Regularized Discriminant Analysis for Face Recognition

Size: px
Start display at page:

Download "Regularized Discriminant Analysis for Face Recognition"

Transcription

1 1 Regularzed Dscrmnant Analyss for Face Recognton Itz Pma, Mayer Aladem Department of Electrcal and Computer Engneerng, Ben-Guron Unversty of the Negev P.O.Box 653, Beer-Sheva, 845, Israel. Abstract Ths paper studes Regularzed Dscrmnant Analyss (RDA) n the context of face recognton. We chec RDA senstvty to dfferent photometrc preprocessng methods and compare ts performance to other classfers. Our study shows that RDA s better able to extract the relevant dscrmnatory nformaton from tranng data than the other classfers tested, thus obtanng a lower error rate. Moreover, RDA s robust under varous lghtng condtons whle the other classfers perform badly when no photometrc method s appled. Keywords: face recognton, feature extracton, regularzaton, prncpal component analyss, dscrmnant analyss, photometrc preprocessng. 1 Introducton Ths study compares the performance of Regularzed Dscrmnant Analyss [2] (RDA) wth that of two classfers: L2 (Eucldean dstance) and angle (Normalzed Correlaton), usually used for face recognton. In sayng L2 and angle we mean that we use a nearest center classfer usng those dstance metrcs. The potental of extractng the relevant dscrmnatory nformaton from a small amount of tranng data usng RDA motvated us to explore RDA n the context of face recognton. We would le to state here that ths s the frst applcaton of RDA [2] to face recognton. In order to study the effcacy of the RDA for face recognton we have desgned experments n whch a small number of faces are represented n both Prncpal Component Analyss (PCA) features usng Egenfaces [1] and Lnear Dscrmnant Analyss (LDA) features usng Fsherfaces [4]. Our goal was to study RDA s behavor wth two completely dfferent data types: one that s obtaned by PCA, whch s smply data compresson, and the other, obtaned by LDA, that yelds hghly separated data. Moreover we also studed the effect of mage photometrc preprocessng methods on the performances of the classfers. The paper s organzed as follows. In the next secton we explan the applcaton of the RDA to face classfcaton. Secton 3 ntroduces the face database used for ths

2 2 wor and descrbes the experments carred out and ther obectves. Fnally, n Secton 4, conclusons are drawn from the results obtaned. 2. RDA Face Classfcaton Assume that we have tranng mages slced nto column vectors ( ) z ( 1 n ) for =1,2,,g. Each z ( ) belongs to one of the g classes C 1, C2,..., Cg where z ( ) s an mage taen from class C. Here, n s the number of mages from class C. The dmenson of ( ) z s P = N M (the number of pxels n the face mage). In ths wor we use the lnear mappng ( ) T ( ) x = V z, where V s a P S transformaton matrx for S P (usually S << P ). The S- dmensonal vector ( ) x s named feature vector. We compute V usng PCA (Egenfaces [1]) and LDA (Fsherfaces [4]). Then we use PCA and LDA features as nput of the RDA classfer. RDA [2] s a modfcaton of the Quadratc Dscrmnant Analyss (QDA) [5]. QDA assgns an arbtrary face represented by feature vector x to class f D ( x ) > D ( x), 1 m, g, m m D, where T 1 ( ) = ( x - µ ) Σ ( x - µ ) + ln Σ 2ln( P( ) ) x. Here P ( ), µ and Σ are ML estmators [5] of the a-pror probablty, mean and the covarance matrx of the feature vectors from class. A problem wth the QDA classfer occurs when the class sample szes n are small compared wth the dmenson of the feature space S. In ths case, the covarance matrces estmates become hghly varable. In order to solve ths problem, n RDA [2] the classcondtonal covarance matrces Σ n ( x) D are replaced by a regularzed estmate

3 3 Σ ( λ, γ). Followng Fredman [2], we frst compute the pooled (wthn-class) sample covarance matrx Σ = g = 1 P ( ) Σ. Then usng a regularzaton parameter λ we get ( λ) ( 1 λ) P( ) Σ + ( 1 λ) P( ) + λ λσ Σ =, λ 1. Fnally, usng another regularzaton parameter γ, we have Σ γ λ, = [ ]I, γ 1. S ( γ) ( 1 γ) Σ ( λ) + trace Σ ( λ) The parameter λ converts the class covarance matrx ( λ) Σ to a lnear combnaton of Σ and Σ. The second parameter, γ, shrns ( λ) Σ toward a multple of the dentty matrx. The sutable values of λ and γ are determned by the model selecton procedure [2]. Ths procedure sets a 2-dmensonal grd of ponts on the λ and γ plane ( λ 1, γ 1), evaluates the cross-valdated estmate of msclassfcaton rs at each prescrbed pont on the grd, and then chooses the pont wth the smallest estmated rs as our sutable values of the regularzaton parameters λ, γ. In our experments we set the values λ, γ =.1,.25,.,.75, 1., and appled leave-one-out cross-valdaton procedure [5]. Note that for λ = 1 and γ =.1 we get Σ ( λ, γ) Σ and we carry out lnear dscrmnant classfcaton [5]. For λ = 1 and γ = 1, RDA corresponds to the L2 classfer. Holdng γ = and varyng λ produces classfers between QDA and lnear dscrmnant classfcaton. 3. Expermental Study All of our experments are based on the Olvett Research Laboratory (ORL) face database (retreved from ftp://ftp.u.research.att.com:pub/data/att_faces.tar.z ). Snce we checed the performances of some preprocessng photometrc methods we had changed the lghtng n the database randomly.

4 4 The ORL database structure contans dfferent mages of dstnct subects (persons). As most researchers dd, we used 5 mages from every class for tranng and 5 mages per test and a sze of pxels for each mage. We performed a number of experments employng dfferent photometrc normalzaton, features (PCA and LDA), decson rules (RDA, L2 and angle). Followng [3] we focused on the photometrc methods based on mage normalzaton and hstogram equalzaton. The number of LDA features runs from 3 to 39 wth steps of 3 (the last step s 2) where 39 s the maxmal number avalable for the LDA. The number of PCA features was to 199 wth steps of (the last step s 9), where 199 s the maxmal number avalable for the PCA. For every preprocessng photometrc methods, and for every dfferent feature dmenson (for PCA and LDA) we ran RDA, L2 and angle classfers. In Fgs 1 and 2 we show the test error rates obtaned. 4. Dscusson and Conclusons It s clear from loong at the results that RDA outperforms the L2 and angle classfers when usng the PCA feature extracton method (Fg. 1), but ths phenomenon s not so obvous when usng the LDA feature extracton method (Fg. 2). The best classfcaton results are attaned when usng RDA wth PCA (Fg. 1a) for hstogram equalzaton when the features dmenson s between and (error rates are.5% to 11.5%). Ths s a remarable feature of RDA because reports n the lterature usually state that LDA s better than PCA snce LDA extracts the relevant nformaton whle PCA only compresses t. Loong at Fg. 1, presentng the results for PCA, we found that the RDA classfer does not need any preprocessng to acheve good results. Ths can save precous tme when demandng real tme applcatons are used.

5 5 An nterestng pont s the non-monotonc behavor of the RDA errors usng PCA features for mage normalzaton n the dmensons 1 and for hstogram equalzaton n the dmensons - 1. The reason for ths s that the model selecton procedure selected the values λ =.1 and γ =.1 as ts sutable parameters. These values cause RDA to act as QDA (see end of Secton 2 and [2]), whch ncreases the rs of over-fttng, resultng n a large test error rate. For the hgher dmenson the parameters λ, γ are set to be other than.1, RDA produces classfers between QDA, LDA and L2, thus reducng the rs of over-fttng and decreasng the test error rate. Fnally the maor features of RDA are ts ablty to extract relevant dscrmnatory nformaton and ts robustness to lghtng changes. Support Vector machne (SVM) shares the same features [3]. It s nterestng to compare RDA and SVM, whch s an obect of our future research. References 1.M. Tur, A. Pentland, Egenfaces for Recognton, Journal of Cogntve Neuroscence, 3 (1), 1991, pp J. H. Fredman, Regularzed Dscrmnant Analyss, Journal of the Amercan Statstcal Assocaton, 84 (5), 1989, pp K. Jonsson, J. Kttler,YPL, J. Matas, Support Vector Machnes for Face Authentcaton, Image and Vson Computng, (5-6), 2, pp K. Etemad, R. Chellappa, Dscrmnant Analyss for Recognton of Human Face Images, Journal of Optcal Socety of Amerca A, 1997, pp R.O. Duda, P.E. Hart, D.J. Stor, Pattern Classfcaton and Scene Analyss, John Wley & Sons, New Yor, 1.

6 6 RDA classfer No Preprocessng Image Normalzaton Hstogram Equalzaton RDA classfer No Preprocessng Image Normalzaton Hstogram Equalzaton PCA Feature Vectors Dmenson (a) LDA Feature Vectors Dmenson (a) L2 classfer No Preprocessng Image Normalzaton Hstogram Equalzaton L2 classfer No Preprocessng Image Normalzaton Hstogram Equalzaton PCA Feature Vectors Dmenson (b) LDA Feature Vectors Dmenson (b) Angle classfer No Preprocessng Image Normalzaton Hstogram Equalzaton Angle classfer No Preprocessng Image Normalzaton Hstogram Equalzaton PCA Feature Vectors Dmenson (c) Fgure 1. Classfers' error rates wth dfferent preprocessng types versus dfferent PCA features dmensons: (a) RDA classfer, (b) L2 classfer, (c) Angle classfer LDA Feature Vectors Dmenson (c) Fgure 2. Classfers' error rates wth dfferent preprocessng types versus dfferent LDA features dmensons: (a) RDA classfer, (b) L2 classfer, (c) Angle classfer.

7 7

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

A Novel Biometric Feature Extraction Algorithm using Two Dimensional Fisherface in 2DPCA subspace for Face Recognition

A Novel Biometric Feature Extraction Algorithm using Two Dimensional Fisherface in 2DPCA subspace for Face Recognition A Novel ometrc Feature Extracton Algorthm usng wo Dmensonal Fsherface n 2DPA subspace for Face Recognton R. M. MUELO, W.L. WOO, and S.S. DLAY School of Electrcal, Electronc and omputer Engneerng Unversty

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Unified Subspace Analysis for Face Recognition

Unified Subspace Analysis for Face Recognition Unfed Subspace Analyss for Face Recognton Xaogang Wang and Xaoou Tang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang, xtang}@e.cuhk.edu.hk Abstract PCA, LDA

More information

Subspace Learning Based on Tensor Analysis. by Deng Cai, Xiaofei He, and Jiawei Han

Subspace Learning Based on Tensor Analysis. by Deng Cai, Xiaofei He, and Jiawei Han Report No. UIUCDCS-R-2005-2572 UILU-ENG-2005-1767 Subspace Learnng Based on Tensor Analyss by Deng Ca, Xaofe He, and Jawe Han May 2005 Subspace Learnng Based on Tensor Analyss Deng Ca Xaofe He Jawe Han

More information

Tensor Subspace Analysis

Tensor Subspace Analysis Tensor Subspace Analyss Xaofe He 1 Deng Ca Partha Nyog 1 1 Department of Computer Scence, Unversty of Chcago {xaofe, nyog}@cs.uchcago.edu Department of Computer Scence, Unversty of Illnos at Urbana-Champagn

More information

A New Facial Expression Recognition Method Based on * Local Gabor Filter Bank and PCA plus LDA

A New Facial Expression Recognition Method Based on * Local Gabor Filter Bank and PCA plus LDA Hong-Bo Deng, Lan-Wen Jn, L-Xn Zhen, Jan-Cheng Huang A New Facal Expresson Recognton Method Based on Local Gabor Flter Bank and PCA plus LDA A New Facal Expresson Recognton Method Based on * Local Gabor

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN S. Chtwong, S. Wtthayapradt, S. Intajag, and F. Cheevasuvt Faculty of Engneerng, Kng Mongkut s Insttute of Technology

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Rotation Invariant Shape Contexts based on Feature-space Fourier Transformation

Rotation Invariant Shape Contexts based on Feature-space Fourier Transformation Fourth Internatonal Conference on Image and Graphcs Rotaton Invarant Shape Contexts based on Feature-space Fourer Transformaton Su Yang 1, Yuanyuan Wang Dept of Computer Scence and Engneerng, Fudan Unversty,

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

Using Random Subspace to Combine Multiple Features for Face Recognition

Using Random Subspace to Combine Multiple Features for Face Recognition Usng Random Subspace to Combne Multple Features for Face Recognton Xaogang Wang and Xaoou ang Department of Informaton Engneerng he Chnese Unversty of Hong Kong Shatn, Hong Kong {xgwang1, xtang}@e.cuhk.edu.hk

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Regularized Discriminant Analysis for High Dimensional, Low Sample Size Data

Regularized Discriminant Analysis for High Dimensional, Low Sample Size Data Regularzed Dscrmnant Analyss for Hgh Dmensonal, Low Sample Sze Data Jepng Ye Arzona State Unversty Tempe, AZ 85287 jepng.ye@asu.edu Te Wang Arzona State Unversty Tempe, AZ 85287 te.wang@asu.edu ABSTRACT

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

Multi-Task Learning in Heterogeneous Feature Spaces

Multi-Task Learning in Heterogeneous Feature Spaces Proceedngs of the Twenty-Ffth AAAI Conference on Artfcal Intellgence Mult-Task Learnng n Heterogeneous Feature Spaces Yu Zhang & Dt-Yan Yeung Department of Computer Scence and Engneerng Hong Kong Unversty

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Efficient and Robust Feature Extraction by Maximum Margin Criterion

Efficient and Robust Feature Extraction by Maximum Margin Criterion Effcent and Robust Feature Extracton by Maxmum Margn Crteron Hafeng L Tao Jang Department of Computer Scence Unversty of Calforna Rversde, CA 95 {hl,jang}@cs.ucr.edu Keshu Zhang Department of Electrcal

More information

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the ermsson of the authors and the ublsher Chater

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

BACKGROUND SUBTRACTION WITH EIGEN BACKGROUND METHODS USING MATLAB

BACKGROUND SUBTRACTION WITH EIGEN BACKGROUND METHODS USING MATLAB BACKGROUND SUBTRACTION WITH EIGEN BACKGROUND METHODS USING MATLAB 1 Ilmyat Sar 2 Nola Marna 1 Pusat Stud Komputas Matematka, Unverstas Gunadarma e-mal: lmyat@staff.gunadarma.ac.d 2 Pusat Stud Komputas

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Learning with Tensor Representation

Learning with Tensor Representation Report No. UIUCDCS-R-2006-276 UILU-ENG-2006-748 Learnng wth Tensor Representaton by Deng Ca, Xaofe He, and Jawe Han Aprl 2006 Learnng wth Tensor Representaton Deng Ca Xaofe He Jawe Han Department of Computer

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Kernel Maximum a Posteriori Classification with Error Bound Analysis

Kernel Maximum a Posteriori Classification with Error Bound Analysis Kernel Maxmum a Posteror Classfcaton wth Error Bound Analyss Zengln Xu, Kazhu Huang, Janke Zhu, Irwn Kng, and Mchael R. Lyu Dept. of Computer Scence and Engneerng, The Chnese Unv. of Hong Kong, Shatn,

More information

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu

BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS. M. Krishna Reddy, B. Naveen Kumar and Y. Ramu BOOTSTRAP METHOD FOR TESTING OF EQUALITY OF SEVERAL MEANS M. Krshna Reddy, B. Naveen Kumar and Y. Ramu Department of Statstcs, Osmana Unversty, Hyderabad -500 007, Inda. nanbyrozu@gmal.com, ramu0@gmal.com

More information

Evaluation of simple performance measures for tuning SVM hyperparameters

Evaluation of simple performance measures for tuning SVM hyperparameters Evaluaton of smple performance measures for tunng SVM hyperparameters Kabo Duan, S Sathya Keerth, Aun Neow Poo Department of Mechancal Engneerng, Natonal Unversty of Sngapore, 0 Kent Rdge Crescent, 960,

More information

CSE 252C: Computer Vision III

CSE 252C: Computer Vision III CSE 252C: Computer Vson III Lecturer: Serge Belonge Scrbe: Catherne Wah LECTURE 15 Kernel Machnes 15.1. Kernels We wll study two methods based on a specal knd of functon k(x, y) called a kernel: Kernel

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

PATTERN RECOGNITION AND IMAGE UNDERSTANDING

PATTERN RECOGNITION AND IMAGE UNDERSTANDING PATTERN RECOGNITION AND IMAGE UNDERSTANDING The ultmate objectve of many mage analyss tasks s to dscover meanng of the analysed mage, e.g. categorse the objects, provde symbolc/semantc nterpretaton of

More information

arxiv:cs.cv/ Jun 2000

arxiv:cs.cv/ Jun 2000 Correlaton over Decomposed Sgnals: A Non-Lnear Approach to Fast and Effectve Sequences Comparson Lucano da Fontoura Costa arxv:cs.cv/0006040 28 Jun 2000 Cybernetc Vson Research Group IFSC Unversty of São

More information

Feature Extraction by Maximizing the Average Neighborhood Margin

Feature Extraction by Maximizing the Average Neighborhood Margin Feature Extracton by Maxmzng the Average Neghborhood Margn Fe Wang, Changshu Zhang State Key Laboratory of Intellgent Technologes and Systems Department of Automaton, Tsnghua Unversty, Bejng, Chna. 184.

More information

Chapter 6 Support vector machine. Séparateurs à vaste marge

Chapter 6 Support vector machine. Séparateurs à vaste marge Chapter 6 Support vector machne Séparateurs à vaste marge Méthode de classfcaton bnare par apprentssage Introdute par Vladmr Vapnk en 1995 Repose sur l exstence d un classfcateur lnéare Apprentssage supervsé

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES

FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES Proceedngs of the Fourth Internatonal Conference on Machne Learnng and Cybernetcs, Guangzhou, 8- August 005 FORECASTING EXCHANGE RATE USING SUPPORT VECTOR MACHINES DING-ZHOU CAO, SU-LIN PANG, YUAN-HUAI

More information

Lecture 10: Dimensionality reduction

Lecture 10: Dimensionality reduction Lecture : Dmensonalt reducton g The curse of dmensonalt g Feature etracton s. feature selecton g Prncpal Components Analss g Lnear Dscrmnant Analss Intellgent Sensor Sstems Rcardo Guterrez-Osuna Wrght

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

Pattern Recognition 42 (2009) Contents lists available at ScienceDirect. Pattern Recognition. journal homepage:

Pattern Recognition 42 (2009) Contents lists available at ScienceDirect. Pattern Recognition. journal homepage: Pattern Recognton 4 (9) 764 -- 779 Contents lsts avalable at ScenceDrect Pattern Recognton ournal homepage: www.elsever.com/locate/pr Perturbaton LDA: Learnng the dfference between the class emprcal mean

More information

A Fast Fractal Image Compression Algorithm Using Predefined Values for Contrast Scaling

A Fast Fractal Image Compression Algorithm Using Predefined Values for Contrast Scaling Proceedngs of the World Congress on Engneerng and Computer Scence 007 WCECS 007, October 4-6, 007, San Francsco, USA A Fast Fractal Image Compresson Algorthm Usng Predefned Values for Contrast Scalng H.

More information

MULTICLASS LEAST SQUARES AUTO-CORRELATION WAVELET SUPPORT VECTOR MACHINES. Yongzhong Xing, Xiaobei Wu and Zhiliang Xu

MULTICLASS LEAST SQUARES AUTO-CORRELATION WAVELET SUPPORT VECTOR MACHINES. Yongzhong Xing, Xiaobei Wu and Zhiliang Xu ICIC Express Letters ICIC Internatonal c 2008 ISSN 1881-803 Volume 2, Number 4, December 2008 pp. 345 350 MULTICLASS LEAST SQUARES AUTO-CORRELATION WAVELET SUPPORT VECTOR MACHINES Yongzhong ng, aobe Wu

More information

ERROR RATES STABILITY OF THE HOMOSCEDASTIC DISCRIMINANT FUNCTION

ERROR RATES STABILITY OF THE HOMOSCEDASTIC DISCRIMINANT FUNCTION ISSN - 77-0593 UNAAB 00 Journal of Natural Scences, Engneerng and Technology ERROR RATES STABILITY OF THE HOMOSCEDASTIC DISCRIMINANT FUNCTION A. ADEBANJI, S. NOKOE AND O. IYANIWURA 3 *Department of Mathematcs,

More information

Improvement of Histogram Equalization for Minimum Mean Brightness Error

Improvement of Histogram Equalization for Minimum Mean Brightness Error Proceedngs of the 7 WSEAS Int. Conference on Crcuts, Systems, Sgnal and elecommuncatons, Gold Coast, Australa, January 7-9, 7 3 Improvement of Hstogram Equalzaton for Mnmum Mean Brghtness Error AAPOG PHAHUA*,

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

DECADAL DECLINE ( )OF LOGGERHEAD SHRIKES ON CHRISTMAS BIRD COUNTS IN ALABAMA, MISSISSIPPI, AND TENNESSEE

DECADAL DECLINE ( )OF LOGGERHEAD SHRIKES ON CHRISTMAS BIRD COUNTS IN ALABAMA, MISSISSIPPI, AND TENNESSEE DEPARTMENT OF MATHEMATICS TECHNICAL REPORT DECADAL DECLINE (1992-22)OF LOGGERHEAD SHRIKES ON CHRISTMAS BIRD COUNTS IN ALABAMA, MISSISSIPPI, AND TENNESSEE DR. STEPHEN J. STEDMAN AND DR. MICHAEL ALLEN AUGUST

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models Automatc Object Trajectory- Based Moton Recognton Usng Gaussan Mxture Models Fasal I. Bashr, Ashfaq A. Khokhar, Dan Schonfeld Electrcal and Computer Engneerng, Unversty of Illnos at Chcago. Chcago, IL,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

A New Evolutionary Computation Based Approach for Learning Bayesian Network

A New Evolutionary Computation Based Approach for Learning Bayesian Network Avalable onlne at www.scencedrect.com Proceda Engneerng 15 (2011) 4026 4030 Advanced n Control Engneerng and Informaton Scence A New Evolutonary Computaton Based Approach for Learnng Bayesan Network Yungang

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Study of Selective Ensemble Learning Methods Based on Support Vector Machine

Study of Selective Ensemble Learning Methods Based on Support Vector Machine Avalable onlne at www.scencedrect.com Physcs Proceda 33 (2012 ) 1518 1525 2012 Internatonal Conference on Medcal Physcs and Bomedcal Engneerng Study of Selectve Ensemble Learnng Methods Based on Support

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

An Improved multiple fractal algorithm

An Improved multiple fractal algorithm Advanced Scence and Technology Letters Vol.31 (MulGraB 213), pp.184-188 http://dx.do.org/1.1427/astl.213.31.41 An Improved multple fractal algorthm Yun Ln, Xaochu Xu, Jnfeng Pang College of Informaton

More information

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD.

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD. Cluster Analyss Cluster Valdaton Determnng Number of Clusters 1 Cluster Valdaton The procedure of evaluatng the results of a clusterng algorthm s known under the term cluster valdty. How do we evaluate

More information

Intro to Visual Recognition

Intro to Visual Recognition CS 2770: Computer Vson Intro to Vsual Recognton Prof. Adrana Kovashka Unversty of Pttsburgh February 13, 2018 Plan for today What s recognton? a.k.a. classfcaton, categorzaton Support vector machnes Separable

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Dimension Reduction and Visualization of the Histogram Data

Dimension Reduction and Visualization of the Histogram Data The 4th Workshop n Symbolc Data Analyss (SDA 214): Tutoral Dmenson Reducton and Vsualzaton of the Hstogram Data Han-Mng Wu ( 吳漢銘 ) Department of Mathematcs Tamkang Unversty Tamsu 25137, Tawan http://www.hmwu.dv.tw

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

Transient Stability Assessment of Power System Based on Support Vector Machine

Transient Stability Assessment of Power System Based on Support Vector Machine ransent Stablty Assessment of Power System Based on Support Vector Machne Shengyong Ye Yongkang Zheng Qngquan Qan School of Electrcal Engneerng, Southwest Jaotong Unversty, Chengdu 610031, P. R. Chna Abstract

More information

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis Fsher Lnear Dscrmnant Analyss Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan Fsher lnear

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material Natural Images, Gaussan Mxtures and Dead Leaves Supplementary Materal Danel Zoran Interdscplnary Center for Neural Computaton Hebrew Unversty of Jerusalem Israel http://www.cs.huj.ac.l/ danez Yar Wess

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 89 Fall 206 Introducton to Machne Learnng Fnal Do not open the exam before you are nstructed to do so The exam s closed book, closed notes except your one-page cheat sheet Usage of electronc devces

More information