The solution of differential equation of physical problem by the use of Matlab

Size: px
Start display at page:

Download "The solution of differential equation of physical problem by the use of Matlab"

Transcription

1 The solution of differential equation of phsical problem b the use of Matlab Erika Fechoá Technical Uniersit of Košice Facult of Manufacturing Technologies of the Technical Uniersit of Košice with a seat in Prešo Department of Informatics Mathematics and Cbernetics erika.fechoa@tuke.sk Abstract At the present time teachers tr to introduce and use information technologies in educational process of technical subjects at schools as mathematics phsics chemistr. Apart from e- learning support (electronic materials and tetbooks aailable on the internet) there are arious mathematical software enironments as Matlab Mathematica MS Ecel etc. The paper points out the possibilit of Matlab utilization at soling differential equation of phsical problem. 1. Introduction Phsical problem proides knowledge in arious forms as a means of motiation information about eamined phenomenon but also as a set of functions needed for the solution of the problem. A student solutionist of phsical problem has to carr out a certain program consisting of partial functions - steps [1]. Creation of mathematical models of phsical phenomena is an important part of phsical problems solution. Modelling is one of theoretical cognitie methods whose characteristic feature is cognitie process in which eamined phenomenon an original cognitie object is replaced b a model cognitie object a model. Under the term of mathematical model is understood a sum of mathematical relations capable of quantitatie description of phsical phenomenon. Mathematical model is an abstraction and idealization of real phenomenon []. Model has to be created as a functional one. Functionalit of model is estimated according to its behaior at the change of conditions at which it works. The form of mathematical model depends on used mathematical tools. Mathematical model of phsical problem soled within the subject of Phsics of bachelor s studies at the Facult of Manufacturing Technologies of the Technical Uniersit of Košice with a seat in Prešo is presented in the following part of the paper.. The solution of phsical problem Assignment: Steel cannonball with the r radius and ρ densit is fired with the initial elocit from the cannon of the Coast Artiller under an α angle. Determine the length of o cannonball firing range. Sole the problem for numerical alues: α = 45 r = 5m = m 3 ρ 78kg. 1 = 1m. s 1 c = 6kg. m. Solution: The solution of the problem is based on the fact that the cannonball carries out curilinear motion in the graitational field of the Earth that is called projection at an angle. It

2 is the motion consisting of two motions: uniform motion and ertical throw upward with the initial elocit (fig. 1). Figure 1. The motion of cannonball. We proceed from the balance of forces to make out equations. For the balance of forces at the d d direction of ais is alid: F + F o = m + cs = where F is the power of acceleration at the direction of ais according to the Newton s second law F o is the resistance power at the direction of ais c is the coefficient of aerodnamic resistance of the cannonball S is the frontal area of the shot. For the balance of forces at the direction of d d ais is alid: F + Fo + Fg = m + cs = mg where F is the power of acceleration at the direction of ais according to the Newton s second law F g is the graitation force F o is the resistance power at the direction of ais c is the coefficient of aerodnamic resistance of the cannonball S is the frontal area of the shot. The sstem of two differential equations of the second order without or with the second member was obtained: d d d d m + cs = m + cs = mg (1) In case the resistance of enironment is not considered (i.e. the coefficient of aerodnamic resistance c = ) we hae the sstem of equations for the balance of forces at the direction of d d and aes: m = and m = mg. B their solution and integration concerning the initial conditions ( t = ) = we obtain the quadratic equation: g +. tgα = [3] from which results that trajector of motion of the cos α cannonball has the form of parabola. The solution of the quadratic equation is searched length of cannonball firing range = m. If the air resistance is not neglected at the solution of the phsical problem it is necessar to sole the sstem of differential equations of the second order (1). If the relations for the 3 weight olume and frontal area of the cannonball m = ρv 4 V = π r S = πr are used we 3

3 3 introduce the constant k = c and denote = h a = h the relations (1) will be 4ρr transposed into the form of: d h dh + k = h ( t = ) = dh = t= = cosα d h dh dh + k g h ( t ) sinα = = = = = t= The sstem of two differential equations of the second order without or with the right side of equation was obtained. An analtic solution of the problem is comple and it does not lead to such simple dependancies for the coordinates of the ball shot as it was in case the air resistance was not considered. The problem will thus be soled numericall b using an interactie program Matlab. 3. MATLAB utilization at soling phsical problem Matlab presents a highl efficient language for technical calculations. It connects calculations isualization and programming into simpl operable enironment [4]. It is an interactie deice where the basic data tpe is the field without necessit to declare its measurements. This feature together with the number of built-in functions enables relatiel eas solution of man technical problems. It is a standard tool at teaching at school for eample mathematics and other technical subjects but also an effectie tool for research deelopment and analsis of data. One of the methods of solution in Matlab is the m-files formation which were used at soling the problem. We created an m-file into which we transformed the sstem of differential equations of the second order () concerning the initial conditions into the sstem of equations of the first order in the form of matrices. Then we formed a script in which the parameters used at soling the problem were defined. Single solution consists of the calculation of length and time of the cannonball firing range and portraal of the trajector. M-file strela.m for the portraal of the distance of the cannonball firing range is created in fig.. () Figure. M-file for depiction of the graph.

4 The graph of trajector of the cannonball at gien α angle depicted b created m-file is presented in fig. 3. Figure 3. Graph of trajector. Single solution of the problem presents launching the script (fig. 4). Figure 4. M-file for the calculation of the length and time of firing range. It results from the numerical solution of such formed mathematical model of the phsical problem that firing range of the cannonball in case the air resistance is considered is = m. 4. Conclusions It emerges from the results of soling the phsical problem that the results obtained at soling the problem differ concerning the formed mathematical model. Mathematical model of the problem if the air resistance was considered led to more comple relations and numerical method of soling b Matlab was used. Introduction and utilization of information and communication means make teaching more attractie which is necessar for the subjects as mathematics phsics chemistr because the occur among the least faourite subjects.

5 Acknowledgement. This paper was supported b the grant Vega n. 1/345/8. References [1] V. Koubek. Riešenie fzikálnch úloh. MFF UK Bratislaa [] V. Koubek I. Pecen. Matematické modeloanie fzikálnch jao. Fzikálne list č [3] E. Fechoá. Matematické modeloanie ako súčasť riešenia fzikálnej úloh. In: Didmatech 7 Olomouc 7 p ISBN [4] F. Dušek. MATLAB a SIMULINK úod do použíání. Unierzita Pardubice. ISBN

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( )

Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 dimensions: Physic 231 Lecture 5 ( ) Main points of toda s lecture: Eample: addition of elocities Trajectories of objects in dimensions: Phsic 31 Lecture 5 ( ) t g gt t t gt o 1 1 downwards 9.8 m/s g Δ Δ Δ + Δ Motion under Earth s graitational

More information

Regular Physics - Notes Ch. 1

Regular Physics - Notes Ch. 1 Regular Phsics - Notes Ch. 1 What is Phsics? the stud of matter and energ and their relationships; the stud of the basic phsical laws of nature which are often stated in simple mathematical equations.

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

SOLVING SOME PHYSICAL PROBLEMS USING THE METHODS OF NUMERICAL MATHEMATICS WITH THE HELP OF SYSTEM MATHEMATICA

SOLVING SOME PHYSICAL PROBLEMS USING THE METHODS OF NUMERICAL MATHEMATICS WITH THE HELP OF SYSTEM MATHEMATICA SOLVING SOME PHYSICAL PROBLEMS USING THE METHODS OF NUMERICAL MATHEMATICS WITH THE HELP OF SYSTEM MATHEMATICA Pavel Trojovský Jaroslav Seibert Antonín Slabý ABSTRACT Ever future teacher of mathematics

More information

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is

SOLUTION According to Equation 11.3, pressure is defined as P= F/ A; therefore, the magnitude of the force on the lid due to the air pressure is PHYS 3 Fall 07 Week Recitation: Chapter :, 7, 40, 44, 64, 69.. ssm An airtight box has a remoable lid of area.3 0 m and negligible weight. The box is taken up a mountain where the air pressure outside

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 4. Home Page. Title Page. Page 1 of 35. Rutgers Uniersit Department of Phsics & Astronom 01:750:271 Honors Phsics I Fall 2015 Lecture 4 Page 1 of 35 4. Motion in two and three dimensions Goals: To stud position, elocit, and acceleration ectors

More information

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Welcome back to PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz Welcome back to PHY101: Major Concepts in Phsics I Photo: J. M. Schwarz Announcements Course Website: jmschwarztheorgroup.org/ph101/ HW on Chapter is due at the beginning of lecture on Wednesda. HW 3 on

More information

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS

Chapter 4 MOTION IN TWO AND THREE DIMENSIONS Chapter 4 MTIN IN TW AND THREE DIMENSINS Section 4-5, 4-6 Projectile Motion Projectile Motion Analzed Important skills from this lecture: 1. Identif the projectile motion and its velocit and acceleration

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

Chapter 3 MOTION IN A PLANE

Chapter 3 MOTION IN A PLANE Chapter 3 MOTION IN A PLANE Conceptual Questions 1. No; to be equal the must also hae the same direction. If the magnitudes are different, the cannot be equal.. (a) Yes, since the direction matters. One

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Math 130 www.timetodare.com Section 3.1 Quadratic Functions and Models Quadratic Function: ( ) f x = ax + bx+ c ( a 0) The graph of a quadratic function is called a parabola. Graphing Parabolas: Special

More information

Self- assessment 1010 (Intermediate Algebra)

Self- assessment 1010 (Intermediate Algebra) Self- assessment (Intermediate Algebra) If ou can work these problems using a scientific calculator, ou should have sufficient knowledge to demonstrate master of Intermediate Algebra and to succeed in

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball SICE Annual Conference 21 August 18-21, 21, The Grand Hotel, Taipei, Taiwan Analsis of Effects of Reounds and Aerodnamics for Trajector of Tale Tennis Junko Nonomura Mechanical Science and Engineering,

More information

RELATIONS AND FUNCTIONS through

RELATIONS AND FUNCTIONS through RELATIONS AND FUNCTIONS 11.1.2 through 11.1. Relations and Functions establish a correspondence between the input values (usuall ) and the output values (usuall ) according to the particular relation or

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

The Production of Interactive Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum

The Production of Interactive Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum The Production of Interactie Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum Liliana, Kartika Gunadi, Yonathan Rindayanto Ongko Informatics Engineering, Petra Christian

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

AC : ASSESSMENT OF NAVIERSTOKES EQUATIONS IN A FLUID MECHANICS COURSE

AC : ASSESSMENT OF NAVIERSTOKES EQUATIONS IN A FLUID MECHANICS COURSE AC 011-506: ASSESSMENT OF NAVIERSTOKES EQUATIONS IN A FLUID MECHANICS COURSE Msore Naraanan, Miami Uniersit DR. MYSORE NARAYANAN obtained his Ph.D. from the Uniersit of Lierpool, England in the area of

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

Homework 3: Kinematics and Dynamics of Particles Due Friday Feb 15, 2019

Homework 3: Kinematics and Dynamics of Particles Due Friday Feb 15, 2019 EN4: Dnamics and Vibrations Homework 3: Kinematics and Dnamics of Particles Due Frida Feb 15, 19 School of Engineering rown Universit Please submit our solutions to the MTL coding problems 4, 5, 6 b uploading

More information

5.2 Solving Linear-Quadratic Systems

5.2 Solving Linear-Quadratic Systems Name Class Date 5. Solving Linear-Quadratic Sstems Essential Question: How can ou solve a sstem composed of a linear equation in two variables and a quadratic equation in two variables? Resource Locker

More information

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and

EVALUATE: If the angle 40 is replaces by (cable B is vertical), then T = mg and 58 IDENTIY: ppl Newton s 1st law to the wrecing ball Each cable eerts a force on the ball, directed along the cable SET UP: The force diagram for the wrecing ball is setched in igure 58 (a) T cos 40 mg

More information

Session R4F Methods to Formulate and to Solve Problems in Mechanical Engineering

Session R4F Methods to Formulate and to Solve Problems in Mechanical Engineering Methods to Formulate and to Sole Problems in Mechanical Engineering Eusebio Jiménez López, Luis Rees Áila, Francisco Jaier Ochoa Estrella 3, Francisco Galindo Gutiérrez 4, Jaier Ruiz Galán 5, and Esteban

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

Mini-Lecture 8.1 Solving Quadratic Equations by Completing the Square

Mini-Lecture 8.1 Solving Quadratic Equations by Completing the Square Mini-Lecture 8.1 Solving Quadratic Equations b Completing the Square Learning Objectives: 1. Use the square root propert to solve quadratic equations.. Solve quadratic equations b completing the square.

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1 AE/ME 339 Professor of Aerospace Engineering December 21, 2001 topic13_grid_generation 1 The basic idea behind grid generation is the creation of the transformation laws between the phsical space and the

More information

Projectile Motion Exercises

Projectile Motion Exercises Projectile Motion 11.7 Exercises 1 A ball is thrown horizontally from a cliff with a speed of 10ms-I, at the same time as an identical ball is dropped from the cliff. Neglecting the effect of air resistance

More information

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3.

(a)!! d = 17 m [W 63 S]!! d opposite. (b)!! d = 79 cm [E 56 N] = 79 cm [W 56 S] (c)!! d = 44 km [S 27 E] = 44 km [N 27 W] metres. 3. Chapter Reiew, pages 90 95 Knowledge 1. (b). (d) 3. (b) 4. (a) 5. (b) 6. (c) 7. (c) 8. (a) 9. (a) 10. False. A diagram with a scale of 1 cm : 10 cm means that 1 cm on the diagram represents 10 cm in real

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

An example of Lagrangian for a non-holonomic system

An example of Lagrangian for a non-holonomic system Uniersit of North Georgia Nighthaks Open Institutional Repositor Facult Publications Department of Mathematics 9-9-05 An eample of Lagrangian for a non-holonomic sstem Piotr W. Hebda Uniersit of North

More information

LAB 05 Projectile Motion

LAB 05 Projectile Motion LAB 5 Projectile Motion CONTENT: 1. Introduction. Projectile motion A. Setup B. Various characteristics 3. Pre-lab: A. Activities B. Preliminar info C. Quiz 1. Introduction After introducing one-dimensional

More information

WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS

WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS LUBLIN 14 Author: Jarosław Borc, Wiesław Polak Desktop publishing: Paweł Droździel Technical editor: Paweł Droździel Figures: Jarosław Borc,

More information

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the

Final Exam. conflicts with the regular time. Two students have confirmed conflicts with me and will take the Reiew 3 Final Exam A common final exam time is scheduled d for all sections of Phsics 31 Time: Wednesda December 14, from 8-10 pm. Location for section 00 : BPS 1410 (our regular lecture room). This information

More information

Physics Lab 1 - Measurements

Physics Lab 1 - Measurements Phsics 203 - Lab 1 - Measurements Introduction An phsical science requires measurement. This lab will involve making several measurements of the fundamental units of length, mass, and time. There is no

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

Essential Question How can you solve a nonlinear system of equations?

Essential Question How can you solve a nonlinear system of equations? .5 Solving Nonlinear Sstems Essential Question Essential Question How can ou solve a nonlinear sstem of equations? Solving Nonlinear Sstems of Equations Work with a partner. Match each sstem with its graph.

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometr of Space. Vectors in the Plane. Space Coordinates and Vectors in Space. The Dot Product of Two Vectors. The Cross Product of Two Vectors in Space.5 Lines and Planes in Space.6 Surfaces

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Transformation of kinematical quantities from rotating into static coordinate system

Transformation of kinematical quantities from rotating into static coordinate system Transformation of kinematical quantities from rotating into static coordinate sstem Dimitar G Stoanov Facult of Engineering and Pedagog in Sliven, Technical Universit of Sofia 59, Bourgasko Shaussee Blvd,

More information

2 variables. is the same value as the solution of. 1 variable. You can use similar reasoning to solve quadratic equations. Work with a partner.

2 variables. is the same value as the solution of. 1 variable. You can use similar reasoning to solve quadratic equations. Work with a partner. 9. b Graphing Essential Question How can ou use a graph to solve a quadratic equation in one variable? Based on what ou learned about the -intercepts of a graph in Section., it follows that the -intercept

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Review. First Law Review

Review. First Law Review First Law Review 1. Wile E. Coyote runs off the cliff. He correctly follows Newton s law because he was moving forward, so he continues to move forward. However, he now has an unbalanced force acting down

More information

Investigation of Magnetic Field Effect on Natural Convection Flow using Fast Ψ Ω Method

Investigation of Magnetic Field Effect on Natural Convection Flow using Fast Ψ Ω Method International Research Journal of Applied and Basic Sciences 3 Aailable online at www.irjabs.com ISSN 5-838 / ol, 4 (): 939-949 Science Eplorer Publications Inestigation of Magnetic Field Effect on Natural

More information

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula Chapter 13 Overview Some More Math Before You Go The Quadratic Formula The iscriminant Multiplication of Binomials F.O.I.L. Factoring Zero factor propert Graphing Parabolas The Ais of Smmetr, Verte and

More information

Keira Godwin. Time Allotment: 13 days. Unit Objectives: Upon completion of this unit, students will be able to:

Keira Godwin. Time Allotment: 13 days. Unit Objectives: Upon completion of this unit, students will be able to: Keira Godwin Time Allotment: 3 das Unit Objectives: Upon completion of this unit, students will be able to: o Simplif comple rational fractions. o Solve comple rational fractional equations. o Solve quadratic

More information

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics Hans Humenberger: rake applications and the remaining elocity 67 rake applications and the remaining elocity Hans Humenberger Uniersity of Vienna, Faculty of mathematics Abstract It is ery common when

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors 1. Which of the following natural phenomena would serve as the best time standard? a. The mean orbit radius of the earth. b. The period of audible sound waves. c. The time for one

More information

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person.

27 ft 3 adequately describes the volume of a cube with side 3. ft F adequately describes the temperature of a person. VECTORS The stud of ectors is closel related to the stud of such phsical properties as force, motion, elocit, and other related topics. Vectors allow us to model certain characteristics of these phenomena

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Problem 3 Solution Page 1. 1A. Assuming as outlined in the text that the orbit is circular, and relating the radial acceleration

Problem 3 Solution Page 1. 1A. Assuming as outlined in the text that the orbit is circular, and relating the radial acceleration Prolem 3 Solution Page Solution A. Assug as outlined in the text that the orit is circular, and relating the radial acceleration V GM S to the graitational field (where MS is the solar mass we otain Jupiter's

More information

ME224 Lab 5 - Thermal Diffusion

ME224 Lab 5 - Thermal Diffusion ME4 Lab 5 ME4 Lab 5 - hermal Diffusion (his lab is adapted from IBM-PC in the laboratory by B G homson & A F Kuckes, Chapter 5) 1. Introduction he experiments which you will be called upon to do in this

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

VCAA Bulletin. VCE, VCAL and VET. Supplement 2

VCAA Bulletin. VCE, VCAL and VET. Supplement 2 VCE, VCAL and VET VCAA Bulletin Regulations and information about curriculum and assessment for the VCE, VCAL and VET No. 87 April 20 Victorian Certificate of Education Victorian Certificate of Applied

More information

Geometry review, part I

Geometry review, part I Geometr reie, part I Geometr reie I Vectors and points points and ectors Geometric s. coordinate-based (algebraic) approach operations on ectors and points Lines implicit and parametric equations intersections,

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

MAT 1033C -- Martin-Gay Intermediate Algebra Chapter 8 (8.1, 8.2, 8.5, 8.6) Practice for the Exam

MAT 1033C -- Martin-Gay Intermediate Algebra Chapter 8 (8.1, 8.2, 8.5, 8.6) Practice for the Exam MAT 33C -- Martin-Ga Intermediate Algebra Chapter 8 (8.1 8. 8. 8.6) Practice for the Eam Name Date Da/Time: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

Laurie s Notes. Overview of Section 3.5

Laurie s Notes. Overview of Section 3.5 Overview of Section.5 Introduction Sstems of linear equations were solved in Algebra using substitution, elimination, and graphing. These same techniques are applied to nonlinear sstems in this lesson.

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

a [A] +Algebra 2/Trig Final Exam Review Fall Semester x [E] None of these [C] 512 [A] [B] 1) Simplify: [D] x z [E] None of these 2) Simplify: [A]

a [A] +Algebra 2/Trig Final Exam Review Fall Semester x [E] None of these [C] 512 [A] [B] 1) Simplify: [D] x z [E] None of these 2) Simplify: [A] ) Simplif: z z z 6 6 z 6 z 6 ) Simplif: 9 9 0 ) Simplif: a a a 0 a a ) Simplif: 0 0 ) Simplif: 9 9 6) Evaluate: / 6 6 6 ) Rationalize: ) Rationalize: 6 6 0 6 9) Which of the following are polnomials? None

More information

Candidate Number. Other Names

Candidate Number. Other Names Centre Number Surname Candidate Signature Candidate Number Other Names Notice to Candidate. The work ou submit for assessment must be our own. If ou cop from someone else or allow another candidate to

More information

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year :

University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd First Semester Year : Uniersity of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : nd First Semester Year : 16-17 VECTOR FUNCTIONS SECTION 13. Ideal Projectile Motion Ideal Projectile

More information

Speed (km/h) How can you determine the inverse of a function?

Speed (km/h) How can you determine the inverse of a function? .7 Inverse of a Function Engineers have been able to determine the relationship between the speed of a car and its stopping distance. A tpical function describing this relationship is D.v, where D is the

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 60_00.qd //0 :05 PM Page 8 8 CHAPTER Limits and Their Properties Section. Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach. Learn different was that a it can

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n

Power Functions. A polynomial expression is an expression of the form a n. x n 2... a 3. ,..., a n. , a 1. A polynomial function has the form f(x) a n 1.1 Power Functions A rock that is tossed into the water of a calm lake creates ripples that move outward in a circular pattern. The area, A, spanned b the ripples can be modelled b the function A(r) πr,

More information

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions

Pearson Physics Level 20 Unit I Kinematics: Chapter 2 Solutions Pearson Phsics Leel 0 Unit I Kinematics: Chapter Solutions Student Book page 71 Skills Practice Students answers will ar but ma consist of: (a) scale 1 cm : 1 m; ector will be 5 cm long scale 1 m forward

More information

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round

SPH4UIW The Circle Centripetal Acceleration and Circular Motion Round Round SPH4UIW Centripetal Acceleration and Circular Motion The Circle Bablonian Numbers And ou thought our homework was difficult SPH4UIW: Circular Motion, Pg 1 SPH4UIW: Circular Motion, Pg ound ound SPH4UIW:

More information

3.7 Linear and Quadratic Models

3.7 Linear and Quadratic Models 3.7. Linear and Quadratic Models www.ck12.org 3.7 Linear and Quadratic Models Learning Objectives Identif functions using differences and ratios. Write equations for functions. Perform eponential and quadratic

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Newton s first law. Projectile Motion. Newton s First Law. Newton s First Law

Newton s first law. Projectile Motion. Newton s First Law. Newton s First Law Newton s first law Projectile Motion Reading Supplemental Textbook Material Chapter 13 Pages 88-95 An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same

More information

MAGNETIC EFFECTS OF CURRENT-3

MAGNETIC EFFECTS OF CURRENT-3 MAGNETIC EFFECTS OF CURRENT-3 [Motion of a charged particle in Magnetic field] Force On a Charged Particle in Magnetic Field If a particle carrying a positie charge q and moing with elocity enters a magnetic

More information

Physics 203. (approximations and limitations must be recognized) careful observation of natural phenomena essential Physics underlies all sciences

Physics 203. (approximations and limitations must be recognized) careful observation of natural phenomena essential Physics underlies all sciences Phsics 203 for sllabus & important messages see www.phsics.rutgers.edu/~croft Prof. Mark Croft croft T phsics.rutgers.edu Phsics nature of things moing ristotle 350 C Spirit of phsics --e.g. Pthagorean

More information

Additional Factoring Examples:

Additional Factoring Examples: Honors Algebra -3 Solving Quadratic Equations by Graphing and Factoring Learning Targets 1. I can solve quadratic equations by graphing. I can solve quadratic equations by factoring 3. I can write a quadratic

More information

Sample Solutions for Assignment 3.

Sample Solutions for Assignment 3. AMath 383, Autumn Sample Solutions for Assignment 3. Reading: Chs. 4-5.. Eercise 7 of Chapter 3. If $X is invested toda at 3% interest compounded continuousl, then in ears it will be worth Xe (.3 ) = Xe.6.

More information

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1.

Quadratic Equation. ax bx c =. = + + =. Example 2. = + = + = 3 or. The solutions are -7/3 and 1. Quadratic Equation A quadratic equation is any equation that is equialent to the equation in fmat a c + + = 0 (1.1) where a,, and c are coefficients and a 0. The ariale name is ut the same fmat applies

More information

Study on the dynamic response of a curved railway track subjected to harmonic loads based on periodic structure theory

Study on the dynamic response of a curved railway track subjected to harmonic loads based on periodic structure theory Accepted for publication in Proceedings of the Institution of Mechanical Engineers Part, Journal of Rail and Rapid Transit, doi: 10.1177/0954409718754470 Stud on the dnamic response of a cured railwa track

More information

Mth 95 Module 4 Chapter 8 Spring Review - Solving quadratic equations using the quadratic formula

Mth 95 Module 4 Chapter 8 Spring Review - Solving quadratic equations using the quadratic formula Mth 95 Module 4 Chapter 8 Spring 04 Review - Solving quadratic equations using the quadratic formula Write the quadratic formula. The NUMBER of REAL and COMPLEX SOLUTIONS to a quadratic equation ( a b

More information

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square

Chapter 9 Notes Alg. 1H 9-A1 (Lesson 9-3) Solving Quadratic Equations by Finding the Square Root and Completing the Square Chapter Notes Alg. H -A (Lesson -) Solving Quadratic Equations b Finding the Square Root and Completing the Square p. *Calculator Find the Square Root: take the square root of. E: Solve b finding square

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics

More information

Navier-Stokes equations

Navier-Stokes equations Solomon I. Khmelnik Naier-Stokes equations On the eistence and the search method for global solutions Israel 1 1 Copright 1 b Solomon I. Khmelnik All right resered. No portion of this book ma be reproduced

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

Chapter 36 Relativistic Mechanics

Chapter 36 Relativistic Mechanics Chapter 36 Relatiistic Mechanics What is relatiit? Terminolog and phsical framework Galilean relatiit Einstein s relatiit Eents and measurements imultaneit Time dilation Length contraction Lorentz transformations

More information