( r), that is, the final position vector (r f ) minus the initial position vector (r i ) = r f + ( r i ) An arrow starting at the initial position (the tip of the initial position vector) and ending with the arrowhead at the final position (the tip of the final position vector) The path of an object does not matter. The displacement depends d only on the starting ti and ending points. Lecture 7 Purdue University, Physics

26 Displacement (m) A vector quantity describing a change in position r = r f - r i The displacement from A to B is We can determine the components x-direction: x f -x i = -1 3 = -4 y-direction: y f -y i = -2 1 = -3 r = (-4, -3) r = sqrt( ) = 5 NOTE: The displacement is not the distance traveled -3 B y 3-3 A 3 x Lecture 7 Purdue University, Physics

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction

Chapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated

More information

Preview of Period 5: Forces and Newton s Laws

Preview of Period 5: Forces and Newton s Laws Preview of Period 5: Forces and Newton s Laws 5.1 The Fundamental Forces of Nature What are the four fundamental forces of nature? How do we see their effects? 5.2 Forces and Newton s Laws What causes

More information

Topic #7: Forces and Free Body Diagrams (Teacher) Defined as: any influence which tends to change the motion of an object.

Topic #7: Forces and Free Body Diagrams (Teacher) Defined as: any influence which tends to change the motion of an object. 1.7.1 The Concept of Force Defined as: any influence which tends to change the motion of an object. 1.7.1a The Fundamental Forces The four fundamental forces, arranged in increasing order of strength,

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

A force is a push or a pull.

A force is a push or a pull. A force is a push or a pull. Contact forces arise from physical contact. Action at adistance forces do not require contact and include gravity and electrical forces. 1 Force is a vector [F]=[Newton]=[N]

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The astronaut orbiting the Earth in the Figure is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 700 km above the Earth's surface, where

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections

PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections PHYSICS 220 Lecture 04 Forces and Motion in 1 D Textbook Sections 3.2 3.6 Lecture 4 Purdue University, Physics 220 1 Last Lecture Constant Acceleration x = x 0 + v 0 t + ½ at 2 v = v 0 + at Overview v

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces

Chapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapters 6.1-6.6? 2 In your own words: What

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Force in Nature. <

Force in Nature.   < Force in Nature www.flickr.com/photos/nrbelex/383393596/ What is a Force? http://www.youtube.com/watch?v=seblt6kd9ey&feature=youtube_gdata_player A force

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

QOD: Suggest why placing wheels under a heavy box reduces the necessary force required to push it along at a constant speed.

QOD: Suggest why placing wheels under a heavy box reduces the necessary force required to push it along at a constant speed. QOD: 2 22 Suggest why placing wheels under a heavy box reduces the necessary force required to push it along at a constant speed. Feb 21 3:05 PM 1 force: any action that can affect the motion of an object.

More information

Physics 1A Lecture 4B. "Fig Newton: The force required to accelerate a fig inches per second. --J. Hart

Physics 1A Lecture 4B. Fig Newton: The force required to accelerate a fig inches per second. --J. Hart Physics 1A Lecture 4B "Fig Newton: The force required to accelerate a fig 39.37 inches per second. --J. Hart Types of Forces There are many types of forces that we will apply in this class, let s discuss

More information

Chapter 4. The Laws of Motion. Dr. Armen Kocharian

Chapter 4. The Laws of Motion. Dr. Armen Kocharian Chapter 4 The Laws of Motion Dr. Armen Kocharian Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. A/Prof Tay Seng Chuan PC1221 Fundamentals of Physics I Lectures 9 and 10 The Laws of Motion A/Prof Tay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

Wiley Plus Reminder! Assignment 1

Wiley Plus Reminder! Assignment 1 Wiley Plus Reminder! Assignment 1 6 problems from chapters and 3 Kinematics Due Monday October 5 Before 11 pm! Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s

More information

Review: Newton s Laws

Review: Newton s Laws More force was needed to stop the rock Review: Newton s Laws F r 1 F r F r 3 F r 4 2 Newton s First Law The velocity of an object does not change unless a force acts on the object Newton s Second Law:

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two

Course Name : Physics I Course # PHY 107. Lecture-5 : Newton s laws - Part Two Course Name : Physics I Course # PHY 107 Lecture-5 : Newton s laws - Part Two Abu Mohammad Khan Department of Mathematics and Physics North South University https://abukhan.weebly.com Copyright: It is

More information

Chapter 3: Newton s Laws of Motion

Chapter 3: Newton s Laws of Motion Chapter 3: Newton s Laws of Motion Mini Investigation: Predicting Forces, page 113 Answers may vary. Sample answers: A. I predicted the reading in question 3 would be the sum of the readings from questions

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Copyright 2012 Pearson Education Inc. To use

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

PHYS-2010: General Physics I Course Lecture Notes Section V

PHYS-2010: General Physics I Course Lecture Notes Section V PHYS-2010: General Physics I Course Lecture Notes Section V Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and students

More information

Newton s first and second laws

Newton s first and second laws Lecture 2 Newton s first and second laws Pre-reading: KJF 4.1 to 4.7 Please log in to Socrative, room HMJPHYS1002 Recall Forces are either contact Pushes / Pulls Tension in rope Friction Normal force (virtually

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 4 Main points of last lecture Scalars vs. Vectors Vectors A: (A x, A y ) or A & θ Addition/Subtraction Projectile Motion X-direction: a x = 0 (v x = constant)

More information

I. What are forces? A. Characteristics:

I. What are forces? A. Characteristics: Chapter 5: forces I. What are forces? A. Characteristics: 1. Forces result from the interaction of objects. A FORCE is a push or a pull that one object exerts on another. 2. How are forces measured: a.

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects.

Force mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. VISUAL PHYSICS ONLINE DYNAMICS TYPES O ORCES 1 Electrostatic force orce mediated by a field - long range: action at a distance: The attractive or repulsion between two stationary charged objects. AB A

More information

第 1 頁, 共 7 頁 Chap5 1. Test Bank, Question 9 The term "mass" refers to the same physical concept as: weight inertia force acceleration volume 2. Test Bank, Question 17 Acceleration is always in the direction:

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

PHYS 1114, Lecture 10, February 8 Contents:

PHYS 1114, Lecture 10, February 8 Contents: PHYS 1114, Lecture 10, February 8 Contents: 1 Example of projectile motion: Man shooting a gun firing a bullet horizontally. 2 Example of projectile motion: Man shooting an arrow at a monkey in a tree.

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

PHYSICS 1 Forces & Newton s Laws

PHYSICS 1 Forces & Newton s Laws Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 2014-2015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second

More information

Physics 207 Lecture 7. Lecture 7

Physics 207 Lecture 7. Lecture 7 Lecture 7 "Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

Summary for last week: Newton s 2 nd Law + 1 st Law

Summary for last week: Newton s 2 nd Law + 1 st Law ! F resultant = Summary for last week: Newton s 2 nd Law + 1 st Law F! " i = F! 1 + F! 2 +...+ F! N = m! all forces acting on object due to other objects a Object if we measure acceleration in an inertial

More information

Created by T. Madas WORK & ENERGY. Created by T. Madas

Created by T. Madas WORK & ENERGY. Created by T. Madas WORK & ENERGY Question (**) A B 0m 30 The figure above shows a particle sliding down a rough plane inclined at an angle of 30 to the horizontal. The box is released from rest at the point A and passes

More information

Chapter 4 Forces Newton s Laws of Motion

Chapter 4 Forces Newton s Laws of Motion Chapter 4 Forces Newton s Laws of Motion Forces Force A vector quantity that changes the velocity vector of an object. When you hit a baseball, the velocity of the ball changes. Can be a push or a pull

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor. 51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

More information

Static Equilibrium; Torque

Static Equilibrium; Torque Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics Page of Solutionbank M Exercise A, Question A particle P of mass 0. kg is moving along a straight horizontal line with constant speed m s. Another particle Q of mass 0.8 kg is moving in the same direction

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

A Question about free-body diagrams

A Question about free-body diagrams Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

More information

S3P-3-11: Define F net as the vector sum of all forces acting on a body.

S3P-3-11: Define F net as the vector sum of all forces acting on a body. TOPIC 3.2: DYNAMICS The student will be able to: S3P-3-08: Identify the four fundamental forces of nature. S3P-3-09: Perform an experiment to demonstrate Newton s Second Law ( F = ma). net S3P-3-10: Define

More information

FORCES. Force. Combining Forces

FORCES. Force. Combining Forces FORCES Force A force is a push or pull upon an object resulting from the object's interaction with another object. The unit of force is the newton (N) 1 newton is the force required to accelerate a mass

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS DYNAMICS L (P.77-83) To avoid using complex mathematical analysis, you can make several assumptions about cables and ropes that support loads. The mass of the rope or cable is

More information

Inclined Planes. Say Thanks to the Authors Click (No sign in required)

Inclined Planes. Say Thanks to the Authors Click  (No sign in required) Inclined Planes Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

VECTORS IN 2 DIMENSIONS

VECTORS IN 2 DIMENSIONS Free PowerPoint Templates VECTORS IN 2 DIMENSIONS Sutherland High School Grade 11 2018 SCALAR A physical quantity that has a magnitude and unit only. Example: Mass Time Distance Speed Volume Temperature

More information

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma

Physics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma Physics 2514 Lecture 12 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 21, 2011 1 / 13 Goal Goals for today s lecture:

More information

PHYSICS 149: Lecture 5

PHYSICS 149: Lecture 5 PHYSICS 149: Lecture 5 Chapter.5 Newton s Third Law.6 Gravitational Forces.7 Contact Forces: Normal Force and Friction 1 Newton s Third Law All forces come in pairs Third law forces involve TWO OBJECTS.

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Motor. Cable. Elevator

Motor. Cable. Elevator Q4.1 An elevator is being lifted at a constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information