Clock-Gating and Its Application to Low Power Design of Sequential Circuits

Size: px
Start display at page:

Download "Clock-Gating and Its Application to Low Power Design of Sequential Circuits"

Transcription

1 Clock-Gatng and Its Applcaton to Low Power Desgn of Sequental Crcuts ng WU Department of Electrcal Engneerng-Systems, Unversty of Southern Calforna Los Angeles, CA 989, USA, Phone: (23) Massoud PEDRAM Department of Electrcal Engneerng-Systems, Unversty of Southern Calforna Los Angeles, CA 989, USA, Phone: (23) Xunwe WU Department of Electronc Engneerng, Hangzhou Unversty Hangzhou, Zhejang 328, CHINA ABSTRACT Ths paper models the clock behavor n a sequental crcut by a quaternary varable and uses ths representaton to propose and analyze two clock gatng technques. It then uses the coverng relatonshp between the trggerng transton of the clock and the actve cycles of varous flp-flops to generate a derved clock for each flp-flop n the crcut. Desgn examples usng gated clocks are provded next. Expermental results show that these desgns have deal logc functonalty wth lower power dsspaton compared to tradtonal desgns.

2 Clock-Gatng and Its Applcaton to Low Power Desgn of Sequental Crcuts I. INTRODUCTION The sequental crcuts n a system are consdered major contrbutors to the power dsspaton snce one nput of sequental crcuts s the clock, whch s the only sgnal that swtches all the tme. In addton, the clock sgnal tends to be hghly loaded. To dstrbute the clock and control the clock skew, one needs to construct a clock network (often a clock tree) wth clock buffers. All of ths adds to the capactance of the clock net. Recent studes ndcate that the clock sgnals n dgtal computers consume a large (5% - 45%) percentage of the system power (). Thus, the crcut power can be greatly reduced by reducng the clock power dsspaton. Most efforts for clock power reducton have focused on ssues such as reduced voltage swngs, buffer nserton and clock routng (2). In many cases swtchng of the clock causes a lot of unnecessary gate actvty. For that reason, crcuts are beng developed wth controllable clocks. Ths means that from the master clock other clocks are derved whch, based on certan condtons, can be slowed down or stopped completely wth respect to the master clock. Obvously, ths scheme results n power savngs due to the followng factors: ) Load on the master clock s reduced and the number of requred buffers n the clock tree s decreased. Therefore, the power dsspaton of clock tree can be reduced. 2) The flp-flop recevng the derved clock s not trggered n dle cycles; The correspondng dynamc power dsspaton s thus saved. 3) The exctaton functon of the flp-flop trggered by derved clock may be smplfed snce t has a don t care condton n the cycle when the flp-flop s not trggered by the derved clock. In (3) the authors presented a technque for savng power n the clock tree by stoppng the clock fed nto dle modules. However, a number of engneerng ssues related to the desgn of the clock tree were not addressed and hence, the proposed approach has not been adopted n practce. Ths paper nvestgates varous ssues n dervng a gated clock from a master clock. In secton II, a quaternary varable s used to model the clock behavor and to dscuss ts trggerng acton on flp-flops. Based on ths analyss, two clock-gatng schemes are proposed. In secton III, we use the coverng relaton between the clock and the transton behavors of the trggered flp-flops to derve condtons for gatng the master clock. Two common sequental crcuts,.e. 842 BCD code up-counter and three-excess counter, are then descrbed to llustrate the procedure for fndng a derved clock. In secton IV, a new technque for clock-gatng s presented

3 whch generates a clock synchronous wth the master clock. Ths elmnates the addtonal skew between the master clock and the derved clock. Thus, the desgned sequental crcut s a synchronous one. Fnally, we present crcut smulaton results to prove the qualty of the derved clock and ts ablty to reduce power dsspaton n the crcut. II. DESCRIPTION FOR CLOCK BEHAVIOR AND CLOCK-GATING In a synchronous system, a flp-flop s trggered by a certan drectonal transton of a clock sgnal. For the clock to be another sgnal rather than the master clock, t must offer the same drectonal transton to trgger the flpflop, and t must be n step wth the master clock. For the clock sgnal n a crcut f we denote ts logc values before and after a transton as (t) and (t) respectvely, four combnatons can be used to express dfferent behavors of the clock as shown n Table, where a specal quaternary varable denotes the correspondng behavor. The four values are (,,, ), where, represent two knds of transton behavors and, represent two knds of holdng behavors. (Note that although they have the same forms as sgnal values and, ther meanngs are dfferent.) Table UATERNARY REPRESENTATION FOR BEHAVIORS OF A SIGNAL ( t) ( t) Behavor -holdng -transton -transton -holdng In addton, we can also defne a lteral operaton to dentfy the behavor of a clock: f = b b = () f b, where {,,,}. Thus, the rsng transton and the fallng transton of a clock are bnary varables b and can serve as arguments of Boolean operatons. For example, from Table we have

4 =, =, = and =. Assume that there are n flp-flops n a sequental crcut and that ther outputs and clock nputs are denoted by and, =,,«,n-, respectvely. For a synchronous sequental crcut, we have =, namely all flpflops are trggered by the same master clock sgnal. However, f a flp-flop s to be dsconnected from the master clock durng some (dle) cycles, then we have to use a derved clock for. Notce that ths derved clock should be n step wth the master clock for the crcuts to reman synchronous. Generally, we consder that the derved clock s obtaned from the master clock and the outputs of other flpflops,,,,, (whch make transtons followng the trggerng transton of ther respectve, n clocks.) Snce both AND gatng and OR gatng can be used for controllng the master clock, we have the followng two clock-gatng forms = g p, (2) = g ( p ), (3) where g and p are functons of flp-flop outputs,,,,., n Consder a flp-flop trggered by the fallng clock transton as an example (.e. a negatve edge-trggered flpflop). The tmng relatonshps of, p, p and p are shown n Fg.. Note that p exhbts a delay wth respect to the fallng transton of clock, may have gltches (represented by vertcal grd lnes), and has ts fnal stable value n the zone where =. We can see that p cannot restran the gltches, and may even lead to an extra gltch. Therefore, (2) s sutable for the negatve trggered flp-flop whle (3) s not. Note that g n (2) must be gltch-free when =. The above dscusson shows that the fallng transton of n (2) occurs for the followng two cases: () When g = and p =, fallng transton of leads to fallng transton of the derved clock. Therefore, p may be named the transton propagate term. (2) When g = and g makes a fallng transton, the derved clock makes a fallng transton snce (and p ) s at that tme nstance. Therefore, g may be named the transton generate term. Fgure Tmng relatonshp of, p (g ), p and p From ths analyss, we obtan

5 = g g p. (4) Smlarly, we can fnd that the derved clock sgnal n (3) s sutable for the flp-flops trggered by the rsng clock transton. Here g n (3) must be gltch-free when =. The rsng transton of can be expressed as = g g p. (5) It should be ponted out that the attached crcutry needed for generatng the derved clock should be smple to avod excessve power dsspaton due to ths overhead crcutry. Therefore g and p n (2) and (3) should be relatvely smple functons. Especally, we requre g to be smple to avod dangerous gltches. Note that f g =, p = n (2) or g =, p = n (3), we return to the condton of applyng the master clock n a synchronous sequental crcut. III. DESIGN OF SEUENTIAL CIRCUITS BASED ON DERIVED CLOCK Assume that the derved clock for the flp-flop s. Fallng transtons of have to cover all cycles when the flp-flop makes transtons, and. The coverng relaton can be expressed as: ( ). (6) Snce AND operaton and OR operaton can be nterpreted as mnmum operaton and maxmum operaton on Boolean varables,.e. x y = mn( x, y) and x y = max( x, y), we can get the followng equatons from (6) ( ) = ( ), (7) ( ) =. (8) Therefore, we should obtan ( ), frst. Then we generate the derved clock for flp-flop, We wll show the procedure by usng desgn examples. Example. Desgn of an 842 BCD code up-counter The next states and state behavors of an 842 BCD code up-counter are shown n Table 2, where behavor of each flp-flop ( ) s denoted by. From Table 2, the correspondng next state Karnaugh maps and behavor Karnaugh maps may be obtaned, as shown n Fg.2(a) and 2(b). In these maps an empty box represents

6 the don t care condton. The two transton functons for each flp-flop can be derved from ther correspondng behavor Karnaugh maps as below: Table 2 NEXT STATES AND STATE BEHAVIORS OF AN 842 BCD CODE UP-COUNTER = 2, 3 = 3 ; (9) 2 = 2, = 2 2 ; () = 3, = 3 ; () =, =. (2) Therefore, we have 3 3 = ( 3 2 ), (3) 2 2 =, (4)

7 = 3, (5). (6) = From (3)-(5) we fnd that ( ), ( =,2,3). Accordng to (2), = can serve as the needed fallng transton trgger for flp-flops, 2, and 3, namely wth (4), we get g =, p = and =. ( =,2,3). 2 = 3 = =. Comparng these As for, (6) ndcates that the clock for s no other than the master clock. Snce we only need take care of the exctaton nput when the flp-flop receves a trggerng fallng clock transton (.e. entres n map), we don t care what the exctaton nputs n other condtons are. Therefore the next state Karnaugh maps for flpflops, 2, and 3 n Fg.2(a) can be smplfed to those shown n Fg.2(c). Fgure 2 (a) Next state Karnaugh maps, (b) behavor Karnaugh maps, (c) smplfed next state Karnaugh maps From Fg.2(a),(c) we can get the correspondng both synchronous and asynchronous desgns, as shown n Fg.3. (We say asynchronous, because now not all flp-flops are trggered at the same tme.) Obvously the correspondng combnatonal crcuts are smpler. Besdes, snce three flp-flops 3, 2, have no dynamc power dsspaton half of the tme when there s no clock trggerng, and because the smpler combnatonal crcuts has lower node capactance, the asynchronous desgn s savng power. Fgure 3 Crcut realzatons of BCD code up-counter (a) synchronous desgn, (b) asynchronous desgn Example 2. Desgn of an excess-three code up-counter The next state and state transton of an excess-three code up-counter are shown n Table 3. Transton functons for each flp-flop can be derved as below 3 = 2, = ; (7) 2 = 2, = ( ) 2 ; (8) = ( 3 2 ), = ; (9)

8 =, =. (2) Table 3 THE NEXT STATES AND STATE BEHAVIORS OF A EXCESS-THREE CODE UP-COUNTER Therefore, we have 3 3 = ( ) 2, (2) = 2 ( 3 2 ) = ( = ), (22) = ( 3 2 ) = ( 3 2 ), (23). (24) = Based on (2) and (4), (23) and (24) can be re-expressed as 2 2 = [ ( 3 2 ) ], (25)

9 = [ ( 3 2 ) ], (26) Obvously, f we take 3 = 2, 2 = [ ( 3 2 ) ], = [ ( 3 2 ) ] and =, the coverng relaton wll set the exctaton functons of all the four flp-flops as D = ( =,,2,3). On the other hand, f we use the master clock for trggerng all four flp-flops, we obtan the followng complcated exctaton functons: D =, D =, D =, 3 2 D =. Snce the above D 3, D 2 and D have complcated forms ther correspondng synchronous crcut realzaton wll have a complcated combnatonal crcut wth more node capactance and hence hgher power dsspaton. On the other hand, the correspondng asynchronous crcut realzaton wth D = savng snce the four flp-flops are solated from the trggerng clock n the dle cycles. s much smpler. There s power IV. SYNCHRONOUS DERIVED CLOCK AND ITS APPLICATION In the Example of the last secton we take =, ( =,2,3). From (2) we can also wrte as =, ( =,2,3). Comparng ths wth (4), we have g =, p = and =. Accordng to ths form of the derved clock we get another asynchronous desgn, as shown n Fg.4(a). At the frst glance, the crcut has one AND gate more than the desgn n Fg.3(b). Besdes, t appears that the derved clock -3 may have an ncreased phase delay. However, the tmng relaton shown n Fg. ndcates that the transton delay of -3 s ndependent of the delay of the output. The delay between and -3 s only 2t g (t g s the average delay of a gate), whch s less than the delay of the flp-flop output. Fgure 4. BCD code up-counter by gatng clock (a) asynchronous desgn, (b) synchronous desgn Based on the above dscusson, we can rewrte * = as =. Besdes, we take from the prevous stage of the clock tree. Thus, we obtan a new desgn, as shown n Fg.4(b). If we consder delay of the

10 nverter and NOR gate beng roughly the same, the fallng transtons of and * 3 n the crcut wll occur smultaneously. Ths desgn s synchronous n the sense that all flp-flops are trggered n synchrony wth the global clock. We smulated the new desgn n Fg.4(b) by SPICE 3f3 usng 2µ CMOS technology, whch proved that the new desgn has an deal logc operaton. We also measure the power dsspaton of two synchronous desgns n Fg.3(a) and Fg.4(b). The power dsspaton dagrams are shown n Fg.5, and prove that the new desgn reduces the power dsspaton by 22%. Fgure 5. Power dsspaton dagram V. CONCLUSION The behavoral descrpton of a clock s the bass to analyze ts trggerng acton on flp-flops. Based on t, two types of clock-gatng were ntroduced to form a derved clock. We showed that the procedure for desgnng a derved clock can be systematzed so as to solate the trggered flp-flop from the master clock n ts dle cycles. The acheved power savng can be sgnfcant. However, the addtonal clock skew may lower the maxmum operaton frequency. Based on analyzng the tmng relaton n clock-gatng, we then presented a new technque for generatng the derved clock, whch s synchronous wth the master clock. Crcut smulaton proved the qualty of the new derved clock and ts capablty to reduce power dsspaton. The engneerng ssues mentoned n (3) have thus been resolved for practcal applcaton, openng the path for wde-spread adopton of the clock-gatng technque n low power desgn of custom ICs.

11 REFERENCES. M. Pedram, Power mnmzaton n IC Desgn: Prncples and applcatons, ACM Transactons on Desgn Automaton, vol., no., pp.3-56, Jan G. Fredman, Clock dstrbuton desgn n VLSI crcuts: an overvew, n Proc. IEEE ISCAS, San Jose, pp , May E. Tellez, A. Farrah and M. Sarrafzadeh, Actvty-drven clock desgn for low power crcuts, n Proc. IEEE ICCAD, San Jose, pp.62-65, Nov. 995.

12 Fg. Tmng relatonshp of, p (g ), p and p p (g ) p p extra gltch Fg.2. (a) Next state Karnaugh maps, (b) behavor Karnaugh maps, (c) smplfed next state Karnaugh maps (a) (b) (c) 3 2

13 Fg 3. Crcut realzatons of BCD code up-counter (a) synchronous desgn, (b) asynchronous desgn (a) D D D 2 2 D (b) D D D 2 2 D Fg 4. BCD code up-counter by gatng clock (a) asynchronous desgn, (b) synchronous desgn D D, 2, 3, 2, 3-3 Clk * -3 (a) (b)

14 Fg. 5. Power dsspaton dagram x.9.8 Fg. 3(a) energy dsspaton Fg. 4(b) tme x 8

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

Clock-Gating and Its Application to Low Power Design of Sequential Circuits

Clock-Gating and Its Application to Low Power Design of Sequential Circuits 415 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 103, MARCH 2000 [13] E. Ott, C. Grebogi, and J. A. Yorke, Controlling chaos, Phys. Rev. Lett., vol. 64,

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Gated Clock Routing Minimizing the Switched Capacitance *

Gated Clock Routing Minimizing the Switched Capacitance * Gated Clock Routng Mnmzng the Swtched Capactance * Jaewon Oh and Massoud Pedram Dept. of Electrcal Engneerng Systems Unversty of Southern Calforna Los Angeles, CA 989 Tel: (3) 74-448 e-mal: [oh, massoud]@zugros.usc.edu

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits

Odd/Even Scroll Generation with Inductorless Chua s and Wien Bridge Oscillator Circuits Watcharn Jantanate, Peter A. Chayasena, Sarawut Sutorn Odd/Even Scroll Generaton wth Inductorless Chua s and Wen Brdge Oscllator Crcuts Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * School

More information

Improvement of Histogram Equalization for Minimum Mean Brightness Error

Improvement of Histogram Equalization for Minimum Mean Brightness Error Proceedngs of the 7 WSEAS Int. Conference on Crcuts, Systems, Sgnal and elecommuncatons, Gold Coast, Australa, January 7-9, 7 3 Improvement of Hstogram Equalzaton for Mnmum Mean Brghtness Error AAPOG PHAHUA*,

More information

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN Int. J. Chem. Sc.: (4), 04, 645654 ISSN 097768X www.sadgurupublcatons.com COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN R. GOVINDARASU a, R. PARTHIBAN a and P. K. BHABA b* a Department

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Coarse-Grain MTCMOS Sleep

Coarse-Grain MTCMOS Sleep Coarse-Gran MTCMOS Sleep Transstor Szng Usng Delay Budgetng Ehsan Pakbazna and Massoud Pedram Unversty of Southern Calforna Dept. of Electrcal Engneerng DATE-08 Munch, Germany Leakage n CMOS Technology

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features Analyss of the Magnetomotve Force of a Three-Phase Wndng wth Concentrated Cols and Dfferent Symmetry Features Deter Gerlng Unversty of Federal Defense Munch, Neubberg, 85579, Germany Emal: Deter.Gerlng@unbw.de

More information

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES Abdelkader Benchou, PhD Canddate Nasreddne Benmoussa, PhD Kherreddne Ghaffour, PhD Unversty of Tlemcen/Unt of Materals

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl RECURSIVE SPLINE INTERPOLATION METHOD FOR REAL TIME ENGINE CONTROL APPLICATIONS A. Stotsky Volvo Car Corporaton Engne Desgn and Development Dept. 97542, HA1N, SE- 405 31 Gothenburg Sweden. Emal: astotsky@volvocars.com

More information

Regularized Discriminant Analysis for Face Recognition

Regularized Discriminant Analysis for Face Recognition 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs Interconnect Optmzaton for Deep-Submcron and Gga-Hertz ICs Le He http://cadlab.cs.ucla.edu/~hele UCLA Computer Scence Department Los Angeles, CA 90095 Outlne Background and overvew LR-based STIS optmzaton

More information

Run-time Active Leakage Reduction By Power Gating And Reverse Body Biasing: An Energy View

Run-time Active Leakage Reduction By Power Gating And Reverse Body Biasing: An Energy View Run-tme Actve Leakage Reducton By Power Gatng And Reverse Body Basng: An Energy Vew Hao Xu, Ranga Vemur and Wen-Ben Jone Department of Electrcal and Computer Engneerng, Unversty of Cncnnat Cncnnat, Oho

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan Wnter 2008 CS567 Stochastc Lnear/Integer Programmng Guest Lecturer: Xu, Huan Class 2: More Modelng Examples 1 Capacty Expanson Capacty expanson models optmal choces of the tmng and levels of nvestments

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE

NON LINEAR ANALYSIS OF STRUCTURES ACCORDING TO NEW EUROPEAN DESIGN CODE October 1-17, 008, Bejng, Chna NON LINEAR ANALYSIS OF SRUCURES ACCORDING O NEW EUROPEAN DESIGN CODE D. Mestrovc 1, D. Czmar and M. Pende 3 1 Professor, Dept. of Structural Engneerng, Faculty of Cvl Engneerng,

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

DESIGN AND ANALYSIS OF NEGATIVE VALUE CIRCUIT COMPONENTS IN PSPICE SIMULATION SOFTWARE

DESIGN AND ANALYSIS OF NEGATIVE VALUE CIRCUIT COMPONENTS IN PSPICE SIMULATION SOFTWARE Computer Modellng and New Technologes, 2013, vol. 17, no. 2, 53 59 Transport and Telecommuncaton Insttute, Lomonosov 1, LV-1019, Rga, Latva DESIGN AND ANALYSIS OF NEGATIVE VALUE CIRCUIT COMPONENTS IN PSPICE

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Identification of Wind Turbine Model for Controller Design

Identification of Wind Turbine Model for Controller Design Identfcaton of Wnd Turbne Model for Controller Desgn M. Jelavć *, N. Perć *, I. Petrovć * * Unversty of Zagreb / Faculty of Electrcal Engneerng and Computng, Zagreb, Croata Abstract Wnd power ncreases

More information

Compilers. Spring term. Alfonso Ortega: Enrique Alfonseca: Chapter 4: Syntactic analysis

Compilers. Spring term. Alfonso Ortega: Enrique Alfonseca: Chapter 4: Syntactic analysis Complers Sprng term Alfonso Ortega: alfonso.ortega@uam.es nrque Alfonseca: enrque.alfonseca@uam.es Chapter : Syntactc analyss. Introducton. Bottom-up Analyss Syntax Analyser Concepts It analyses the context-ndependent

More information

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques Effectve Power Optmzaton combnng Placement, Szng, and Mult-Vt technques Tao Luo, Davd Newmark*, and Davd Z Pan Department of Electrcal and Computer Engneerng, Unversty of Texas at Austn *Advanced Mcro

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing

Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing Leakage and Dynamc Gltch Power Mnmzaton Usng Integer Lnear Programmng for V th Assgnment and Path Balancng Yuanln Lu and Vshwan D. Agrawal Auburn Unversty, Department of ECE, Auburn, AL 36849, USA luyuanl@auburn.edu,

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Experience with Automatic Generation Control (AGC) Dynamic Simulation in PSS E

Experience with Automatic Generation Control (AGC) Dynamic Simulation in PSS E Semens Industry, Inc. Power Technology Issue 113 Experence wth Automatc Generaton Control (AGC) Dynamc Smulaton n PSS E Lu Wang, Ph.D. Staff Software Engneer lu_wang@semens.com Dngguo Chen, Ph.D. Staff

More information

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion Assessment of Ste Amplfcaton Effect from Input Energy Spectra of Strong Ground Moton M.S. Gong & L.L Xe Key Laboratory of Earthquake Engneerng and Engneerng Vbraton,Insttute of Engneerng Mechancs, CEA,

More information

Lecture 4: Adders. Computer Systems Laboratory Stanford University

Lecture 4: Adders. Computer Systems Laboratory Stanford University Lecture 4: Adders Computer Systems Laboratory Stanford Unversty horowtz@stanford.edu Copyrght 2004 by Mark Horowtz (w/ Fgures from Hgh-Performance Mcroprocessor Desgn IEEE And Fgures from Bora Nkolc 1

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Analysis of Queuing Delay in Multimedia Gateway Call Routing

Analysis of Queuing Delay in Multimedia Gateway Call Routing Analyss of Queung Delay n Multmeda ateway Call Routng Qwe Huang UTtarcom Inc, 33 Wood Ave. outh Iseln, NJ 08830, U..A Errol Lloyd Computer Informaton cences Department, Unv. of Delaware, Newark, DE 976,

More information

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration

Managing Capacity Through Reward Programs. on-line companion page. Byung-Do Kim Seoul National University College of Business Administration Managng Caacty Through eward Programs on-lne comanon age Byung-Do Km Seoul Natonal Unversty College of Busness Admnstraton Mengze Sh Unversty of Toronto otman School of Management Toronto ON M5S E6 Canada

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL The Synchronous 8th-Order Dfferental Attack on 12 Rounds of the Block Cpher HyRAL Yasutaka Igarash, Sej Fukushma, and Tomohro Hachno Kagoshma Unversty, Kagoshma, Japan Emal: {garash, fukushma, hachno}@eee.kagoshma-u.ac.jp

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Fast Power Network Analysis with Multiple Clock Domains

Fast Power Network Analysis with Multiple Clock Domains Fast ower etwork Analyss wth Multple Clock Domans Wanpng Zhang 1, Lng Zhang 1, Ru Sh 1, He eng 1, Zh Zhu 2 Lew Chua-Eoan 2, Raeev Murga 3,Toshyuk Shbuya 4, uryok Ito 5, Chung-Kuan Cheng 1 1 {w7zhang, lzhang,

More information

arxiv:cs.cv/ Jun 2000

arxiv:cs.cv/ Jun 2000 Correlaton over Decomposed Sgnals: A Non-Lnear Approach to Fast and Effectve Sequences Comparson Lucano da Fontoura Costa arxv:cs.cv/0006040 28 Jun 2000 Cybernetc Vson Research Group IFSC Unversty of São

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

Experimental Study on Ultimate Strength of Flexural-Failure-Type RC Beams under Impact Loading

Experimental Study on Ultimate Strength of Flexural-Failure-Type RC Beams under Impact Loading xpermental Study on Ultmate Strength of Flexural-Falure-Type RC Beams under Impact Loadng N. Ksh 1), O. Nakano 2~, K. G. Matsuoka 1), and T. Ando 1~ 1) Dept. of Cvl ngneerng, Muroran Insttute of Technology,

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

A Simple Inventory System

A Simple Inventory System A Smple Inventory System Lawrence M. Leems and Stephen K. Park, Dscrete-Event Smulaton: A Frst Course, Prentce Hall, 2006 Hu Chen Computer Scence Vrgna State Unversty Petersburg, Vrgna February 8, 2017

More information