The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel

Size: px
Start display at page:

Download "The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel"

Transcription

1 The Evaluation of the Thermal Behaviour of an Underground Repository of the Spent Nuclear Fuel Roman Kohut, Jiří Starý, and Alexej Kolcun Institute of Geonics, Academy of Sciences of the Czech Republic, Studentská 1768, Ostrava-Poruba, Czech Republic Abstract. The paper concerns the evaluation of the thermal behaviour of an underground repository of the spent nuclear fuel where the canisters are disposed at a vertical position in the horizontal tunnels. The formulation of thermo-elastic problems should regard the basic steps of the construction of the repository. We tested the influence of the distance between the deposition places on the thermo-elastic response of the rock massif. The problems are solved by the in-house GEM-FEM finite element software. One sided coupling allows a separate solution of the temperature evolution and the computation of elastic responses only in predefined time points as a post-processing to the solution of the heat equations. A parallel solution of the arising linear systems by the conjugate gradient method with a preconditioning based on the additive Schwarz methods is used. 1 Introduction Management of high-level, long-lived radioactive waste is an important issue today for all nuclear-power-generating countries. The deep geological disposal of these wastes is one of the promissing options. The design of a safe underground depository of a spent nuclear fuel (SNF) from nuclear power stations requires careful study of the repository construction, reliability of the protecting barriers between SNF and the environment and study of all kinds of risks related to the behaviour of the whole repository system. For the assessment of the repository performance, it is fundamental to be able to do large-scale computer simulations in various coupled processes as heat transfer, mechanical behaviour, water and gas flow and chemical processes in rocks and water solutions. Generally, we speak about T-H-M-C processes and their modelling. The T-H-M-C processes are generally coupled and a reliable mathematical modelling should respect at least some of the couplings. In this paper, we restrict to the modelling of T-M processes with one-directional T-M coupling via the thermal expansion term in the constitutive relations. Thus the problem can be divided in two parts. Firtsly, the temperature distribution is determined by the solution of the nonstationary heat equation, secondly, at given time points the I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp , c Springer-Verlag Berlin Heidelberg 2008

2 426 R. Kohut, J. Starý, and A. Kolcun linear elasticity problem is solved. The numerical solution of both the problems leads to a repeated solution of large systems of linear equations and our aim is to find efficient and parallelizable iterative solution methods. Mathematically, the thermoelasticity problem is concerned with finding the temperature τ = τ(x, t) and the displacement u = u(x, t), governed by the following equations τ : Ω (0,T) R, u : Ω (0,T) R 3 κρ τ t = k i 2 τ + q(t) in Ω (0,T), (1) x 2 i j σ ij x j = f i (i =1,...,3) in Ω (0,T), (2) σ ij = c ijkl [ε kl (u) α kl (τ τ 0 )] in Ω (0,T), (3) kl ε kl (u) = 1 ( uk + u ) l in Ω (0,T), (4) 2 x l x k together with the corresponding boundary and initial conditions. 2 Numerical Methods The initial-boundary value problem of thermo-elasticity (1) (4) is discretized by finite elements in space and finite differences in time. Using the linear finite elements and the time discretization, it leads to the computation of vectors τ j,u j of nodal temperatures and displacements at the time levels t j,j =1,N, with thetimestepsδt j = t j t j 1. It gives the following time stepping algorithm: find τ 0 : M h τ 0 = τ 0, u 0 : A h u 0 = b 0 = b h (τ 0 ), for j=1,...,n: find τ j : B (j) h τ j =[M h + θδt j K h ] τ j = c j, find u j : A h u j = b j. end for Remark: The system u j : A h u j = b j (5) we solve only in predefined time points. Above, M h is the capacitance matrix, K h is the conductivity matrix, A h is the stiffness matrix, c j =[M h (1 θ)δt j K h ]τ j 1 + Δt j φ j, φ j = θq(t j )+(1 θ)q(t j 1 ), b j = b h (τ j )andτ 0 is determined from the initial condition. Here parameter θ {0, 0.5, 1}. It means that in each time level we have to solve the system of linear equations [M h + θδt j K h ]τ j =[M h (1 θ)δt j K h ]τ j 1 + Δt j φ j. (6)

3 The evaluation of the Thermal Behaviour of an Underground Repository 427 For θ = 0 we obtain the explicit Euler scheme, for θ = 1 we obtain the backward Euler (BE) scheme, θ =0.5 gives the Crank-Nicolson (CN) scheme. In our case we will use the BE scheme. If we substitute τ j = τ j 1 + Δτ j into (6), we obtain the system of equations for the increment of temperature Δτ j, [M h + Δt j K h ]Δτ j = Δt j (q j h K hτ j 1 ), (7) where q j h = q(t j). To ensure accuracy and not waste the computational effort, it is important to adapt the time steps to the behaviour of the solution. We use the procedure based on local comparison of the backward Euler (BE) and the Crank-Nicolson (CN) scheme [1]. We solve the system (6) only using BE scheme. If this solution τ j = τ j 1 + Δτ j is considered as the initial approximation for the solution of system (6) for θ = 0.5 (CN scheme), then the first iteration of Richardson s method presents an approximation of the solution of the system (6) for θ =0.5. Thus τ j CN = τ j r j,where r j =(M h +0.5Δt j K h )τ j (M h 0.5Δt j K h )τ j 1 0.5q j h 0.5qj 1. (8) h The time steps can be controlled with the aid of the ratio η = rj τ j.ifη<ε min then we continue with time step Δt =2 Δt, ifη>ε max then we continue with time step Δt =0.5 Δt, whereε min,ε max are given values. For the solution of the linear system B h Δτ j =(M h + Δ j K h )Δτ j = f j (7) we shall use the preconditioned CG method where the preconditioning is given by the additive overlapping Schwarz method. In this case the domain is divided into m subdomains Ω k. The nonoverlaping subdomains Ω k are then extended to domains Ω k in the way that overlaping between the subdomains are given by two or more layers of elements. If B kk are the FE matrices corresponding to problems on Ω k, I k and R k = (I k )T are the interpolation and restriction matrices, respectively, then introduced matrices B kk = R k BI k allow to define the one-level additive Schwarz preconditioner G, g = Gr = m I kb kk 1 R k r. k=1 Note that for the parabolic problems it is proved in [2] that under the assumption that Δ j /H 2 is reasonably bounded, the algorithms based on one-level additive Schwarz preconditioning remain numerically scalable. Here Δ j is in order of the time stepsize and H is the diameter of the largest subdomain. 3 Model Example The model example comes out from the depository design proposed in [3] (see Figure 1). The whole depository is very large, but using symmetry we can solve the problem only on the part of the domain. The model domain contains three

4 428 R. Kohut, J. Starý, and A. Kolcun Fig. 1. The global design of depository depository drifts (a half of the drift), each with four 1.32 m diameter, 4.77 m deep deposition holes and one access drift. The heating canisters (0.67 m diameter, 3.67 m length) simulating the heating from the radioactive waste are emplaced in the holes. The highest allowable temperature on the surface between the canister and the bentonit is restricted to 100 o C. We solve six variants (A, B, C, D, E, F ) which differ in the distance d h between the holes (from 2.5 mforthe variant A to 15 m for the variant F ). The whole model domain is situated 800m under surface. A constructed 3D T-M model of repository is shown in Figure 2. The computation domain is enlarged with increasing distance between the holes from dimensions m with FE grid nodes ( DOF for the heat problem, DOF for the elasticity problem) for the variant A to dimensions m with FE grid Fig. 2. Finite element mesh for repository model

5 The evaluation of the Thermal Behaviour of an Underground Repository 429 Table 1. Material properties E ν density conductivity capacity expansion (MPa) (kg/m 3 ) (W/m 0 C) (J/kg 0 C) (1/ 0 C) granite concrete bentonite steel SNF nodes ( DOF for the heat problem, DOF for the elasticity problem) for the variant F. The thermal source is given by the radiactive waste. The power of SNF in the canister decays exponentialy in time according to formula determined from given data by MATLAB q(t) = (e (t+tc) e (t+tc) e (t+tc) ) Here t c presents the cooling time depending on the burn-up value of the fuel. In our case we suppose two possibilities for the canister power. In the first case the canister power C p is 1500 W when disposed (this power is reached after t c =50.0 years pre-cooling time), in the second case the canister power C p is 1600 W when disposed (this power is reached after t c =42.16 years pre-cooling time). Canister power is a very important parameter because the canister spacing can be reduced, if the power decreases. The materials are assumed to be isotropic, the mechanical properties do not change with the temperature variations.the thermal conductivity k and thermal expansion α of the rock are also assumed to be isotropic (see Table 1). The boundary conditions for the mechanical parts consist of zero normal displacements and zero stresses on all outer faces except of the upper one. For the thermal part, we assume zero heat flux on all outer faces except ofthe bottom one, where the original rock temperature is given. On the faces of the drifts we suppose the heat transfer with the parameter H =7W/m 2 o C, the temperature of air in the drifts is supposed to be constant in time and is equal to 27 o C.The original temperature of rocks is determined by using geothermal gradient. This temperature also gives the initial condition. The computations are done in four subsequent phases: the phase of virgin rocks the initial stresses are determined from the weights of rocks, the initial temperature is determined using the geothermal gradient the drifts are excavated. The elasticity problem is solved using equivalent forces on the faces of drifts initiated by the excavation. The nonstationary heat problem is solved for period of 10 years with the initial condition determined in the phase 1 and with the heat transfer on the faces of drifts the deposition holes are excavated. The elasticity problem is solved using equivalent forces on the faces of holes

6 430 R. Kohut, J. Starý, and A. Kolcun Fig. 3. The temperature on the line parallel with the drifts crossing the center of the canisters for d h =2.5, 5.0, and 10.0 meters the time is 1.6 year(c p = 1500 W) Fig. 4. The temperature on the line parallel with the drifts crossing the center of the canisters for d h =2.5, 5.0, and 10.0 meters the time is 1.6 year(c p = 1600 W) the thermoelasticity problem is solved for the period of 200 years with the initial condition given by the temperature computed in the phase 2. The highest temperature is encountered after about 1.6 years of deposition for both the cases (C p = 1500 W, 1600 W). The results for the first case for the variants A, B, andd (d h =2.5, 5.0, and 10.0) are shown in Figure 3. The results for the second case for the variants A, B and D are shown in Figure 4. Note that the figures present the behaviour of the temperature on the line parallel with the drifts crossing the center of the canisters. We can see that in the first case (C p = 1500 W) the distance d h =5.0 m is sufficient to fulfil the restriction for the temperature on the surface of canister. In the second case (C p = 1600 W) we can situate the holes in the distance d h =10m. Remark: The distance between drifts is supposed to be 25 metres. The results of our tests showed that the canisters deposition in one drift practically do not influence the temperature in the neighbouring drifts. From the groundwater solute transport modelling point of view the knowledge of the stress field is very important. In Figure 5 we present the behaviour of the shear stress intensity for the first case (C p = 1500 W).

7 The evaluation of the Thermal Behaviour of an Underground Repository 431 Fig. 5. The shear stress intensity on the line parallel with the drifts crossing the center of the canisters for d h =2.5, 5.0, and 10.0 meters the time is 1.6 year(c p = 1500 W) Table 2. The numbers of iterations for the domain division in various directions material homogeneous non-homogeneous direction xyzxyzxyzxyzxyz xyz nbr of subdomains nbr of iterations nbr of subdomains nbr of iterations For the solution of the linear systems (5) and (6) we used the preconditioned CG methods with preconditioning given by the additive overlapping Schwarz method. The linear systems were solved in parallel. The parallel computations were performed on: the IBM xseries 455 computer (symmetric multiprocessor (SMP), 8 processors) with Intel Itanium2 1.3 GHz 64bit Processor, 16 GB shared memory the PC cluster THEA with 8 AMD Athlon 1.4 GHz, 1.5 GB RAM computer nodes. The parallel programming uses: OpenMP and MPI paradigms on SMP computer, MPI paradigm on the PC cluster. The division of the domain to subdomains influences the efficiency of the preconditioning given by the additive overlapping Schwarz method if the materials are strong anisotropic or the material parameters have big jumps or the grid is anisotropic (narrow elements). We tested this efficiency in the variant B. In this case the averaged hexahedral element has dimensions m and the material parameters have big jumps on the canisters (see Table 1). Table 2 presents the numbers of PCG iterations for one timestep (Δt j =10,ε=10 6 ), if the division to three or six subdomains in direction x, y or z is done. On the left part of the table we present results for the homogeneous case (we suppose that all materials have the same properties as granit). We can see that in this case

8 432 R. Kohut, J. Starý, and A. Kolcun the numbers of iterations correspond to the averaged dimensions of hexagonal elements. On the right part of the table we present results for the nonhomogenous case. If we use three subdomains, the boundaries of subdomains are not cutting the canisters and the numbers of iterations correspond to the averaged dimensions of elements. In the case of division to six subdomains the division in the direction x does not cut the canisters and the division in the direction y cuts the canisters directly in the centre. This fact distinctively influences the numbers of iterations. Therefore it s necessary to improve the code to enable the using of irregular division of the domain, which can guarantee that the boundaries of subdomains will not cut the areas with jumps of material parameters. 4 Conclusion In the paper, the model problem of geological depository of the spent nuclear fuel is solved. We compare the results of the solution for various distances of the deposition holes. We tested the efficiency of the DD preconditioner from the point of the dependence on the division of the domain. Acknowledgments The work was supported by the Ministry of Education, Youth and Sports under the project 1M0554 and by the Academy of Sciences of the Czech Republic through the project No. 1ET References 1. Blaheta, R., Byczanski, P., Kohut, R., Starý, J.: Algorithm for parallel FEM modelling of thermo mechanical phenomena arising from the disposal of the spent nuclear fuel. In: Stephansson, O., Hudson, J.B., Jing, L. (eds.) Coupled Thermo-Hydro- Mechanical-Chemical processes in Geo-systems, Elsevier, Amsterdam (2004) 2. Cai, X.-C.: Additive Schwarz algorithms for parabolic convection-diffusion problems. Numer. Math. 60, (1990) 3. Vavřina V.: Reference project of the underground and overground parts of the deep depository (in czech), SURAO /EGPI (1999)

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

Modelling of THM processes in rocks [Geonics 2007]

Modelling of THM processes in rocks [Geonics 2007] Modelling of THM processes in rocks [Geonics 200] R. BLAHETA 1, R. KOHUT 1, M. NETCHEVA 2 & J. STARÝ 1 1 Institute of Geonics AS CR, Ostrava 2 Uppsala University, Department of Information Technology Abstrakt

More information

On the adaptive time-stepping for large-scale parabolic problems: computer simulation of heat and mass transfer in vacuum freeze-drying

On the adaptive time-stepping for large-scale parabolic problems: computer simulation of heat and mass transfer in vacuum freeze-drying On the adaptive time-stepping for large-scale parabolic problems: computer simulation of heat and mass transfer in vacuum freeze-drying Krassimir Georgiev, Nikola Kosturski, Svetozar Margenov Institute

More information

High Performance Computing Applications

High Performance Computing Applications BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 17, No 5 Special issue with selected papers from the workshop Two Years Avitohol: Advanced High Performance Computing Applications

More information

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems

Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Comparative Analysis of Mesh Generators and MIC(0) Preconditioning of FEM Elasticity Systems Nikola Kosturski and Svetozar Margenov Institute for Parallel Processing, Bulgarian Academy of Sciences Abstract.

More information

Thermo-Hydro-Mechanical-Chemical (THMC) Modelling of the Bentonite Barrier in Final Disposal of High Level Nuclear Waste

Thermo-Hydro-Mechanical-Chemical (THMC) Modelling of the Bentonite Barrier in Final Disposal of High Level Nuclear Waste Presented at the COMSOL Conference 2008 Hannover Thermo-Hydro-Mechanical-Chemical (THMC) Modelling of the Bentonite Barrier in Final Disposal of High Level Nuclear Waste, Markus Olin, Veli-Matti Pulkkanen,

More information

A domain decomposition algorithm for contact problems with Coulomb s friction

A domain decomposition algorithm for contact problems with Coulomb s friction A domain decomposition algorithm for contact problems with Coulomb s friction J. Haslinger 1,R.Kučera 2, and T. Sassi 1 1 Introduction Contact problems of elasticity are used in many fields of science

More information

arxiv: v1 [math.na] 28 Feb 2008

arxiv: v1 [math.na] 28 Feb 2008 BDDC by a frontal solver and the stress computation in a hip joint replacement arxiv:0802.4295v1 [math.na] 28 Feb 2008 Jakub Šístek a, Jaroslav Novotný b, Jan Mandel c, Marta Čertíková a, Pavel Burda a

More information

On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation

On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation On the Discretization Time-Step in the Finite Element Theta-Method of the Discrete Heat Equation Tamás Szabó Eötvös Loránd University, Institute of Mathematics 1117 Budapest, Pázmány P. S. 1/c, Hungary

More information

Loading capacity of yielding connections used in steel arch roadway supports

Loading capacity of yielding connections used in steel arch roadway supports Ground Support 2013 Y. Potvin and B. Brady (eds) 2013 Australian Centre for Geomechanics, Perth, ISBN 978-0-9806154-7-0 https://papers.acg.uwa.edu.au/p/1304_31_horyl/ Loading capacity of yielding connections

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

1. Introduction. 2. Model Description and Assumptions

1. Introduction. 2. Model Description and Assumptions Excerpt from the Proceedings of the COMSOL Conference 2010 Boston The Dissolution and Transport of Radionuclides from Used Nuclear Fuel in an Underground Repository Y. Beauregard *1, M. Gobien 2, F. Garisto

More information

MPI parallel implementation of CBF preconditioning for 3D elasticity problems 1

MPI parallel implementation of CBF preconditioning for 3D elasticity problems 1 Mathematics and Computers in Simulation 50 (1999) 247±254 MPI parallel implementation of CBF preconditioning for 3D elasticity problems 1 Ivan Lirkov *, Svetozar Margenov Central Laboratory for Parallel

More information

A parallel exponential integrator for large-scale discretizations of advection-diffusion models

A parallel exponential integrator for large-scale discretizations of advection-diffusion models A parallel exponential integrator for large-scale discretizations of advection-diffusion models L. Bergamaschi 1, M. Caliari 2, A. Martínez 3, and M. Vianello 3 1 Department of Mathematical Methods and

More information

Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces

Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces Andrei A. Gusev Institute of Polymers, Department of Materials, ETH-Zürich, Switzerland Outlook Lamellar morphology systems

More information

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3

ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3 ENGINEERING GEOLOGY AND ROCK ENGINEERING ASPECTS OF OPERATION AND CLOSURE OF KBS-3 DAVID SAIANG Principal Consultant SRK Consulting Sweden NEIL MARSHALL Corporate Consultant SRK Consulting UK 1 of XX SRK

More information

FETI domain decomposition method to solution of contact problems with large displacements

FETI domain decomposition method to solution of contact problems with large displacements FETI domain decomposition method to solution of contact problems with large displacements Vít Vondrák 1, Zdeněk Dostál 1, Jiří Dobiáš 2, and Svatopluk Pták 2 1 Dept. of Appl. Math., Technical University

More information

Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure

Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure Space-time domain decomposition for a nonlinear parabolic equation with discontinuous capillary pressure Elyes Ahmed, Caroline Japhet, Michel Kern INRIA Paris Maison de la Simulation ENPC University Paris

More information

Assignment on iterative solution methods and preconditioning

Assignment on iterative solution methods and preconditioning Division of Scientific Computing, Department of Information Technology, Uppsala University Numerical Linear Algebra October-November, 2018 Assignment on iterative solution methods and preconditioning 1.

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Modelling and Experimental Validation Possibilities of Heat Transfer Room Model Author M. Zalesak 1, Author V. Gerlich *,1 1 Author Tomas

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f

MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown

More information

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D A. Grahn, S. Kliem, U. Rohde Forschungszentrum Dresden-Rossendorf, Institute

More information

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Engineering MECHANICS, Vol. 19, 2012, No. 2/3, p. 87 97 87 CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Radim Halama*, Michal Šofer*, František Fojtík* Plasticity

More information

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii)

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii) Asphalt Pavement Aging and Temperature Dependent Properties through a Functionally Graded Viscoelastic Model I: Development, Implementation and Verification Eshan V. Dave, Secretary of M&FGM2006 (Hawaii)

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme

In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme In-situ Experiments on Excavation Disturbance in JNC s Geoscientific Research Programme H. Matsui, K. Sugihara and T. Sato Japan Nuclear Cycle Development Institute, Japan Summary The HLW disposal program

More information

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM

EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE OF A RECTANGULAR ELASTIC BODY MADE OF FGM Proceedings of the International Conference on Mechanical Engineering 2007 (ICME2007) 29-31 December 2007, Dhaka, Bangladesh ICME2007-AM-76 EFFECTS OF THERMAL STRESSES AND BOUNDARY CONDITIONS ON THE RESPONSE

More information

Flin Flon Mining Belt

Flin Flon Mining Belt EOSC433: Geotechnical Engineering Practice & Design Lecture 7: Stress Analysis around Underground Openings 1 of 40 Erik Eberhardt UBC Geological Engineering EOSC 433 (2007) Flin Flon Mining Belt Since

More information

PROBABILISTIC TRANSPORT PATH ANALYSIS THROUGH THREE-DIMENSIONAL DISCRETE FRACTURE NETWORKS FOR UNDERGROUND RADIOACTIVE WASTE DISPOSAL FACILITIES

PROBABILISTIC TRANSPORT PATH ANALYSIS THROUGH THREE-DIMENSIONAL DISCRETE FRACTURE NETWORKS FOR UNDERGROUND RADIOACTIVE WASTE DISPOSAL FACILITIES th International Conference on Probabilistic Safety Assessment and Management (PSAM ) PROBABILISTIC TRANSPORT PATH ANALYSIS THROUGH THREE-DIMENSIONAL DISCRETE FRACTURE NETWORKS FOR UNDERGROUND RADIOACTIVE

More information

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique) Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine Nicole Spillane (CNRS, CMAP, École Polytechnique) C. Bovet (ONERA), P. Gosselet (ENS Cachan), A. Parret Fréaud (SafranTech),

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles.

WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. High-Level Radioactive Waste (HLW) Disposal WITPRESS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com WITeLibrary Home of

More information

Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations

Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations Iterative Domain Decomposition Methods for Singularly Perturbed Nonlinear Convection-Diffusion Equations P.A. Farrell 1, P.W. Hemker 2, G.I. Shishkin 3 and L.P. Shishkina 3 1 Department of Computer Science,

More information

Scalable BETI for Variational Inequalities

Scalable BETI for Variational Inequalities Scalable BETI for Variational Inequalities Jiří Bouchala, Zdeněk Dostál and Marie Sadowská Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Thermomechanics Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 13-14 December, 2017 1 / 30 Forewords

More information

CHAPTER 8: Thermal Analysis

CHAPTER 8: Thermal Analysis CHAPER 8: hermal Analysis hermal Analysis: calculation of temperatures in a solid body. Magnitude and direction of heat flow can also be calculated from temperature gradients in the body. Modes of heat

More information

Deep Borehole Disposal Performance Assessment and Criteria for Site Selection

Deep Borehole Disposal Performance Assessment and Criteria for Site Selection Deep Borehole Disposal Performance Assessment and Criteria for Site Selection Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department

More information

Thermo Mechanical Analysis of AV1 Diesel Engine Piston using FEM

Thermo Mechanical Analysis of AV1 Diesel Engine Piston using FEM Journal of Advanced Engineering Research ISSN: 2393-8447 Volume 2, Issue 1, 2015, pp.23-28 Thermo Mechanical Analysis of AV1 Diesel Engine Piston using FEM Subodh Kumar Sharma 1, *, P. K. Saini 2, N. K.

More information

Convective drying : experimental campaign and numerical modelling

Convective drying : experimental campaign and numerical modelling 6 th European Drying Conference Convective drying : experimental campaign and numerical modelling J. Hubert 1 E. Plougonven 2 A. Leonard 2 F. Collin 1 1 Université de Liège Dept. ArGEnCo 2 Université de

More information

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS IGC 009, Guntur, INDIA NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS Mohammed Younus Ahmed Graduate Student, Earthquake Engineering Research Center, IIIT Hyderabad, Gachibowli, Hyderabad 3, India.

More information

Thermo hydro mechanical coupling for underground waste storage simulations

Thermo hydro mechanical coupling for underground waste storage simulations Thermo hydro mechanical coupling for underground waste storage simulations Clément Chavant - Sylvie Granet Roméo Frenandes EDF R&D 1 Outline Underground waste storage concepts Main phenomena and modelisation

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Hydrogeology of Deep Borehole Disposal for High-Level Radioactive Waste

Hydrogeology of Deep Borehole Disposal for High-Level Radioactive Waste SAND2014-18615C Hydrogeology of Deep Borehole Disposal for High-Level Radioactive Waste Geological Society of America Annual Meeting October 20, 2014 Bill W. Arnold, W. Payton Gardner, and Patrick V. Brady

More information

MODEL OF GROUNDWATER FLOW IN FRACTURED ENVIRONMENT

MODEL OF GROUNDWATER FLOW IN FRACTURED ENVIRONMENT Proceedings of ALGORITMY 2002 Conference on Scientific Computing, pp. 138 145 MODEL OF GROUNDWATER FLOW IN FRACTURED ENVIRONMENT JIŘÍ MARYŠKA, OTTO SEVERÝN AND MARTIN VOHRALÍK Abstract. A stochastic discrete

More information

FINITE ELEMENT APPROACHES TO MESOSCOPIC MATERIALS MODELING

FINITE ELEMENT APPROACHES TO MESOSCOPIC MATERIALS MODELING FINITE ELEMENT APPROACHES TO MESOSCOPIC MATERIALS MODELING Andrei A. Gusev Institute of Polymers, Department of Materials, ETH-Zürich, Switzerland Outlook Generic finite element approach (PALMYRA) Random

More information

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA

INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA Problems in Solid Mechanics A Symposium in Honor of H.D. Bui Symi, Greece, July 3-8, 6 INVERSE ANALYSIS METHODS OF IDENTIFYING CRUSTAL CHARACTERISTICS USING GPS ARRYA DATA M. HORI (Earthquake Research

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model

Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model Chao Yang 1 and Xiao-Chuan Cai 2 1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P. R. China, yang@mail.rdcps.ac.cn

More information

Experimental program in the URL

Experimental program in the URL Experimental program in the URL Jacques Delay Deputy Scientific Director July 21-24 th 2009 AGENCE NATIONALE POUR LA GESTION DES DÉCHETS RADIOACTIFS URL First construction step (2000 2006) Experimental

More information

General method for simulating laboratory tests with constitutive models for geomechanics

General method for simulating laboratory tests with constitutive models for geomechanics General method for simulating laboratory tests with constitutive models for geomechanics Tomáš Janda 1 and David Mašín 2 1 Czech Technical University in Prague, Faculty of Civil Engineering, Czech Republic

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

MATHEMATICAL MODELLING OF HUMAN LIMB IN MATLAB

MATHEMATICAL MODELLING OF HUMAN LIMB IN MATLAB MATHEMATICAL MODELLING OF HUMAN LIMB IN MATLAB J. Daněk Department of Mathematics, University of West Bohemia Abstract The contribution deals with mathematical modelling of human limb and numerical simulation

More information

Finite Difference Solution of the Heat Equation

Finite Difference Solution of the Heat Equation Finite Difference Solution of the Heat Equation Adam Powell 22.091 March 13 15, 2002 In example 4.3 (p. 10) of his lecture notes for March 11, Rodolfo Rosales gives the constant-density heat equation as:

More information

MEI solutions to exercise 4 1

MEI solutions to exercise 4 1 MEI-55 solutions to exercise Problem Solve the stationary two-dimensional heat transfer problem shown in the figure below by using linear elements Use symmetry to reduce the problem size The material is

More information

Tangent Modulus in Numerical Integration of Constitutive Relations and its Influence on Convergence of N-R Method

Tangent Modulus in Numerical Integration of Constitutive Relations and its Influence on Convergence of N-R Method Applied and Computational Mechanics 3 (2009) 27 38 Tangent Modulus in Numerical Integration of Constitutive Relations and its Influence on Convergence of N-R Method R. Halama a,, Z. Poruba a a Faculty

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

A Thermo-Hydro-Mechanical Damage Model for Unsaturated Geomaterials

A Thermo-Hydro-Mechanical Damage Model for Unsaturated Geomaterials A Thermo-Hydro-Mechanical Damage Model for Unsaturated Geomaterials Chloé Arson ALERT PhD Prize PhD Advisor : Behrouz Gatmiri Paris-Est University, U.R. Navier, geotechnical group (CERMES) This research

More information

Back Analysis of Measured Displacements of Tunnels

Back Analysis of Measured Displacements of Tunnels Rock Mechanics and Rock Engineering 16, 173--180 (1983) Rock Mechanics and Rock Engineering 9 by Springer-Verlag 1983 Back Analysis of Measured Displacements of Tunnels By S. Sakurai and K. Takeuchi Kobe

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

Preconditioned Parallel Block Jacobi SVD Algorithm

Preconditioned Parallel Block Jacobi SVD Algorithm Parallel Numerics 5, 15-24 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.) Chapter 2: Matrix Algebra ISBN 961-633-67-8 Preconditioned Parallel Block Jacobi SVD Algorithm Gabriel Okša 1, Marián Vajteršic

More information

INFLUENCE OF UNDERCOOLED SURFACE OF CCSP ON CORE PROPAGATION OF PLASTIC DEFORMATION. Richard Fabík a Jiří Kliber a

INFLUENCE OF UNDERCOOLED SURFACE OF CCSP ON CORE PROPAGATION OF PLASTIC DEFORMATION. Richard Fabík a Jiří Kliber a INFLUENCE OF UNDERCOOLED SURFACE OF CCSP ON CORE PROPAGATION OF PLASTIC DEFORMATION. Richard Fabík a Jiří Kliber a a SB-Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering,

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Thermal and Mechanical Influence of a Deep Geological Repository in Crystalline Rock on the Ground Surface

Thermal and Mechanical Influence of a Deep Geological Repository in Crystalline Rock on the Ground Surface Thermal and Mechanical Influence of a Deep Geological Repository in Crystalline Rock on the Ground Surface NWMO-TR-2016-15 October 2016 Ruiping Guo Nuclear Waste Management Organization Nuclear Waste Management

More information

Domain decomposition for the Jacobi-Davidson method: practical strategies

Domain decomposition for the Jacobi-Davidson method: practical strategies Chapter 4 Domain decomposition for the Jacobi-Davidson method: practical strategies Abstract The Jacobi-Davidson method is an iterative method for the computation of solutions of large eigenvalue problems.

More information

Modeling of the 3D Electrode Growth in Electroplating

Modeling of the 3D Electrode Growth in Electroplating Modeling of the 3D Electrode Growth in Electroplating Marius PURCAR, Calin MUNTEANU, Alexandru AVRAM, Vasile TOPA Technical University of Cluj-Napoca, Baritiu Street 26-28, 400027 Cluj-Napoca, Romania;

More information

Iterative Solvers in the Finite Element Solution of Transient Heat Conduction

Iterative Solvers in the Finite Element Solution of Transient Heat Conduction Iterative Solvers in the Finite Element Solution of Transient Heat Conduction Mile R. Vuji~i} PhD student Steve G.R. Brown Senior Lecturer Materials Research Centre School of Engineering University of

More information

Safety assessment for disposal of hazardous waste in abandoned underground mines

Safety assessment for disposal of hazardous waste in abandoned underground mines Safety assessment for disposal of hazardous waste in abandoned underground mines A. Peratta & V. Popov Wessex Institute of Technology, Southampton, UK Abstract Disposal of hazardous chemical waste in abandoned

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Clays in Geological Disposal Systems

Clays in Geological Disposal Systems Clays in Natural and Engineered Barriers for Radioactive Waste Confinement Clays in Geological Disposal Systems A brochure edited by ONDRAF/NIRAS (Belgium) and Andra (France), in collaboration with COVRA

More information

Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating

Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating Thermo-elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating Joel N. Jiménez Lozano, Paulino Vacas-Jacques, Walfre Franco. Excerpt from the Proceedings of the 2012

More information

Computation Time Assessment of a Galerkin Finite Volume Method (GFVM) for Solving Time Solid Mechanics Problems under Dynamic Loads

Computation Time Assessment of a Galerkin Finite Volume Method (GFVM) for Solving Time Solid Mechanics Problems under Dynamic Loads Proceedings of the International Conference on Civil, Structural and Transportation Engineering Ottawa, Ontario, Canada, May 4 5, 215 Paper o. 31 Computation Time Assessment of a Galerkin Finite Volume

More information

Solving Pure Torsion Problem and Modelling Radionuclide Migration Using Radial Basis Functions

Solving Pure Torsion Problem and Modelling Radionuclide Migration Using Radial Basis Functions International Workshop on MeshFree Methods 3 1 Solving Pure Torsion Problem and Modelling Radionuclide Migration Using Radial Basis Functions Leopold Vrankar (1), Goran Turk () and Franc Runovc (3) Abstract:

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software

Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software Temperature Field Simulation of Polymeric Materials During Laser Machining Using COSMOS / M Software LIBUŠE SÝKOROVÁ, OLDŘICH ŠUBA, MARTINA MALACHOVÁ, JAKUB ČERNÝ Department of Production Engineering Tomas

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

Deflated Krylov Iterations in Domain Decomposition Methods

Deflated Krylov Iterations in Domain Decomposition Methods 305 Deflated Krylov Iterations in Domain Decomposition Methods Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 1 Introduction The goal of this research is an investigation of some advanced versions of

More information

Underground nuclear waste storage

Underground nuclear waste storage Underground nuclear waste storage Groundwater flow and radionuclide transport Jan-Olof Selroos Cargese Summer School, July 5, 2018 Contents: Concept for geological disposal of nuclear waste A few words

More information

Benchmark of Femlab, Fluent and Ansys

Benchmark of Femlab, Fluent and Ansys Benchmark of Femlab, Fluent and Ansys Verdier, Olivier 2004 Link to publication Citation for published version (APA): Verdier, O. (2004). Benchmark of Femlab, Fluent and Ansys. (Preprints in Mathematical

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

Slow Velocity Flow Fields in Composite Materials

Slow Velocity Flow Fields in Composite Materials Slow Velocity Flow Fields in Composite Materials A Coupled Problem by the Homogenization Method Noboru Kikuchi and His Associates The University of Michigan Ann Arbor, MI 48109, USA Major Contributors

More information

FINITE ELEMENT ANALYSIS USING THE TANGENT STIFFNESS MATRIX FOR TRANSIENT NON-LINEAR HEAT TRANSFER IN A BODY

FINITE ELEMENT ANALYSIS USING THE TANGENT STIFFNESS MATRIX FOR TRANSIENT NON-LINEAR HEAT TRANSFER IN A BODY Heat transfer coeff Temperature in Kelvin International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 FINITE ELEMENT ANALYSIS USING THE TANGENT STIFFNESS MATRIX FOR TRANSIENT

More information

Piezoelectric Bimorph Response with Imperfect Bonding Conditions

Piezoelectric Bimorph Response with Imperfect Bonding Conditions Copyright c 28 ICCES ICCES, vol.6, no.3, pp.5-56 Piezoelectric Bimorph Response with Imperfect Bonding Conditions Milazzo A., Alaimo A. and Benedetti I. Summary The effect of the finite stiffness bonding

More information

ADDITIVE SCHWARZ FOR SCHUR COMPLEMENT 305 the parallel implementation of both preconditioners on distributed memory platforms, and compare their perfo

ADDITIVE SCHWARZ FOR SCHUR COMPLEMENT 305 the parallel implementation of both preconditioners on distributed memory platforms, and compare their perfo 35 Additive Schwarz for the Schur Complement Method Luiz M. Carvalho and Luc Giraud 1 Introduction Domain decomposition methods for solving elliptic boundary problems have been receiving increasing attention

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

Discontinuous Galerkin methods for nonlinear elasticity

Discontinuous Galerkin methods for nonlinear elasticity Discontinuous Galerkin methods for nonlinear elasticity Preprint submitted to lsevier Science 8 January 2008 The goal of this paper is to introduce Discontinuous Galerkin (DG) methods for nonlinear elasticity

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

The use of Underground Research Facilities in the development of deep geological disposal

The use of Underground Research Facilities in the development of deep geological disposal The use of Underground Research Facilities in the development of deep geological disposal Radioactive Waste: Meeting the Challenge Science and Technology for Safe and Sustainable Solutions 23-24 September

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation Fourteenth nternational Conference on Domain Decomposition Methods Editors: smael Herrera, David E Keyes, Olof B Widlund, Robert Yates c 23 DDMorg 18 Balancing Neumann-Neumann for (n)compressible Linear

More information

On the diminishing of spurious oscillations in explicit finite element analysis of linear and non-linear wave propagation and contact problems

On the diminishing of spurious oscillations in explicit finite element analysis of linear and non-linear wave propagation and contact problems 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16315 On the diminishing of spurious oscillations

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Tdyn-CFD+HT - Validation Case 9

Tdyn-CFD+HT - Validation Case 9 Two-dimensional heat conduction with heat generation Version 14.0.0 Compass Ingeniería y Sistemas http://www.compassis.com Tel.: +34 932 181 989 - Fax.: +34 933 969 746 - E: info@compassis.com - C/ Tuset

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

Some Geometric and Algebraic Aspects of Domain Decomposition Methods

Some Geometric and Algebraic Aspects of Domain Decomposition Methods Some Geometric and Algebraic Aspects of Domain Decomposition Methods D.S.Butyugin 1, Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 Abstract Some geometric and algebraic aspects of various domain decomposition

More information